1
|
Trościańczyk A, Nowakiewicz A, Tracz AM, Bochniarz M. Evaluation of the activity and molecular characterisation of bacteriocins produced by E. faecium and E. faecalis isolated from different hosts against public health-threating pathogens. Microb Pathog 2025; 202:107432. [PMID: 40015577 DOI: 10.1016/j.micpath.2025.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
The aim of the study was to assess the activity and genetic background of bacteriocins of E. faecium and E. faecalis isolated from different hosts against methicillin-resistant Staphylococcus aureus (MRSA), E. faecium and E. faecalis with vancomycin (VRE) and high-level aminoglycoside (HLAR) resistance, Streptococcus agalactiae, and Listeria monocytogenes. The research was carried out using qualitative method and partially purified bacteriocins. The occurrence of 12 bacteriocin genes was examined and their sequences were analysed. Bacteriocins showing inhibitory activity against indicator strains were isolated from 95 % of E. faecium and 50 % of E. faecalis gave positive results in qualitative method. The highest inhibitory activity of bacteriocins isolated from E. faecium was obtained against E. faecium (100-25600AU/ml), E. faecalis VRE/HLAR (100-12800AU/ml), and L. monocytogenes (100-6400AU/ml), while bacteriocins isolated from E. faecalis were active against L. monocytogenes (100-25600AU/ml). The lowest activity of bacteriocins isolated from both Enterococcus species was determined against S. agalactiae (100AU/ml) and MRSA (100-800AU/ml). The presence of at least one bacteriocin gene was detected in 95 % of E. faecium and 52 % of E. faecalis. Four genes encoding bacteriocins was found (entB, enxAB, entA, entP), with the highest frequency of entA (97 %) in E. faecium and entB (53 %) in E. faecalis. The changes observed in the nucleotides among the entA, entB, and enxAB genes did not affect the activity of the bacteriocins. To sum up, E. faecium and E. faecalis may be a source of bacteriocins inhibiting the growth of drug-resistant bacteria, such as MRSA, HLAR, VRE, and L. monocytogenes.
Collapse
Affiliation(s)
- Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Anna Magdalena Tracz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Mariola Bochniarz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| |
Collapse
|
2
|
Highmore C, Cooper K, Parker J, Robinson J, Castangia R, Webb JS. Real-time Detection of Foodborne Pathogens and Biofilm in the Food Processing Environment with Bactiscan, A Macro-scale Fluorescence Device. J Food Prot 2025; 88:100511. [PMID: 40268122 DOI: 10.1016/j.jfp.2025.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 03/10/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Food safety relies on rapid detection methods and rigorous sampling of the food processing environment and is challenged by recurrent biofilm contamination and by sublethally injured bacteria that can evade detection. Bactiscan is investigated as an alternative detection approach, a macro-scale and reagentless device that detects microbial contamination through activating the green fluorescence of glycoproteins in the bacterial cell wall. The detection capability of Bactiscan was tested on foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. Detection by Bactiscan was assessed using 3 independent observers viewing bacterial samples dried on stainless steel, using 3 biological repeats and 5 technical repeats. Detection by Bactiscan was possible to 1.20 * 106 colony forming units (CFU), compared to 1.36 * 104 CFU by ATP swab testing, where Bactiscan detection limits were defined by the concentration at which 50% of the samples were observed under illumination of the device. Heat-killed and chlorine-stressed E. coli and S. enterica caused a 2-log reduction in detection by ATP swab tests (p ≤ 0.05), while detection by Bactiscan was unaffected (p ≥ 0.05). Pathogen biofilms were detectable via Bactiscan with >80% accuracy at 4 days of growth; E. coli and L. monocytogenes biofilms were visible at 2 days of growth. In situ contamination studies determined that Bactiscan can detect microbial contamination on chicken, salmon, and yoghurt samples with stronger fluorescence than a competitor's UV torch. The presence of one of the pathogens on the food samples was confirmed by metagenome sequencing, determining that S. aureus was present in 7 samples out of 9 with a relative abundance of >0.5%. These data demonstrate that Bactiscan can effectively detect bacteria present in the food processing environment and can complement existing technologies to improve food industry cleaning practices and infection prevention.
Collapse
Affiliation(s)
- Callum Highmore
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton SO17 1BJ Southampton, United Kingdom; National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Kirsty Cooper
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton SO17 1BJ Southampton, United Kingdom; National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Joe Parker
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton SO17 1BJ Southampton, United Kingdom; National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Joshua Robinson
- EIT International, Biopharma House, Winchester, United Kingdom
| | | | - Jeremy S Webb
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton SO17 1BJ Southampton, United Kingdom; National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Shen Y, Bai X, Wang J, Zhou X, Meng R, Guo N. Inhibitory Effect of Non-Saccharomyces Starmerella bacillaris CC-PT4 Isolated from Grape on MRSA Growth and Biofilm. Probiotics Antimicrob Proteins 2025; 17:227-239. [PMID: 37639210 DOI: 10.1007/s12602-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious pathogen with biofilm-forming and drug-resistant properties that make it difficult to eradicate. In this study, the inhibition of MRSA (ATCC 43300) by Starmerella bacillaris CC-PT4 (CGMCC No. 23573) was evaluated. The results showed that the inhibition of MRSA growth and biofilm was caused by S. bacillaris CC-PT4 cell-free supernatant (CFS). The CFS of S. bacillaris CC PT4 at different times can effectively inhibit the formation of MRSA biofilm, remove the preformed biofilm, and down-regulate the related genes that promote the formation of biofilm. Afterwards, untargeted metabolomics was performed to analyze the CFS of S. bacillaris CC-PT4. Several molecules with antibacterial and inhibitory biofilm effects from the CFS were found, one of which, 2-amino-1-phenylethanol (APE), has not been reported to have antiMRSA ability before. In this study, molecular docking analysis and in vitro experiments were used to verify the function of APE to inhibit MRSA. These results indicate that S. bacillaris CC-PT4 CFS can effectively inhibit MRSA which has potential application value in controlling MRSA.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Jiaxi Wang
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Xiran Zhou
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China
| | - Rizeng Meng
- Technology Center of Changchun Customs, 130062, Changchun, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 130062, Changchun, People's Republic of China.
| |
Collapse
|
4
|
Qu Q, Zhu Z, Zhao M, Wang H, Cui W, Huang X, Yuan Z, Zheng Y, Dong N, Liu Y, Wang H, Dong C, Zhang Z, Li Y. Optimization ultrasonic-assisted aqueous two-phase extraction of glabridin from licorice root and its activity against the foodborne pathogen MRSA. Food Chem X 2025; 26:102338. [PMID: 40115497 PMCID: PMC11924929 DOI: 10.1016/j.fochx.2025.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to extract glabridin (GLA) from licorice using an environmentally sustainable ultrasonic-assisted aqueous two-phase extraction method and to evaluate its efficacy. The extraction parameters were optimized through single-factor experiments and response surface methodology, resulting in a GLA content of 2049.51 μg/g under the conditions of 51 min ultrasonic time, 76 °C ultrasonic temperature, and 640 W ultrasonic power. In vitro analyses demonstrated that licorice extract (1.6 mg/mL) and GLA (8 μg/g) exhibited rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, both licorice extract and GLA showed significant disinfection activity against MRSA in models of pork spoilage and cooking utensils. Mechanistic studies revealed that GLA targets phospholipids, thereby disrupting the integrity and normal function of bacterial cell membranes. In conclusion, this study introduces an environmentally sustainable and effective method for obtaining a GLA-rich extract from licorice, which has potential applications in the food industry for addressing MRSA contamination.
Collapse
Affiliation(s)
- Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technol, Northeast Agricultural University, Harbin, China
| | - Zhenxin Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Huilong Town Comprehensive Service Center, Qidong City, Jiangsu, China
| | - Mengmeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huiwen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhongwei Yuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technol, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoran Wang
- Southern Medical University, Guangzhou, China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Liu S, Lu F, Chen S, Ning Y. Graphene oxide-based fluorescent biosensors for pathogenic bacteria detection: A review. Anal Chim Acta 2025; 1337:343428. [PMID: 39800527 DOI: 10.1016/j.aca.2024.343428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability. With the development of nanotechnology, graphene oxide (GO) has been increasingly introduced into the construction of fluorescent biosensors to enhance their performance owing to its unique physicochemical properties. RESULTS This review systematically summarizes the development of GO-based fluorescent biosensors for the detection of pathogenic bacteria. First, we introduce the functionalization and modification of GO. The design and signal amplification strategies for GO-based fluorescent biosensors are also discussed. Finally, we explore the challenges and new perspectives associated with this field, with the aim of facilitating the development of GO-based fluorescent sensing technologies to prevent the spread of multidrug-resistant bacteria. SIGNIFICANCE This review will aid in the development of high-performance biosensors for pathogenic bacterial assays.
