1
|
Ye F, Li Q, Huang L, Liao N. Reliable high-PAP-1-loaded polymeric micelles for cancer therapy: preparation, characterization, and evaluation of anti-tumor efficacy. Drug Deliv 2025; 32:2490269. [PMID: 40207975 PMCID: PMC11986873 DOI: 10.1080/10717544.2025.2490269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
The mitochondrial potassium channel Kv1.3 is a critical therapeutic target, as its blockade induces cancer cell apoptosis, highlighting its therapeutic potential. PAP-1, a potent and selective membrane-permeant Kv1.3 inhibitor, faces solubility challenges affecting its bioavailability and antitumor efficacy. To circumvent these challenges, we developed a tumor-targeting drug delivery system by encapsulating PAP-1 within pH-responsive mPEG-PAE polymeric micelles. These self-assembled micelles exhibited high entrapment efficiency (91.35%) and drug loading level (8.30%). As pH decreased, the micelles exhibited a significant increase in particle size and zeta potential, accompanied by a surge in PAP-1 release. Molecular simulations revealed that PAE's tertiary amine protonation affected the self-assembly process, modifying hydrophobicity and resulting in larger, loosely packed particles. Furthermore, compared to free PAP-1 or PAP-1 combined with MDR inhibitors, PAP-1-loaded micelles significantly enhanced cytotoxicity and apoptosis induction in Jurkat and B16F10 cells, through mechanisms involving decreased mitochondrial membrane potential and elevated caspase-3 activity. In vivo, while free PAP-1 failed to reduce tumor size in a B16F10 melanoma mouse model, PAP-1-loaded micelles substantially suppressed tumors, reducing volume by up to 94.26%. Fluorescent-marked micelles effectively accumulated in mouse tumors, confirming their targeting efficiency. This strategy holds promise for significantly improving PAP-1's antitumor efficacy in tumor therapy.
Collapse
Affiliation(s)
- Fang Ye
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Qi Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Longping Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, P. R. China
- Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Naikai Liao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
2
|
Ignatova AA, Kryukova EV, Novoseletsky VN, Kazakov OV, Orlov NA, Korabeynikova VN, Larina MV, Fradkov AF, Yakimov SA, Kirpichnikov MP, Feofanov AV, Nekrasova OV. New High-Affinity Peptide Ligands for Kv1.2 Channel: Selective Blockers and Fluorescent Probes. Cells 2024; 13:2096. [PMID: 39768187 PMCID: PMC11674118 DOI: 10.3390/cells13242096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced molecular probes are required to study the functional activity of the Kv1.2 potassium channel in normal and pathological conditions. To address this, a fully active Kv1.2 channel fused with fluorescent protein mKate2 (K-Kv1.2) was engineered that has high plasma membrane presentation due to the S371T substitution, and hongotoxin 1 (HgTx1) fused with eGFP at the C-terminus (HgTx-G) was produced. HgTx-G and HgTx1 N-terminally labeled with Atto488 fluorophore were shown to be fluorescent probes of Kv1.2 in cells with dissociation constants (Kd) of 120 and 80 pM, respectively. K-Kv1.2 and HgTx-G were used as components of an analytical system to study peptide blockers of the channel and helped to find out that Ce1 and Ce4 peptides from Centruroides elegans venom possess high affinity (Kd of 10 and 30 pM) and selectivity for Kv1.2. Using molecular docking and molecular modeling techniques, the complexes of Kv1.2 with HgTx1, Ce1, and Ce4 were modeled, and determinants of the high affinity binding were proposed. New fluorescent probes and selective blockers of Kv1.2 can be used to resolve Kv1.2-related challenges in neuroscience and neuropharmacology.
Collapse
Affiliation(s)
- Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Valery N. Novoseletsky
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518115, China;
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Oleg V. Kazakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Nikita A. Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518115, China;
| | - Varvara N. Korabeynikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Maria V. Larina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Arkady F. Fradkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Sergey A. Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518115, China;
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Oksana V. Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.A.I.); (E.V.K.); (O.V.K.); (N.A.O.); (V.N.K.); (M.V.L.); (A.F.F.); (S.A.Y.); (M.P.K.); (O.V.N.)
| |
Collapse
|
3
|
Hilgers RH, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024; 41:818-844. [PMID: 39099341 PMCID: PMC11631806 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 41, 818-844.