Collapse
Affiliation(s)
- Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science of the Chinese University of Hong Kong (Shenzhen Campus), Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
6
|
Justiz-Vaillant A, Soodeen S, Gopaul D, Arozarena-Fundora R, Thompson R, Unakal C, Akpaka PE. Tackling Infectious Diseases in the Caribbean and South America: Epidemiological Insights, Antibiotic Resistance, Associated Infectious Diseases in Immunological Disorders, Global Infection Response, and Experimental Anti-Idiotypic Vaccine Candidates Against Microorganisms of Public Health Importance. Microorganisms 2025; 13:282. [PMID: 40005649 PMCID: PMC11858333 DOI: 10.3390/microorganisms13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
This paper explores various aspects of microbiology and immunology, with a particular focus on the epidemiology and molecular characterisation of infectious diseases in the Caribbean and South America. Key areas of investigation include tuberculosis (TB), experimental vaccines, and bloodborne pathogens. A retrospective study conducted in Jamaica highlights the significance of early HIV screening, timely diagnosis, and inte-grated care. The paper also examines the challenges posed by nosocomial infections, particularly those caused by antibiotic-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), emphasising the critical importance of infection control measures. Additionally, it explores the regional microbiome, the global response to infectious diseases, and immune responses in patients with immunodeficiency disorders such as severe combined immunodeficiency (SCID) and chronic granulomatous disease (CGD), underscoring their heightened susceptibility to a wide range of infections.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Darren Gopaul
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 330912, Trinidad and Tobago
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
| |
Collapse
|
7
|
Zeng F, Shao S, Zou Z, Guo S, Cai Y, Yan C, Chen Y, Wang M, Shi T. Multi-omics revealed antibacterial mechanisms of licochalcone A against MRSA and its antimicrobic potential on pork meat. Food Chem X 2024; 24:101893. [PMID: 39498259 PMCID: PMC11532437 DOI: 10.1016/j.fochx.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Licorice flavonoids (LFs) exhibit potent antibacterial activities against Gram-positive bacteria. However, the related mechanism remains unclear. This study aims to illustrate the mechanisms of licochalcone A (LA), a main flavonoid in LFs, against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA effect of LA was comprehensively investigated by a combination of proteomics and metabolomics studies. Meanwhile, LA was loaded in glycyrrhizin (GA) micelles (GA@LA micelles) to improve its water solubility. The results demonstrated that LA could disrupt the arginine metabolism and cause the accumulation of intracellular ROS in MRSA. In addition, LA could inhibit the expression of glucokinase in MRSA, which affect the synthesis of ATP, fatty acids, and peptidoglycan. GA@LA micelles have the latent ability to inhibit the growth of MRSA on fresh pork.
Collapse
Affiliation(s)
- Fei Zeng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Shijuan Shao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Zhilu Zou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Siqi Guo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Yu Cai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Chunchao Yan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Yunzhong Chen
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Maolin Wang
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Tingting Shi
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Titouche Y, Akkou M, Djaoui Y, Chergui A, Mechoub D, Bentayeb L, Fatihi A, Nia Y, Hennekinne JA. Investigation of Biofilm Formation Ability and Antibiotic Resistance of Staphylococcus aureus Isolates from Food Products. Foodborne Pathog Dis 2024. [PMID: 39589773 DOI: 10.1089/fpd.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Staphylococcus aureus is one of the major causes of foodborne diseases and its presence in food products may poses a public health challenge. The aims of this study were to assess in vitro the capacity of S. aureus isolates from foods to form biofilm and to determine their antibiotic susceptibility. A total of 80 S. aureus isolates were characterized. The slime production ability was evaluated by congo-red agar (CRA) and the biofilm formation was carried out by microtiter-plate method (MPM). Resistance of isolates to eight antibiotics was determined using disc diffusion method. Sixty-four (80%) of the isolates were slime producers on congo-red agar. However, all isolates were biofilm producers on microtiter-plate method. The highest resistance profiles were ascribed to penicillin G (91.25%) and tetracycline (41.25%). Twelve isolates were methicillin-resistant (MRSA) harboring the mecA gene. All of these MRSA isolates were negative for the genes of the Panton Valentine leukocidine (lukF/S-PV). Typing of the MRSA isolates indicated that they belonged to three spa-types including t024, t450 and t688. The presence of biofilm producers and multidrug resistant isolates (MRSA) in food samples can represent a risk for public health. Therefore, an efficient control and effective measures were needed along the production chain to ensure the food safety.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Achour Chergui
- Department of Biology, Faculty of Natural and Life Sciences. University Akli Mohand Oulhadj. Bouira, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Lamia Bentayeb
- Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Paris, France
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Paris, France
| | | |
Collapse
|
9
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
10
|
Deepak SJ, Kannan P, Savariraj WR, Ayyasamy E, Tuticorin Maragatham Alagesan SK, Ravindran NB, Sundaram S, Mohanadasse NQ, Kang Q, Cull CA, Amachawadi RG. Characterization of Staphylococcus aureus isolated from milk samples for their virulence, biofilm, and antimicrobial resistance. Sci Rep 2024; 14:25635. [PMID: 39465266 PMCID: PMC11514165 DOI: 10.1038/s41598-024-75076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) one of the important food borne pathogen from milk, which was investigated in this study. The isolates were screened for antimicrobial resistance, enterotoxin genes, biofilm formation, spa typing, coagulase gene polymorphism and accessory gene regulator types. The prevalence of S. aureus in milk samples was 34.4% (89/259). Methicillin resistant S. aureus (MRSA) was found at 27% (24/89) of the isolates, were classified as community acquired based on SCCmec typing. The 24.71% (22/89) isolates demonstrated multiple antimicrobial resistance (MAR) pattern. However, none of the isolates carried vancomycin and mupirocin resistance genes. The isolates were positive for sea and sed enterotoxin genes and exhibited high frequency of biofilm formation. The High-Resolution Melting and conventional spa typing revealed that the isolates had both animal and community-associated S. aureus clustered origins. Coagulase gene polymorphism and agr typing demonstrated variable genotypic patterns. The finding of this study establishes the prevalence of community associated, enterotoxigenic, biofilm forming and antimicrobial resistance among S. aureus from milk in Chennai city. This emphasizing a potential threat to public health which needs a continuous monitoring system and strategies to mitigate their spread across the food chain and achieve food safety.
Collapse
Affiliation(s)
| | - Porteen Kannan
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India.
| | - Wilfred Ruban Savariraj
- Department of Livestock Products and Technology, Veterinary College, KVAFSU, Bengaluru, 560 024, India
| | - Elango Ayyasamy
- Veterinary College and Research Institute, TANUVAS, Salem, 636 112, India
| | | | - Narendra Babu Ravindran
- Department of Livestock Products and Technology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | - Sureshkannan Sundaram
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | | | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS, 66506 0802, USA
| | - Charley A Cull
- Veterinary & Biomedical Research Center, Inc., Manhattan, KS, 66502 9007, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506 5606, USA.
| |
Collapse
|
11
|
Wen J, Okyere SK, Wang S, Wang J, Huang R, Tang Z, Wang X, Shao C, Hu Y. Antibacterial Activity and Multi-Targeted Mechanism of Action of Suberanilic Acid Isolated from Pestalotiopsis trachycarpicola DCL44: An Endophytic Fungi from Ageratina adenophora. Molecules 2024; 29:4205. [PMID: 39275053 PMCID: PMC11396930 DOI: 10.3390/molecules29174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly threatening foodborne pathogen capable of causing severe organ and life-threatening diseases. Over the past years, various commercial antibiotics have been used to treat MRSA infections. However, these commercial antibiotics have not yielded efficient results and also cause other side effects; therefore, there is a need for the development of effective alternatives to replace these commercial antibiotics. Suberanilic acid, an amide alkaloid obtained from the endophytic fungus Pestalotiopsis trachycarpicola DCL44, has been identified as a significant antimicrobial agent. However, its antibiotic properties on multi-drug-resistant bacteria such as MRSA have not been fully explored. Therefore, to investigate the potential antimicrobial mechanism of suberanilic acid against MRSA, a quantitative proteomics approach using tandem mass tagging (TMT) was used. The results obtained in the study revealed that suberanilic acid targets multiple pathways in MRSA, including disruption of ribosome synthesis, inhibition of membrane translocation for nutrient uptake (ABC transporter system), and causing dysregulation of carbohydrate and amino acid energy metabolism. These results provide new insights into the mechanism of action of suberanilic acid against MRSA and offer technical support and a theoretical basis for the development of novel food antimicrobial agents derived from endophytic fungal origin.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615013, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Khairullah AR, Widodo A, Riwu KHP, Yanestria SM, Moses IB, Effendi MH, Fauzia KA, Fauziah I, Hasib A, Kusala MKJ, Raissa R, Silaen OSM, Ramandinianto SC, Afnani DA. Spread of livestock-associated methicillin-resistant Staphylococcus aureus in poultry and its risks to public health: A comprehensive review. Open Vet J 2024; 14:2116-2128. [PMID: 39553759 PMCID: PMC11563600 DOI: 10.5455/ovj.2024.v14.i9.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/09/2024] [Indexed: 11/19/2024] Open
Abstract
The livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains are prevalent in the poultry farming environment and are a common component of the bacterial microbiota on the skin and mucous membranes of healthy animals. The origin and spread of LA-MRSA are attributed to the use of antibiotics in animals, and close contact between people and different animal species increases the risk of animal exposure to humans. The epidemiology of LA-MRSA in poultry significantly changed when ST398 and ST9 were found in food-producing animals. The significance of LA-MRSA and zoonotic risk associated with handling and processing foods of avian origin is highlighted by the LA-MRSA strain's ability to infect chickens. People who work with poultry are more prone to contract LA-MRSA than the general population. There is scientific consensus that individuals who have close contact with chickens can become colonized and subsequently infected with LA-MRSA; these individuals could include breeders, medical professionals, or personnel at chicken slaughterhouses. The prevention of LA-MRSA infections and diseases of poultry origin requires taking precautions against contamination across the entire chicken production chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
13
|
González-Machado C, Alonso-Calleja C, Capita R. Methicillin-Resistant Staphylococcus aureus (MRSA) in Different Food Groups and Drinking Water. Foods 2024; 13:2686. [PMID: 39272452 PMCID: PMC11394615 DOI: 10.3390/foods13172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been included by the World Health Organization in its list of "priority pathogens" because of its widespread prevalence and the severity of the infections it causes. The role of food in infections caused by MRSA is unknown, although strains of this microorganism have been detected in various items for human consumption. In order to gain an overview of any possible role of food in MRSA infections, a review was undertaken of studies published between January 2001 and February 2024 relating to MRSA. These comprised research that focused on fish and shellfish, eggs and egg products, foods of vegetable origin, other foodstuffs (e.g., honey or edible insects), and drinking water. In most of these investigations, no prior enrichment was carried out when isolating strains. Three principal methods were used to confirm the presence of MRSA, namely amplification of the mecA gene by PCR, amplification of the mecA and the mecC genes by PCR, and disc diffusion techniques testing susceptibility to cefoxitin (30 μg) and oxacillin (1 μg). The great diversity of methods used for the determination of MRSA in foods and water makes comparison between these research works difficult. The prevalence of MRSA varied according to the food type considered, ranging between 0.0% and 100% (average 11.7 ± 20.3%) for fish and shellfish samples, between 0.0% and 11.0% (average 1.2 ± 3.5%) for egg and egg products, between 0.0% and 20.8% (average 2.5 ± 6.8%) for foods of vegetable origin, between 0.6% and 29.5% (average 28.2 ± 30.3%) for other foodstuffs, and between 0.0% and 36.7% (average 17.0 ± 14.0%) for drinking water.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
14
|
Alkuraythi DM, Alkhulaifi MM. Methicillin-resistant Staphylococcus aureus prevalence in food-producing animals and food products in Saudi Arabia: A review. Vet World 2024; 17:1753-1764. [PMID: 39328450 PMCID: PMC11422649 DOI: 10.14202/vetworld.2024.1753-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024] Open
Abstract
In Saudi Arabia, the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in food and livestock represents a major public health hazard. The emergence of livestock-associated MRSA has heightened the risk of human infection with comparable virulence traits. The lack of information about MRSA transmission in our region hinders accurate risk assessment, despite its detection in food animals and retail foods. Adopting a One Health approach is essential for effectively combating MRSA in Saudi Arabia. This method unites actions in the human, animal, and environmental spheres. To combat MRSA contamination, surveillance measures need strengthening; interdisciplinary collaboration among healthcare professionals, veterinarians, and environmental scientists is crucial, and targeted interventions must be implemented in local food chains and animal populations. Through a holistic strategy, public health and sustainable food production in the region are protected. This review aims to improve public health interventions by increasing understanding of MRSA prevalence and related risks in local food chains and animal populations.
Collapse
Affiliation(s)
- Dalal M Alkuraythi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Ballah FM, Hoque MN, Islam MS, Faisal GM, Rahman AMMT, Khatun MM, Rahman M, Hassan J, Rahman MT. Genomic Insights of a Methicillin-Resistant Biofilm-Producing Staphylococcus aureus Strain Isolated From Food Handlers. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5516117. [PMID: 39071244 PMCID: PMC11283335 DOI: 10.1155/2024/5516117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen associated with a wide range of infections in humans and animals. Thus, the emergence of MRSA clones poses an important threat to human and animal health. This study is aimed at elucidating the genomics insights of a strong biofilm-producing and multidrug-resistant (MDR) S. aureus MTR_BAU_H1 strain through whole-genome sequencing (WGS). The S. aureus MTR_BAU_H1 strain was isolated from food handlers' hand swabs in Bangladesh and phenotypically assessed for antimicrobial susceptibility and biofilm production assays. The isolate was further undergone to high throughput WGS and analysed using different bioinformatics tools to elucidate the genetic diversity, molecular epidemiology, sequence type (ST), antimicrobial resistance, and virulence gene distribution. Phenotypic analyses revealed that the S. aureus MTR_BAU_H1 strain is a strong biofilm-former and carries both antimicrobial resistance (e.g., methicillin resistance; mecA, beta-lactam resistance; blaZ and tetracycline resistance; tetC) and virulence (e.g., sea, tsst, and PVL) genes. The genome of the S. aureus MTR_BAU_H1 belonged to ST1930 that possessed three plasmid replicons (e.g., rep16, rep7c, and rep19), seven prophages, and two clustered regularly interspaced short palindromic repeat (CRISPR) arrays of varying sizes. Phylogenetic analysis showed a close evolutionary relationship between the MTR_BAU_H1 genome and other MRSA clones of diverse hosts and demographics. The MTR_BAU_H1 genome harbours 42 antimicrobial resistance genes (ARGs), 128 virulence genes, and 273 SEED subsystems coding for the metabolism of amino acids, carbohydrates, proteins, cofactors, vitamins, minerals, and lipids. This is the first-ever WGS-based study of a strong biofilm-producing and MDR S. aureus strain isolated from human hand swabs in Bangladesh that unveils new information on the resistomes (ARGs and correlated mechanisms) and virulence potentials that might be linked to staphylococcal pathogenesis in both humans and animals.