Collapse
Affiliation(s)
- Rob H.P. Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
4
|
Sastre D, Colomer-Molera M, de Benito-Bueno A, Valenzuela C, Fernández-Ballester G, Felipe A. KCNE4-dependent modulation of Kv1.3 pharmacology. Biochem Pharmacol 2024; 226:116368. [PMID: 38880360 DOI: 10.1016/j.bcp.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The voltage-dependent potassium channel Kv1.3 is a promising therapeutic target for the treatment of autoimmune and chronic inflammatory disorders. Kv1.3 blockers are effective in treating multiple sclerosis (fampridine) and psoriasis (dalazatide). However, most Kv1.3 pharmacological antagonists are not specific enough, triggering potential side effects and limiting their therapeutic use. Functional Kv are oligomeric complexes in which the presence of ancillary subunits shapes their function and pharmacology. In leukocytes, Kv1.3 associates with KCNE4, which reduces the surface abundance and enhances the inactivation of the channel. This mechanism exerts profound consequences on Kv1.3-related physiological responses. Because KCNE peptides alter the pharmacology of Kv channels, we studied the effects of KCNE4 on Kv1.3 pharmacology to gain insights into pharmacological approaches. To that end, we used margatoxin, which binds the channel pore from the extracellular space, and Psora-4, which blocks the channel from the intracellular side. While KCNE4 apparently did not alter the affinity of either margatoxin or Psora-4, it slowed the inhibition kinetics of the latter in a stoichiometry-dependent manner. The results suggested changes in the Kv1.3 architecture in the presence of KCNE4. The data indicated that while the outer part of the channel mouth remains unaffected, KCNE4 disturbs the intracellular architecture of the complex. Various leukocyte types expressing different Kv1.3/KCNE4 configurations participate in the immune response. Our data provide evidence that the presence of these variable architectures, which affect both the structure of the complex and their pharmacology, should be considered when developing putative therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, 28029 Madrid, Spain
| | | | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Ding C, Gai S, Ma Z, Yang L, Fu Z. The role of potassium ion channels in chronic sinusitis. Front Pharmacol 2024; 15:1431330. [PMID: 39015366 PMCID: PMC11249563 DOI: 10.3389/fphar.2024.1431330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic sinusitis is a common inflammatory disease of the nasal and sinus mucosa, leading to symptoms such as nasal congestion, runny nose, decreased sense of smell, and headache. It often recurs and seriously affects the quality of life of patients. However, its pathological and physiological mechanisms are not fully understood. In recent years, the role of potassium ion channels in the regulation of mucosal barrier function and inflammatory cell function has received increasing attention. In chronic sinusitis, there are often changes in the expression and function of potassium channels, leading to mucosal damage and a stronger inflammatory response. However, the related research is still in its early stages. This article will review the role of the potassium channel in the pathological and physiological changes of chronic sinusitis. The studies revealed that BK/TREK-1 potassium channel play a protective role in the nasal mucosal function through p38-MAPK pathway, and KCa3.1/Kv1.3 enhance the inflammatory response of Chronic rhinosinusitis by regulating immune cell function, intracellular Ca2+ signaling and ERK/MAPK/NF-κB pathway. Because ion channels are surface proteins of cell membranes, they are easier to intervene with drugs, and the results of these studies may provide new effective targets for the prevention and treatment of chronic sinusitis.
Collapse
Affiliation(s)
- Changhui Ding
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Senxi Gai
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiyong Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lizhuo Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhijie Fu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Cozzolino M, Panyi G. Intracellular acidity impedes KCa3.1 activation by Riluzole and SKA-31. Front Pharmacol 2024; 15:1380655. [PMID: 38638868 PMCID: PMC11024243 DOI: 10.3389/fphar.2024.1380655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Background The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.
Collapse
Affiliation(s)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Szekér P, Bodó T, Klima K, Csóti Á, Hanh NN, Murányi J, Hajdara A, Szántó TG, Panyi G, Megyeri M, Péterfi Z, Farkas S, Gyöngyösi N, Hornyák P. KcsA-Kv1.x chimeras with complete ligand-binding sites provide improved predictivity for screening selective Kv1.x blockers. J Biol Chem 2024; 300:107155. [PMID: 38479597 PMCID: PMC11002876 DOI: 10.1016/j.jbc.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024] Open
Abstract
Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tibor Gábor Szántó
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - György Panyi
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | | - Norbert Gyöngyösi
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
8
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
9
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
10
|
Mendes LC, Viana GMM, Nencioni ALA, Pimenta DC, Beraldo-Neto E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins (Basel) 2023; 15:238. [PMID: 37104176 PMCID: PMC10145618 DOI: 10.3390/toxins15040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.