Collapse
Affiliation(s)
- Fatimah Muhammad Ballah
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics LaboratoryDepartment of GynaecologyObstetrics and Reproductive HealthBangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md. Saiful Islam
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Animal SciencesUniversity of California-Davis, Davis, California CA 95616, USA
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics LaboratoryDepartment of GynaecologyObstetrics and Reproductive HealthBangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | - Mst. Minara Khatun
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marzia Rahman
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
16
|
Wilson TK, Zishiri OT, El Zowalaty ME. Molecular detection of multidrug and methicillin resistance in Staphylococcus aureus isolated from wild pigeons ( Columba livia) in South Africa. One Health 2024; 18:100671. [PMID: 38737528 PMCID: PMC11082500 DOI: 10.1016/j.onehlt.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus is an important human and veterinary pathogen. The present study aimed to determine the prevalence of antibiotic resistance among S. aureus isolated from samples obtained from free-flying wild pigeons and houseflies from different locations surrounding a local hospital in the Greater Durban area in KwaZulu-Natal Province, South Africa. Environmental fecal samples were obtained from wild pigeons that inhabits the grounds of a local public hospital located on the South Beach area, Durban, South Africa. Housefly samples were collected from three different locations (Kenneth Stainbank Nature Reserve, Montclair/Clairwood, and Glenwood/Berea) in the greater Durban area, all within a close proximity to the hospital. Following enrichment, identification, and antimicrobial resistance profiling, S. aureus isolates were subjected to DNA extraction using the boiling method. It was found that 57 out of 252 samples (22.62%) were positive for S. aureus. The Kirby-Bauer disk diffusion method of antibiotic susceptibility testing was performed and revealed that antibiotic resistance rates to penicillin and rifampicin were the most common, with both returning 48 (84.2%) out of the 57 S. aureus isolates being resistant to penicillin and rifampicin. Antibiotic resistance rates to clindamycin, linezolid, erythromycin, tetracycline, cefoxitin, and ciprofloxacin were 82.5%, 78.9%, 73.7%, 63.2%, 33.3%, and 15.8% respectively. Antibiotic resistance genes were detected using primer-specific PCR and it was found that the prevalence rates of tetM, aac(6')-aph(2″), mecA, tetK, ermc, and blaZ genes were 66.7%, 40.4%, 40.4%, 38.6%, 24.6%, and 3.51% respectively. Statistical analysis revealed significant (p < 0.05) relationships between the tetM, aac(6')-aph(2″), and ermC genes and all parameters tested. A significant correlation between the aac(6')-aph(2″) gene and the tetM (0.506) and ermC (-0.386) genes was identified. It was found that 23 (40.3%) S. aureus isolates were mecA positive, of which 10 (52.6%) out of 19 cefoxitin-resistant isolates were mecA positive and 13 (35.1%) out of 37 cefoxitin-sensitive isolates were mecA positive. The results of the present study demonstrated the detection of methicillin and multidrug resistant S. aureus isolated from samples obtained from wild pigeons and houseflies in the surroundings of a local public hospital in the Greater Durban area in South Africa. The findings of the study may account for the emergence of multidrug-resistant staphylococcal infections. The findings highlight the significant role of wild pigeons and houseflies in the spread of drug-resistant pathogenic S. aureus including MRSA. The conclusions of the present study highlight the improtant role of wildlife and the environment as interconnected contributors of One Health.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
17
|
Li BL, Chen JY, Hu JJ, Fan YW, Ao ZY, Zhang WJ, Lian X, Liang HJ, Li QR, Guan XX, Wu JW, Yuan J, Jiang DX. Three stilbenes from pigeon pea with promising anti-methicillin-resistant Staphylococcus aureus biofilm formation activity. Int Microbiol 2024; 27:535-544. [PMID: 37505307 DOI: 10.1007/s10123-023-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 μg/mL followed by LLC with MIC and MBC values of 3.12 μg/mL and 6.25 μg/mL as well as CSA with MIC and MBC values of 6.25 μg/mL and 6.25-12.5 μg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.
Collapse
Affiliation(s)
- Bai-Lin Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, 510650, P. R. China
| | - Jia-Yan Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Juan-Juan Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, 28081, USA
| | - Yu-Wen Fan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Zhuo-Yi Ao
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Wei-Jie Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xin Lian
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Hui-Jun Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Qian-Ran Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xiao-Xian Guan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Jie-Wei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Jie Yuan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China.
| | - Dong-Xu Jiang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Wei X, Hu Y, Sun C, Wu S. Characterization of a Novel Antimicrobial Peptide Bacipeptin against Foodborne Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5283-5292. [PMID: 38429098 DOI: 10.1021/acs.jafc.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The increasing emergence of multidrug-resistant pathogens and development of biopreservatives in food industries has increased the demand of novel and safe antimicrobial agents. In this study, a marine bacterial strain Bacillus licheniformis M1 was isolated and exhibited obvious antimicrobial activities against foodborne pathogens, especially against methicillin-resistant Staphylococcus aureus. The antimicrobial agent was purified and identified as a novel antimicrobial peptide, which was designated as bacipeptin, and the corresponding mechanism was further investigated by electron microscopy observation and transcriptomic analysis with biochemical validation. The results showed that bacipeptin could reduce the virulence of methicillin-resistant Staphylococcus aureus and exerted its antimicrobial activity by interfering with histidine metabolism, inducing the accumulation of reactive oxygen species and down-regulating genes related to Na+/H+ antiporter and the cell wall, thus causing damage to the cell wall and membrane. Overall, our study provides a novel natural product against foodborne pathogens and discloses the corresponding action mechanism.
Collapse
Affiliation(s)
- Xiaotong Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
19
|
Alahyaribeik S, Nazarpour M. Peptide recovery from chicken feather keratin and their anti-biofilm properties against methicillin-resistant Staphylococcus aureus (MRSA). World J Microbiol Biotechnol 2024; 40:123. [PMID: 38441817 DOI: 10.1007/s11274-024-03921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
Bacteria have the potential to adhere to abiotic surfaces, which has an undesirable effect in the food industry because they can survive for sustained periods through biofilm formation. In this study, an antibacterial peptide (ABP), with a molecular mass of 3861 Da, was purified from hydrolyzed chicken feathers using a locally isolated keratinolytic bacterium, namely Rhodococcus erythropolis, and its antibacterial and antibiofilm potential were investigated against planktonic and biofilm cells of Methicillin-Resistant Staphylococcus Aureus (MRSA). The results demonstrated that purified ABP showed the growth inhibition of MRSA cells with the minimum inhibitory concentration (MIC) of 45 µg/ml and disrupted MRSA biofilm formation at a concentration of 200 ug/ml, which results were confirmed by scanning electron micrograph (SEM). Moreover, the secondary structures of the peptide were assessed as part of the FTIR analysis to evaluate its mode of action. ExPASy tools were used to predict the ABP sequence, EPCVQUQDSRVVIQPSPVVVVTLPGPILSSFPQNTA, from a chicken feather keratin sequence database following in silico digestion by trypsin. Also, ABP had 54.29% hydrophobic amino acids, potentially contributing to its antimicrobial activity. The findings of toxicity prediction of the peptide by the ToxinPred tool revealed that ABP had non-toxic effects. Thus, these results support the potential of this peptide to be used as an antimicrobial agent for the treatment or prevention of MRSA biofilm formation in feed, food, or pharmaceutical applications.
Collapse
Affiliation(s)
- Samira Alahyaribeik
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Madineh Nazarpour
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
20
|
Attia ASA, Abou Elez RMM, El-Gazzar N, Elnahriry SS, Alfifi A, Al-Harthi HF, Alkhalifah DHM, Hozzein WN, Diab HM, Ibrahim D. Cross-sectional analysis of risk factors associated with Mugil cephalus in retail fish markets concerning methicillin-resistant Staphylococcus aureus and Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1348973. [PMID: 38371296 PMCID: PMC10869461 DOI: 10.3389/fcimb.2024.1348973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Collapse
Affiliation(s)
- Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan Mohmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
22
|
Nadiya S, Kolla HB, Reddy PN. Optimization and evaluation of a multiplex PCR assay for detection of Staphylococcus aureus and its major virulence genes for assessing food safety. Braz J Microbiol 2023; 54:311-321. [PMID: 36690906 PMCID: PMC9944222 DOI: 10.1007/s42770-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a natural commensal microflora of humans which causes opportunistic infections due to its large arsenal of exotoxins, invasion, immune evasion, and antibiotic resistance mechanisms. The primary goal of this study is to develop a multiplex PCR (mPCR) assay for simultaneous detection of Staphylococcus aureus (nuc) and its virulence genes coding for prominent exotoxins namely alpha hemolysin (hla), enterotoxins A (sea), enterotoxin B (seb), toxic shock syndrome toxin (tsst-1), and the gene coding for methicillin resistance (mecA). A competitive internal amplification control (IAC) was included in the assay to exclude the false negative outcomes. Highly specific primer pairs were designed for the target genes using in silico resources. At the outset, monoplex PCRs were standardized using reference S. aureus strains. Primer specificity to the target genes was authenticated through restriction digestion analysis of amplified PCR products. Multiplex PCR was optimized in increments of one gene starting with nuc and IAC amplified simultaneously using one pair of primers (nuc) in a competitive manner. The mPCR assay was found to be highly sensitive with a detection limit of ~10 CFUs per reaction for pure cultures. Multiplex PCR assay was further evaluated on the retail and processed food samples to test the prevalence of S. aureus and study their exotoxin profiles. Of the 57 samples examined, 13 samples (22.80%) were found to be contaminated with S. aureus whose DNA was extracted after a 6-h enrichment period. Among these, a high percentage of hemolytic and enterotoxin A positive strains were encountered. The mPCR assay developed in this study would be a useful tool for rapid and reliable monitoring of S. aureus for food quality testing and from clinical infections.
Collapse
Affiliation(s)
- Shaik Nadiya
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Andhra Pradesh, Guntur district, 522 213, India
| | - Harish Babu Kolla
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Andhra Pradesh, Guntur district, 522 213, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government Degree College (Autonomous), Maddilapalem, Visakhapatnam, Andhra Pradesh, 530 013, India.
| |
Collapse
|
23
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Pet animals as reservoirs for spreading methicillin-resistant Staphylococcus aureus to human health. J Adv Vet Anim Res 2023; 10:1-13. [PMID: 37155545 PMCID: PMC10122942 DOI: 10.5455/javar.2023.j641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 05/10/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a strain of pathogenic bacteria that is a major problem in the world's health. Due to their frequent interaction with humans, pets are one of the main risk factors for the spread of MRSA. The possibility for zoonotic transmission exists since frequently kept dogs and cats are prone to contract MRSA and act as reservoirs for spreading MRSA. The mouth, nose, and perineum are the primary locations of MRSA colonization, according to the findings of MRSA identification tests conducted on pets. The types of MRSA clones identified in cats and dogs correlated with MRSA clones infecting humans living in the same geographic area. A significant risk factor for the colonization or transmission of MRSA is human-pet contact. An essential step in preventing the spread of MRSA from humans to animals and from animals to humans is to keep hands, clothing, and floor surfaces clean.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
24
|
Freitas JKGR, Assis CFD, Oliveira TRMD, Maia CMDM, de Sousa BJ, Medeiros GCBSD, Seabra LMJ, Chaves Damasceno KSFDS. Prevalence of staphylococcal toxin in food contaminated by Staphylococcus spp.: Protocol for a systematic review with meta-analysis. PLoS One 2023; 18:e0282111. [PMID: 36809532 PMCID: PMC9942949 DOI: 10.1371/journal.pone.0282111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Food contamination by Staphylococcus spp. enterotoxigenic strains is quite common and despite underreporting caused by the short duration of clinical symptoms and lack of medical care, staphylococcal food poisoning is one of the most common Foodborne Diseases (FBD) in the world. This study describes a systematic review protocol with meta-analysis on the prevalence and types of staphylococcal enterotoxins in food, and the profile of contaminated foods. METHODS The research will be conducted through the selection of studies reporting the analysis of staphylococcal enterotoxins in food contaminated by Staphylococcus spp. Searches will happen on the following databases: Medline (OVID), GALE, Science Direct, CAB Direct (CABI), Google Scholar, in addition to manual search in the list of references of articles, directory of theses and dissertations, and countries' health agencies. Reports will be imported into the application Rayyan. Two researchers will independently select studies and extract data, and a third reviewer will solve conflicting decisions. The primary outcome will be the identification of staphylococcal enterotoxins in food, and the secondary outcomes will include staphylococcal enterotoxin types and foods involved. To assess the risk of bias in the studies, the tool developed by the Joanna Briggs Institute (JBI) will be used. For data synthesis, a meta-analysis will be performed. However, in case that is not possible, a narrative synthesis of the most relevant results will be carried out. DISCUSSION This protocol will serve as the basis for a systematic review that aims to relate the results of existing studies on the staphylococcal enterotoxin prevalence and types in food, and the profile of the contaminated foods. The results will broaden the perception of food safety risks, highlight existing literature gaps, contribute to the study of the epidemiological profile and may guide the allocation of health resources for the development of preventive measures related. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number: CRD42021258223.
Collapse
Affiliation(s)
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Bruno Jonatan de Sousa
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Gidyenne Christiane Bandeira Silva de Medeiros
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Systematic Review and Meta-Analysis Laboratory (Lab-SYS) CNPq-UFRN, Natal, RN, Brazil
| | - Larissa Mont'Alverne Jucá Seabra
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karla Suzanne Florentino da Silva Chaves Damasceno
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
25
|
Mitiku BA, Mitiku MA, Ayalew GG, Alemu H, Geremew UM, Wubayehu MT. Microbiological quality assessment of fish origin food along the production chain in upper Blue Nile watershed, Ethiopia. Food Sci Nutr 2023; 11:1096-1103. [PMID: 36789068 PMCID: PMC9922121 DOI: 10.1002/fsn3.3147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/05/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic microorganisms can grow accidentally on fish origin human food and can be a cause of human food-borne illness. The purpose of this study was to estimate the occurrence and microbial load pattern of Escherichia coli, Salmonella, Staphylococcus aureus, and Shigella spp. along the fish origin food value chain. A total of 396 fish samples were collected by a systematic random sampling technique of cooked and raw in the three species of fish. Fish muscles were tested using selective media, followed by conventional biochemical tests. The bacterial load was assessed using a standard plate count method. Whereas the fungal load were measured by cultured in a Sabouraud's dextrose agar (SDA) medium. The overall prevalence was Escherichia coli 84 (21.21%), Salmonella 27 (6.82%), Staphylococcus aureus 19 (4.80%), and Shigella spp. 17 (4.29%). The average mean total coliform count was observed 1.2 × 102 cfu/g and 5.10 × 104 cfu/g in cooked and raw fish samples, respectively. Whereas total viable count mean of 8.05 × 104 cfu/g and 11.5 × 104 cfu/g in cooked and raw fish, respectively. The Fungal load counts under the range 5.6 × 101 cfu/g to 1.09 × 103cfu/g were observed. The study has revealed that fish food in the study area has the possibility of microbial public health risk. Hence, it could be wise to improve the knowledge of key actors from harvesting to consumption to enhance the meals protection practices and high-quality standards of fish foods.
Collapse
Affiliation(s)
- Birhan Agmas Mitiku
- Department of Veterinary Science, College of Agriculture and Environmental ScienceBahir Dar UniversityBahir DarEthiopia
| | - Marshet Adugna Mitiku
- Ethiopian Institutes of Agricultural ResearchNational Fishery and Aquatic Life Research CenterSebetaEthiopia
| | | | - Halo Yohans Alemu
- Department of Veterinary Science, College of Agriculture and Environmental ScienceBahir Dar UniversityBahir DarEthiopia
| | - Umer Masrie Geremew
- Department of Veterinary Science, College of Agriculture and Environmental ScienceBahir Dar UniversityBahir DarEthiopia
| | - Mekidm Tamer Wubayehu
- Department of Veterinary Science, College of Agriculture and Environmental ScienceBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
26
|
Dos Santos IC, Barbosa LN, Grossi GD, de Paula Ferreira LR, Ono JM, Martins LA, Alberton LR, Gonçalves DD. Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. Res Vet Sci 2023; 155:51-55. [PMID: 36634542 DOI: 10.1016/j.rvsc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Giovana Dantas Grossi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | | | - Jacqueline Midori Ono
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lisiane Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| | - Luiz Rômulo Alberton
- Propig soluções Ltda, Estrada Linha Andreis - Cerro Azul, SN, Zona Rural - Bom Sucesso do Sul, PR, Brazil
| | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| |
Collapse
|
27
|
Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020236. [PMID: 36830147 PMCID: PMC9952111 DOI: 10.3390/antibiotics12020236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The pathogenic microorganisms linked to fresh fruits and juices sold out in retail low-cost markets raise safety concerns as they may carry multidrug-resistant (MDR) genes. To evaluate the microbiological quality and safety of highly consumed fruits and derivatives in Imbabura Province, Ecuador, ready-to-eat strawberries (5 independent batches; n = 300 samples), and gooseberries (5 separate batches; n = 500 samples), purchased from a local fruit farm grower and low-cost retail market, along with 20 different natural fruit- and vegetables-based juices (3 independent batches; n = 60 samples) purchased from food courts located within the low-cost markets were analyzed. Bacteriological analysis showed that the microbial quality was lower as several indicators (n = 984) consisting of total coliforms (TCOL), total aerobes (AEROB), Enterobacter spp. (ENT), Shigella spp., (SHIGA), yeasts (YE), and molds (M) were detected. Staphylococcus spp. (STAPHY) was found in both fruits regardless of origin, while Escherichia coli (EC) isolates were found in strawberries but not gooseberries. Salmonella spp. (SALM) were detected in juices only. Antibiotic susceptibility testing showed multidrug resistance of several isolates. The hemolytic pattern revealed that 88.89% of EC and 61.11% of ENT isolates were beta-hemolytic. All STAPHY isolates were beta-hemolytic while SALM and SHIGA were alpha-hemolytic. Plasmid curing assay of MDR isolates (ENT, EC, SALM, and STAPHY) showed that the antibiotic resistance (AR) was highly indicative of being plasmid-borne. These results raise concerns about the consumption of MDR bacteria. However, good agricultural and industrial practices, behavioral change communication, and awareness-raising programs are necessary for all stakeholders along the food production and consumption supply chain.