Collapse
Affiliation(s)
- Lais Campelo Mendes
- Programa de Pós-Graduação em Ciências—Toxinologia do Instituto Butantan, São Paulo 05503-900, Brazil
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| | | | | | | | - Emidio Beraldo-Neto
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
11
|
Primak AL, Orlov NA, Peigneur S, Tytgat J, Ignatova AA, Denisova KR, Yakimov SA, Kirpichnikov MP, Nekrasova OV, Feofanov AV. AgTx2-GFP, Fluorescent Blocker Targeting Pharmacologically Important K v1.x (x = 1, 3, 6) Channels. Toxins (Basel) 2023; 15:toxins15030229. [PMID: 36977120 PMCID: PMC10056440 DOI: 10.3390/toxins15030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0-8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity.
Collapse
Affiliation(s)
- Alexandra L Primak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg O&N2, University of Leuven (KU Leuven), Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Anastasia A Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Kristina R Denisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Sergey A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
12
|
Yuan X, Han S, Manyande A, Gao F, Wang J, Zhang W, Tian X. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain 2023; 27:289-302. [PMID: 36440534 DOI: 10.1002/ejp.2059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUD Studies have shown that the activation of microglia is the main mechanism of neuropathic pain. Kv1.3 channel is a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of microglial cells. As such, it may be involved in the processes of neuropathic pain, however, whether Kv1.3 plays a role in neuroinflammation following peripheral nerve injury is unclear. METHOD The spared nerve injury model (SNI) was used to establish neuropathic pain. Western blot and immunofluorescence were used to examine the effect of Kv1.3 in the SNI rats. PAP-1, a Kv1.3 specific blocker was administered to alleviate neuropathic pain in the SNI rats. RESULTS Neuropathic pain and allodynia occurred after SNI, the levels of M1 (CD68, iNos) and M2 (CD206, Arg-1) phenotypes were up-regulated in the spinal cord, and the protein levels of NLRP3, caspase-1 and IL-1β were also increased. Pharmacological blocking of Kv1.3 with PAP-1 alleviated hyperpathia induced by SNI. Meanwhile, intrathecal injection of PAP-1 reduced M1 polarization and decreased NLRP3, caspase-1 and IL-1β expressions of protein levels. CONCLUSION Our research indicates that the Kv1.3 channel in the spinal cord contributes to neuropathic pain by promoting microglial M1 polarization and activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Siyi Han
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
13
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Combining mKate2-Kv1.3 Channel and Atto488-Hongotoxin for the Studies of Peptide Pore Blockers on Living Eukaryotic Cells. Toxins (Basel) 2022; 14:toxins14120858. [PMID: 36548755 PMCID: PMC9780825 DOI: 10.3390/toxins14120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated potassium Kv1.3 channel is an essential component of vital cellular processes which is also involved in the pathogenesis of some autoimmune, neuroinflammatory and oncological diseases. Pore blockers of the Kv1.3 channel are considered as potential drugs and are used to study Kv1 channels' structure and functions. Screening and study of the blockers require the assessment of their ability to bind the channel. Expanding the variety of methods used for this, we report on the development of the fluorescent competitive binding assay for measuring affinities of pore blockers to Kv1.3 at the membrane of mammalian cells. The assay constituents are hongotoxin 1 conjugated with Atto488, fluorescent mKate2-tagged Kv1.3 channel, which was designed to improve membrane expression of the channel in mammalian cells, confocal microscopy, and a special protocol of image processing. The assay is implemented in the "mix and measure", format and allows the screening of Kv1.3 blockers, such as peptide toxins, that bind to the extracellular vestibule of the K+-conducting pore, and analyzing their affinity.
Collapse
|
15
|
ElFessi R, Khamessi O, Srairi-Abid N, Sabatier JM, Tytgat J, Peigneur S, Kharrat R. Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion. Molecules 2022; 27:molecules27217278. [PMID: 36364113 PMCID: PMC9657394 DOI: 10.3390/molecules27217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Scorpion venom is a rich source of promising therapeutic compounds, such as highly selective ion channel ligands with potent pharmacological effects. Bot33 is a new short polypeptide of 38 amino acid residues with six cysteines purified from the venom of the Buthus occitanus tunetanus scorpion. Bot33 has revealed less than 40% identity with other known alpha-KTx families. This peptide displayed a neutral amino acid (Leucine), in the position equivalent to lysine 27, described as essential for the interaction with Kv channels. Bot33 did not show any toxicity following i.c.v. injection until 2 µg/kg mouse body weight. Due to its very low venom concentration (0.24%), Bot33 was chemically synthesized. Unexpectedly, this peptide has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes, and it was found that Bot33 has no effect on seven Kv channel subtypes. Interestingly, an in silico molecular docking study shows that the Leu27 prevents the interaction of Bot33 with the Kv1.3 channel. All our results indicate that Bot33 may have a different mode of action from other scorpion toxins, which will be interesting to elucidate.