Collapse
|
28
|
Rani ZT, Mhlongo LC, Hugo A. Microbial Profiles of Meat at Different Stages of the Distribution Chain from the Abattoir to Retail Outlets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1986. [PMID: 36767353 PMCID: PMC9916197 DOI: 10.3390/ijerph20031986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Meat has been found to be a prime vehicle for the dissemination of foodborne pathogens to humans worldwide. Microbial meat contaminants can cause food-borne diseases in humans. The threat to consumers by microbial meat contaminants necessitates the studying of meat microbial loads to prevent potential illnesses in consumers. Studies investigating the meat microbial loads in South Africa are limited. The objective of this study was to compare microbial contamination of different meat types from low-throughput (LTA) and high-throughput abattoirs (HTA) at three stages of the distribution chain from abattoir to retail outlets. Beef, pork, and mutton (n = 216) carcasses were sampled: during the loading process at the abattoirs, when off-loading at the supply points and during marketing. All samples were subjected to total bacterial count (TBC), coliform count (CC), presumptive Escherichia coli (E. coli) (PEC) and Staphylococcus aureus (S. aureus) detection. In mutton, TBC dominated at loading, CC was similar across distribution chain stages, PEC was the predominant microbial contaminant at the offloading stage at the HTA, but TBC was affected at loading, CC was similar across distribution chain stages, PEC was affected at loading, and S. aureus was affected at the display stage at the LTAs. In beef, TBC had similar levels at loading; CC and PEC dominated at the display stage for the HTAs. However, TBC was affected at the display stage; CC was similar across stages; PEC was affected at the offloading stage at the LTAs. In pork, higher contamination levels were discovered at the display stage, CC dominated at the loading stage, with PEC detected at offloading at the HTAs but TBC, CC, PEC and S. aureus were similar across stages at the LTAs. TBC, CC and PEC were affected by the storage period and meat supplier to meat shop distance whereas distance affected the TBC, CC and PEC. Meat supplier to meat shop distance negatively correlated with meat distribution chain stage but positively correlated with TBC, CC and PEC such as temperature. Temperature positively correlated with meat distribution chain stage and shop class. Meat distribution chain stage was negatively correlated with storage period, TBC, CC and PEC but positively correlated with shop class. Shop class negatively correlated with storage period, TBC, CC and PEC. Storage period positively correlated with TB, CC and PEC. TBC and meat type positively correlated with CC and PEC. CC positively correlated with PEC but negatively correlated with S. aureus such as PEC. In conclusion, mutton, pork and beef meat are susceptible to microbial contamination at distribution chain stages in abattoirs.
Collapse
Affiliation(s)
- Zikhona Theodora Rani
- Department of Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville 3209, South Africa
| | - Lindokuhle Christopher Mhlongo
- Department of Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville 3209, South Africa
| | - Arno Hugo
- Department of Animal Science, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
29
|
Khairullah AR, Kurniawan SC, Effendi MH, Sudjarwo SA, Ramandinianto SC, Widodo A, Riwu KHP, Silaen OSM, Rehman S. A review of new emerging livestock-associated methicillin-resistant Staphylococcus aureus from pig farms. Vet World 2023; 16:46-58. [PMID: 36855358 PMCID: PMC9967705 DOI: 10.14202/vetworld.2023.46-58] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus strain resistant to β-lactam antibiotics and is often associated with livestock, known as livestock-associated (LA)-MRSA. Using molecular typing with multi-locus sequence typing, MRSA clones have been classified in pigs, including clonal complex 398. Livestock-associated-methicillin-resistant S. aureus was first discovered in pigs in the Netherlands in 2005. Since then, it has been widely detected in pigs in other countries. Livestock-associated-methicillin-resistant S. aureus can be transmitted from pigs to pigs, pigs to humans (zoonosis), and humans to humans. This transmission is enabled by several risk factors involved in the pig trade, including the use of antibiotics and zinc, the size and type of the herd, and the pig pen management system. Although LA-MRSA has little impact on the pigs' health, it can be transmitted from pig to pig or from pig to human. This is a serious concern as people in direct contact with pigs are highly predisposed to acquiring LA-MRSA infection. The measures to control LA-MRSA spread in pig farms include conducting periodic LA-MRSA screening tests on pigs and avoiding certain antibiotics in pigs. This study aimed to review the emerging LA-MRSA strains in pig farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia,Corresponding author: Mustofa Helmi Effendi, e-mail: Co-authors: ARK: , SCK: , SAS: , SCR: , AW: , KHPR: , OSMS: , SR:
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | | | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
30
|
Gajewska J, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Meta-analysis of the global occurrence of S. aureus in raw cattle milk and artisanal cheeses. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Review of pork and pork products as a source for transmission of methicillin-resistant Staphylococcus aureus. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.167-177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic bacterium that can cause infection in animals and humans. Recently, MRSA from food-producing or farm animals has been identified as livestock-associated MRSA (LA-MRSA). The spread of LA-MRSA is particularly found in pork and pork products because LA-MRSA has been widely known to infect pigs. The most common type of LA-MRSA identified in pork and pork products is the clonal complex LA-MRSA 398 (LA-MRSA CC398). The MRSA strains on the surface of pork carcasses can be spread during the handling and processing of pork and pork products through human hands, cutting tools, and any surface that comes into direct contact with pork. Food infection is the main risk of MRSA in pork and pork products consumed by humans. Antibiotics to treat food infection cases due to MRSA infection include vancomycin and tigecycline. The spread of MRSA in pork and pork products is preventable by appropriately cooking and cooling the pork and pork products at temperatures above 60°C and below 5°C, respectively. It is also necessary to take other preventive measures, such as having a clean meat processing area and disinfecting the equipment used for processing pork and pork products. This review aimed to explain epidemiology, transmission, risk factors, diagnosis, public health consequences, treatment of food poisoning, and preventing the spread of MRSA in pork and pork products.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sancaka Cashyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
32
|
Pereira GDN, Rosa RDS, Dias AA, Gonçalves DJS, Seribelli AA, Pinheiro-Hubinger L, Eller LKW, de Carvalho TB, Pereira VC. Characterization of the virulence, agr typing and antimicrobial resistance profile of Staphylococcus aureus strains isolated from food handlers in Brazil. Braz J Infect Dis 2022; 26:102698. [PMID: 36037845 PMCID: PMC9483590 DOI: 10.1016/j.bjid.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 10/27/2022] Open
|
33
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
34
|
Zhang J, Wang J, Jin J, Li X, Zhang H, Zhao C. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res Int 2022; 162:111969. [DOI: 10.1016/j.foodres.2022.111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
|
35
|
Belhout C, Elgroud R, Butaye P. Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Methicillin-Resistant Staphylococci and Mammaliicoccus (MRNaS) Associated with Animals and Food Products in Arab Countries: A Review. Vet Sci 2022; 9:vetsci9070317. [PMID: 35878334 PMCID: PMC9320237 DOI: 10.3390/vetsci9070317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Staphylococci are present in the microbiota of both humans and animal species, being recognized as the most important opportunistic pathogens. Antimicrobial resistance (AMR) has become a global public health issue presenting a significant risk because it severely limits treatment options. Methicillin resistance in staphylococci (MRS) poses a specific problem as it may cause serious human and animal infections, eventually resulting in death. The increasing observation of MRS in different animal species has raised the concern of their impact on animal health and the potential of zoonotic transmission. The availability of comprehensive data on the ecology and distribution of MRS in animals and food products worldwide is necessary to understand their relevance in the “One Health” domain. However, there is a gap in information in terms of MRS and the Arab countries. Therefore, our study aimed to provide an overview of the situation of MRS in these countries by reviewing the available data on livestock and animal products and making recommendations for the future. Abstract The prevalence of methicillin resistance in staphylococci has been increasing globally and is currently one of the major public health concerns. In particular, treating infections caused by staphylococci with acquired antimicrobial resistance is problematic, as their treatment is more difficult. The resistance is found both in human and animal staphylococcal strains. Methicillin-resistant staphylococci (MRS) have also been increasingly reported in wildlife. In Arab countries, MRS has been detected in food producing animals and food products; however, the risk this poses is somewhat unclear, and still a significant lack of information on the trend and distribution of these pathogens in these countries, which have a specific ecosystem (desert) and traditions (Muslim culture). In this manuscript, we aim to provide an overview of the prevalence and the major MRS clonal lineages circulating in these specific countries and compare to them other situations with different ecosystems and cultures.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
- Correspondence:
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria;
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium;
| |
Collapse
|
36
|
MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials. Molecules 2022; 27:molecules27113497. [PMID: 35684436 PMCID: PMC9182184 DOI: 10.3390/molecules27113497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Metal-organic frameworks (MOFs), which have become popular in recent years as excellent carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe) was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+ for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag. The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern. Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe) was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity, so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated structurally engineered nanocomposite with broad-spectrum bactericidal activity.
Collapse
|
37
|
Synergistic antimicrobial activity of ε-polylysine, chestnut extract, and cinnamon extract against Staphylococcus aureus. Food Sci Biotechnol 2022; 31:607-615. [PMID: 35529685 PMCID: PMC9033916 DOI: 10.1007/s10068-022-01065-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022] Open
Abstract
A mixed natural preservative composed of ε-polylysine (ε-PL), chestnut 70% ethanol extract (NE), and cinnamon hydrothermal extract (CW), was investigated for the reduction of Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of seven natural extracts were investigated against a cocktail of three strains of S. aureus (ATCC 25923, ATCC 33591, and ATCC 33594). Three important factors (ε-PL, NE, and CW) were selected by using the Plackett-Burman (PB) design for the response surface model (P < 0.001). Following a central composite design, S. aureus were treated with mixtures of natural preservatives that included ε-PL, NE, and CW. The MIC and MBC of ε-PL and the natural extracts and ranged from 1 to 16 mg/mL (R2 = 0.9857). The mixed natural preservative presented a synergistic antibacterial effect, at the optimum point. These results suggest that mixed natural preservatives of ε-PL, NE, and CW can lower the economic cost of food processing.
Collapse
|
38
|
Mohamed MBED, Abo El-Ela FI, Mahmoud RK, Farghali AA, Gamil S, Aziz SAAA. Cefotax-magnetic nanoparticles as an alternative approach to control Methicillin-Resistant Staphylococcus aureus (MRSA) from different sources. Sci Rep 2022; 12:624. [PMID: 35022432 PMCID: PMC8755787 DOI: 10.1038/s41598-021-04160-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the efficacy of magnetic nanocomposite of cefotax against MRSA. A total of 190 samples were collected from milk, farm personnel and different environmental components from the dairy farm under the study to isolate S. aureus. Cefotax based magnetic nanoparticles was synthetized by the adsorption method and marked using Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (XRD), then it was characterized using Scanning and Transmission Electron Microscope (SEM and TEM). The obtained results revealed that number of positive samples of S. aureus isolation were 63 (33.1%), mainly from feed manger followed by milk machine swabs (60.0 and 53.3%, respectively) at X2 = 48.83 and P < 0.001. Obtained isolates were identified biochemically and by using molecular assays (PCR), also mec A gene responsible for resistance to cefotax was detected. Testing the sensitivity of 63 isolates of S. aureus showed variable degree of resistance to different tested antibiotics and significant sensitivity to cefotax based magnetic nanoparticles at P < 0.05. It was concluded that dairy environment might act a potential source for transmission of MRSA between human and animal populations. In addition, cefotax based magnetic nanoparticles verified an extreme antimicrobial efficacy against MRSA.
Collapse
Affiliation(s)
- Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Associate professor of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rehab K Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed A Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Shymaa Gamil
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
39
|
Abreu ACDS, Crippa BL, Souza VVMAD, Nuñez KVM, Almeida JMD, Rodrigues MX, Silva NCC. Assessment of sanitiser efficacy against Staphylococcus spp. isolated from Minas Frescal cheese producers in São Paulo, Brazil. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Abreu ACDS, Carazzolle MF, Crippa BL, Barboza GR, Mores Rall VL, de Oliveira Rocha L, Silva NCC. Bacterial diversity in organic and conventional Minas Frescal cheese production using targeted 16S rRNA sequencing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Huang Z, Yu X, Yang Q, Zhao Y, Wu W. Aptasensors for Staphylococcus aureus Risk Assessment in Food. Front Microbiol 2021; 12:714265. [PMID: 34603242 PMCID: PMC8483178 DOI: 10.3389/fmicb.2021.714265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is the top ordinary pathogen causing epidemic and food poisoning. The authentication of S. aureus has great significance for pathologic diagnosis and food hygiene supervision. Various biosensor methods have been established for identification. This paper reviews the research progress of aptasensors for S. aureus detection, focusing on the classification of aptamer technologies, including optical aptasensors and electrochemical aptasensors. Furthermore, the feasibility and future challenges of S. aureus detection for aptamer assays are discussed. Combining aptasensors with nanomaterials appears to be the developing trend in aptasensors.
Collapse
Affiliation(s)
- Ziqian Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Yu
- Qingdao Municipal Hospital, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ying Zhao
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
42
|
Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
About one-third of the total food produced is wasted, rising the concern to adopt proper management. Simultaneously with the increase in population, demand for food is increasing which may lead to scarcity. Adequate packaging is one of the ways to avoid deterioration of food and prevent wastage. In recent years, active packaging has attained interest due to its commendable results in food preservation. Several studies proved that the embodiment of antimicrobial components into the packaging material has the ability to prevent microbial contamination. Antimicrobial peptides (AMP) are newly discovered antimicrobial agents for impregnation into packaging material. Among various sources for AMP, insects have shown great resistivity against a wide spectrum of microorganisms. Insects feed on substances consisting of a varying range of contaminations, which often results in infections. Insects synthesise AMPs to fight such infections and survive in that atmosphere. The disease-causing agents in humans are the same as those found in insects. Hence, AMPs extracted from insects have the potential to fight the microorganisms that act as hazards to human health. This review highlights the harvesting and synthesis of AMPs from Hermetia illucens, which is a promising source for AMP and its applications in the food packaging industry.
Collapse
|
43
|
Bishr AS, Abdelaziz SM, Yahia IS, Yassien MA, Hassouna NA, Aboshanab KM. Association of Macrolide Resistance Genotypes and Synergistic Antibiotic Combinations for Combating Macrolide-Resistant MRSA Recovered from Hospitalized Patients. BIOLOGY 2021; 10:biology10070624. [PMID: 34356479 PMCID: PMC8301042 DOI: 10.3390/biology10070624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Macrolide-resistant methicillin-resistant Staphylococcus aureus (MAC-MRSA) is one of the most clinically relevant pathogens due to its significant ability of resistance acquisition to different antimicrobial agents and narrow therapeutic options. This study aimed to evaluate antimicrobial susceptibility and the use of different combinations of azithromycin with other antibiotics as well as studying the correlation of MAC resistance genotypes and antimicrobial agents that provided synergy when they were combined with azithromycin. Azithromycin (AZM) combinations with either linezolid, ceftriaxone, gentamicin, or cefotaxime provided synergy in 42.1%, 44.7%, 31.6% and 7.9% of the 38 MAC-MRSA isolates, respectively. Statistical analysis showed significant association between the presence of the ermA genotype and the synergism of AZM + ceftriaxone and AZM + gentamicin; the presence of the ermC genotype and the synergism between AZM and gentamicin; the presence of the msrA genotype and the synergism between AZM and ceftriaxone; and the presence of the ermA/msrA genotype and the synergism between AZM and cefotaxime. The obtained findings will guide clinicians in better choosing the antibiotic combinations required for combating MAC-MRSA clinical isolates. However, the promising synergistic antibiotic combinations must be re-evaluated in vivo using an appropriate animal model. Abstract Macrolide-resistant methicillin-resistant Staphylococcus aureus (MAC-MRSA) is one of the most clinically relevant pathogens due to its significant ability of resistance acquisition to different antimicrobial agents. This study aimed to evaluate antimicrobial susceptibility and the use of different combinations of azithromycin with other antibiotics for combating MAC resistance. Seventy-two Staphylococci (38.5%) (n = 187), showed resistance to MACs; of these, 53 isolates (73.6%, n = 72) were S. aureus and 19 (26.4%, n = 72) were coagulase-negative staphylococci (CoNS). Out of the 53 S. aureus and 19 CoNS isolates, 38 (71.7%, n = 53) and 9 (47.4%, n = 19) were MRSA and methicillin-resistant CoNS, respectively. The constitutive MACs, lincosamides and streptogramin-B (cMLS) comprised the predominant phenotype among S. aureus isolates (54.7%) and CoNS isolates (78.9%). The PCR analysis showed that the ermC gene was the most prevalent (79.2%), followed by msrA (48.6%), and ermA (31.9%). Azithromycin combinations with either linezolid, ceftriaxone, gentamicin, or cefotaxime provided synergy in 42.1%, 44.7%, 31.6% and 7.9% of the 38 MAC-MRSA isolates, respectively. Statistical analysis showed significant association between certain MAC resistance genotypes and the synergistic effect of certain azithromycin combinations (p value < 0.05). In conclusion, azithromycin combinations with either linezolid, or ceftriaxone showed synergism in most of the MAC-resistant MRSA clinical isolates.