Collapse
Affiliation(s)
- Rym ElFessi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Oussema Khamessi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Najet Srairi-Abid
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Université Aix-Marseille, UMR 7051, 13005 Marseille, France
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (S.P.); (R.K.)
| | - Riadh Kharrat
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia
- Correspondence: (S.P.); (R.K.)
| |
Collapse
|
16
|
Naseem MU, Carcamo-Noriega E, Beltrán-Vidal J, Borrego J, Szanto TG, Zamudio FZ, Delgado-Prudencio G, Possani LD, Panyi G. Cm28, a scorpion toxin having a unique primary structure, inhibits KV1.2 and KV1.3 with high affinity. J Gen Physiol 2022; 154:213282. [PMID: 35699659 PMCID: PMC9202693 DOI: 10.1085/jgp.202213146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The Cm28 in the venom of Centruroides margaritatus is a short peptide consisting of 27 amino acid residues with a mol wt of 2,820 D. Cm28 has <40% similarity with other known α-KTx from scorpions and lacks the typical functional dyad (lysine-tyrosine) required to block KV channels. However, its unique sequence contains the three disulfide-bond traits of the α-KTx scorpion toxin family. We propose that Cm28 is the first example of a new subfamily of α-KTxs, registered with the systematic number α-KTx32.1. Cm28 inhibited voltage-gated K+ channels KV1.2 and KV1.3 with Kd values of 0.96 and 1.3 nM, respectively. There was no significant shift in the conductance-voltage (G-V) relationship for any of the channels in the presence of toxin. Toxin binding kinetics showed that the association and dissociation rates are consistent with a bimolecular interaction between the peptide and the channel. Based on these, we conclude that Cm28 is not a gating modifier but rather a pore blocker. In a selectivity assay, Cm28 at 150 nM concentration (>100× Kd value for KV1.3) did not inhibit KV1.5, KV11.1, KCa1.1, and KCa3.1 K+ channels; NaV1.5 and NaV1.4 Na+ channels; or the hHV1 H+ channel but blocked ∼27% of the KV1.1 current. In a biological functional assay, Cm28 strongly inhibited the expression of the activation markers interleukin-2 receptor and CD40 ligand in anti-CD3-activated human CD4+ effector memory T lymphocytes. Cm28, due to its unique structure, may serve as a template for the generation of novel peptides targeting KV1.3 in autoimmune diseases.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor G. Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary,Correspondence to Gyorgy Panyi:
| |
Collapse
|
17
|
GFP-Margatoxin, a Genetically Encoded Fluorescent Ligand to Probe Affinity of Kv1.3 Channel Blockers. Int J Mol Sci 2022; 23:ijms23031724. [PMID: 35163644 PMCID: PMC8835862 DOI: 10.3390/ijms23031724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP-MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP-MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP-MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP-MgTx as a component of an analytical system based on the hybrid KcsA-Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP-MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.
Collapse
|
18
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
19
|
Genomic Structure of Two Kv1.3 Channel Blockers from Scorpion Mesobuthus eupeus and Sea Anemone Stichodactyla haddoni and Construction of their Chimeric Peptide as a Novel Blocker. Biochem Genet 2021; 60:504-526. [PMID: 34286408 DOI: 10.1007/s10528-021-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Different toxins acting on Kv1.3 channel have been isolated from animal venom. MeuKTX toxin from Mesobuthus eupeus phillipsi scorpion and shtx-k toxin from Stichodactyla haddoni sea anemone have been identified as two effective Kv1.3 channel blockers. In this work, we characterized the genomic organization of both toxins. MeuKTX gene contains one intron and two exons, similar to the most scorpion toxins. There are a few reports of genomic structure of sea anemone toxins acting on Kv channels. The sequence encoding mature peptide of shtx-k was located in an exon separated by an intron from the coding exon of the propeptide and signal region. In order to make a peptide with more affinity for Kv1.3 channel and greater stability, the shtx-k/ MeuKTX chimeric peptide was designed and constructed using splicing by overlap extension-PCR (SOE-PCR) method. MeuKTX, shtx-k, and shtx-k/MeuKTX were cloned and the expression of the soluble proteins in E. coli was determined. Molecular docking studies indicated more inhibitory effect of shtx-k/MeuKTX on Kv1.3 channel compared to shtx-k and MeuKTX toxins. Key amino acids binding channel from both toxins, also involved in interaction of chimeric peptide with channel. Our results showed that the fusion peptide, shtx-k/MeuKTX could be an effective agent to target Kv1.3 channel.
Collapse
|