Collapse
Affiliation(s)
- Amr S. Bishr
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt; (A.S.B.); (S.M.A.); (M.A.Y.); (N.A.H.)
| | - Salma M. Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt; (A.S.B.); (S.M.A.); (M.A.Y.); (N.A.H.)
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha P.O. Box 9004, Saudi Arabia;
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Mahmoud A. Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt; (A.S.B.); (S.M.A.); (M.A.Y.); (N.A.H.)
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt; (A.S.B.); (S.M.A.); (M.A.Y.); (N.A.H.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt; (A.S.B.); (S.M.A.); (M.A.Y.); (N.A.H.)
- Correspondence: ; Tel.: +20-224-829-040
| |
Collapse
|
44
|
The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses. Braz J Microbiol 2021; 52:2343-2350. [PMID: 34151408 DOI: 10.1007/s42770-021-00544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/11/2021] [Indexed: 10/21/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens associated with food poisoning, which is caused by the ingestion of food contaminated with staphylococcal enterotoxins (SE). Our study aims at evaluating the occurrence and expression of five SE genes (sea, seb, sec, sed, and see) in S. aureus previously isolated from broiler carcasses. Besides that, it also presents an in vitro analysis of the effects of sodium chloride and temperature on the levels of transcriptional expression. A total of 30 S. aureus isolates were investigated for the presence of SEs by PCR assay. The expression level and the effects of sodium chloride (2.5% NaCl), as well as temperature (8 ºC and 12 ºC), on the transcriptional expression, were evaluated by a quantitative reverse transcription PCR (RT-qPCR). Twelve isolates carried at least one of the SE genes. Among them, five representative isolates presented transcriptional expression for at least one gene. Both sodium chloride and low temperatures interfered with the expression of the SE genes, decreasing their values. However, one isolate displayed relative expression 2.25 times higher for sed gene than S. aureus FRI 361 in optimal conditions (p < 0.05), demonstrating their toxigenic potential even under salt stress. There was no evidence of enterotoxin gene expression at 8 ºC.
Collapse
|
45
|
de Souza TR, Gonçalves MC, do Vale LA, Vitorino LC, Piccoli RH. Homologous and Heterologous Adaptation and Thermochemical Inactivation of Staphylococcus aureus with Exposure to Cinnamaldehyde. J Food Prot 2021; 84:579-586. [PMID: 33180940 DOI: 10.4315/jfp-20-336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Staphylococcus aureus causes food intoxication and can become resistant to a large number of antibacterial drugs. Thus, there is a growing interest in understanding the mechanisms involved in the adaptation of bacterial cells to environmental stresses or to antimicrobial agents. In this context, we evaluated the cinnamaldehyde (CIN) MBC for two contaminating food strains of S. aureus (GL 5674 and GL 8702) and tested the hypothesis that exposure of these strains to sublethal CIN concentrations and pH values could increase their resistance to this antimicrobial agent, to acid stress, and also to stress at high temperatures. Thus, the ability of the strains to adapt to CIN and acid stress was evaluated, as well as the cross-adaptation between acid stress and CIN. Strains GL 5674 and GL 8702 of S. aureus are sensitive to CIN in MBCs of 0.25 and 0.5% respectively, proving the antibacterial potential of this compound, but we proved the hypothesis of homologous adaptation to CIN. The strains grew in concentrations higher than the MBC after being previously exposed to sublethal concentrations of CIN. We also observed heterologous adaptation of the strains, which after exposure to the minimum pH for growth, were able to grow in concentrations of CIN greater than the MBC. GL 5674 showed greater adaptive plasticity, considerably reducing its minimum inhibitory pH and increasing its MBC after adaptation. Our results show a positive effect of adaptation to CIN on the resistance of S. aureus (P < 0.0001) to CIN at a temperature of 37°C. However, in the absence of adaptation, the presence of CIN in S. aureus cultures maintained at 37°C showed an efficient bactericidal effect associated with increased exposure time. Our results call attention to the conscious use of CIN as an antimicrobial agent and present the possibility of using CIN, in association with a temperature of 37°C and an exposure time of 35 min, as a promising measure for the elimination of pathogenic strains. HIGHLIGHTS
Collapse
Affiliation(s)
- Tenille Ribeiro de Souza
- Agricultural Microbiology, Department of Biology, Federal University of Lavras, Central Avenue, 37200-000 Lavras, Minas Gerais, Brazil
| | - Michelle Carlota Gonçalves
- Agricultural Microbiology, Department of Biology, Federal University of Lavras, Central Avenue, 37200-000 Lavras, Minas Gerais, Brazil
| | - Letícia Andrade do Vale
- Department of Food Sciences, Federal University of Lavras, Central Avenue, 37200-000 Lavras, Minas Gerais, Brazil
| | - Luciana Cristina Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal Institute-Campus Rio Verde, Highway Sul Goiana, Km 01, 75901-970 Rio Verde, Goiás, Brazil (ORCID: https://orcid.org/0000-0001-7271-9573 [L.C.V.])
| | - Roberta Hilsdorf Piccoli
- Department of Food Sciences, Federal University of Lavras, Central Avenue, 37200-000 Lavras, Minas Gerais, Brazil
| |
Collapse
|
46
|
Tang C, Chen J, Zhou Y, Ding P, He G, Zhang L, Zhao Z, Yang D. Exploring antimicrobial mechanism of essential oil of Amomum villosum Lour through metabolomics based on gas chromatography-mass spectrometry in methicillin-resistant Staphylococcus aureus. Microbiol Res 2020; 242:126608. [PMID: 33068829 DOI: 10.1016/j.micres.2020.126608] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Amomum villosum Lour (A. villosum Lour) has medicinal properties and has been widely used in China for many years. Herein we aimed to investigate the antibacterial mechanism and the metabolome variation caused by A. villosum Lour essential oil (EO) in methicillin-resistant Staphylococcus aureus (MRSA). The metabolite profile of MRSA was acquired, and metabolic pathways were assessed for significant alterations caused upon treating bacterial cells with EO, the antibacterial mechanism of EO was further investigated in combination with multiple experiments. Metabolomics analysis revealed that 72 metabolites and 10 pathways were significantly affected. EO specifically disrupted amino acid metabolism and the tricarboxylic acid (TCA) cycle, and also inhibited adenosine triphosphate (ATP) and reactive oxygen species (ROS) synthesis. Furthermore, the activities of pivotal enzymes involved in the TCA cycle were suppressed. Increased ROS levels could decrease the sensitivity of MRSA to EO, improving the survival of EO-treated MRSA cells. Our data indicate that A. villosum Lour EO causes metabolic dysfunction in MRSA, leading to reduced ROS levels, disruption of the TCA cycle, inhibition of ATP synthesis, and suppression of the activities of key enzymes.
Collapse
Affiliation(s)
- Cailin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, Guizhou Provincial People(')s Hospital, Guiyang, Guizhou, China
| | - Jiali Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yang Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guozhen He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixia Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Xishuangbanna, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|