1
|
Huang J, Gong R, Al-Rasheid KAS, Gao F, Vallesi A, Jiang Y. Characterization of the macronuclear and micronuclear pheromone genes of Euplotes raikovi reveals the origin of the mating type genetic diversity. Eur J Protistol 2025; 99:126146. [PMID: 40174538 DOI: 10.1016/j.ejop.2025.126146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Ciliates produce diffusible, cell-type-specific pheromones to regulate growth and mating. In Euplotes, these signaling molecules belong to species-specific families of disulfide-rich and structurally homologous proteins. Pheromones are co-dominantly expressed by genes in the somatic macronucleus (MAC), whereas their allelic diversity originates from the mating type locus in the germline micronucleus (MIC). During MAC development in sexual process, the MIC-derived diversity of specific alleles is rearranged via macronucleus-destined sequences (MDSs) assembly. While many MAC pheromones are well characterized, their MIC precursors and rearrangement process remain unknown. Here, we identified two MAC pheromone genes (mac-er-13/14) of E. raikovi, and two MIC regions (19 kb in total) containing 10 MDSs that assemble into mac-er-13. These MDSs are separated by internal eliminated sequences (234-3345 bp). The shortest MDSs (9-36 bp) encode the secreted region of pheromone, while longer MDSs (44-419 bp) encode other regions. Considering that the secreted regions show a higher sequence variation and the shorter MDSs have higher probability of alternative processing or imprecise assembly, we hypothesize that the high sequence variability of the macronuclear pheromone genes, which underlies the large number of mating types in E. raikovi, may result from alternative processing or imprecise assembly of these short MDSs.
Collapse
Affiliation(s)
- Jianjun Huang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ruitao Gong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy.
| | - Yaohan Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
2
|
Ye F, Chen X, Li Y, Ju A, Sheng Y, Duan L, Zhang J, Zhang Z, Al-Rasheid KAS, Stover NA, Gao S. Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling. Nucleic Acids Res 2025; 53:gkae1177. [PMID: 39657783 PMCID: PMC11754650 DOI: 10.1093/nar/gkae1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5' end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.
Collapse
Affiliation(s)
- Fei Ye
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Yuan Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yalan Sheng
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiachen Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Zhang B, Xiao L, Lyu L, Zhao F, Miao M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. MICROBIOME 2024; 12:96. [PMID: 38790063 PMCID: PMC11127453 DOI: 10.1186/s40168-024-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.
Collapse
Affiliation(s)
- Bing Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liwen Xiao
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Jia R, Zhang Y, Wang Y, Wang Y, Sun G, Jiang Y. Toxic effects on ciliates under nano-/micro-plastics coexist with silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133058. [PMID: 38006860 DOI: 10.1016/j.jhazmat.2023.133058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Owing to the degradation of plastics, microplastics (MPs) and nanoplastics (NPs) have remained the focus of global attention. Silver nanoparticles (AgNPs) could adversely affect marine organisms due to their broad application. So far, the combined effects of MPs/NPs (strong adsorbents) with AgNPs on marine organisms are scant. Thus, four sizes polystyrene beads (80 nm, 220 nm, 1.07 µm, and 2.14 µm) combined with AgNPs (30 nm) were assessed using ciliated protozoa Uronema marinum. Results showed that MPs/NPs dramatically decrease the abundance, biovolume, and carbon biomass of U. marinum. And, exposure could cause changes of antioxidant enzyme activity and antioxidant content on U. marinum. The combined toxicity of MPs/NPs with AgNPs to ciliates showed an enhanced effect compared to exposure alone. Additionally, the negative effects under exposure of NPs plus AgNPs were more significant than those of MPs plus AgNPs. Transcriptome sequencing showed that co-exposure could affect the energy metabolism and lipid metabolism of ciliates, even cause DNA and protein damage. Our study provided a novel insight and first-hand basic data for the understanding of combined toxicity of MPs /NPs with AgNPs on the basic trophic level ciliated protozoa in marine ecosystems.
Collapse
Affiliation(s)
- Ruiqi Jia
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Gaojingwen Sun
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Liu Z, Wang Z, Zhang Q, Wang Q, Li F. Description of Holostichides (Extraholostichides) eastensis tianjinensis subgen. nov. subspec. nov. (Ciliophora, Hypotricha) from northern China. Eur J Protistol 2024; 92:126048. [PMID: 38118326 DOI: 10.1016/j.ejop.2023.126048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
The morphology and morphogenesis of a new urostylid, Holostichides (Extraholostichides) eastensis tianjinensis subgen. nov. subspec. nov. were analyzed. The new subspecies differs from the nominotypical subspecies H. (Extraholostichides) eastensis eastensis Wang et al., 2022 by the relatively long frontoterminal row (about 60% vs. 30% of body length), colorless cortical granules (vs. dark brown), two (vs. one) parabuccal cirri, and usually an extra cirrus behind the first midventral pair (vs. lacking). Based on the difference in the frontal ciliature, we split Holostichides into two subgenera: H. (Extraholostichides) subgen. nov. (type species Holostichides eastensis Wang et al., 2022; with a short cirral row behind the middle frontal cirrus) and H. (Holostichides) Foissner, 1987 (type species Holostichides chardezi Foissner, 1987; lacking this short row). The main morphogenetic characters of the new subspecies are very similar to those of H. (Extraholostichides) eastensis eastensis except for some minor differences. Phylogenetic analyses based on SSU rDNA sequences indicate that H. (Extraholostichides) subgen. nov. is monophyletic and nested within the monophyletic genus Holostichides, which is sister to Eschaneustyla lugeri.
Collapse
Affiliation(s)
- Ziyan Liu
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ziyu Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qi Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qiukun Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Song W, Jiao H, Yang J, Tang D, Ye T, Li L, Yang L, Li L, Song W, Al-Farraj SA, Hines HN, Liu W, Chen X. New evidence of consistency between phylogeny and morphology for two taxa in ciliated protists, the subclasses Oligotrichia and Choreotrichia (Protista, Ciliophora). Mol Phylogenet Evol 2023; 188:107911. [PMID: 37648182 DOI: 10.1016/j.ympev.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Marine planktonic ciliates are largely oligotrichs and choreotrichs, which are two subclasses of the class Spirotrichea. The current phylogenetic assignments of oligotrichs and choreotrichs are inconsistent with previous results based on morphological features, probably hindered by the limited information from a single gene locus. Here we provide 53 new sequences from small subunit ribosomal RNA (SSU rDNA), ITS1-5.8S rDNA-ITS2, and large subunit ribosomal RNA (LSU rDNA) gene loci in 25 oligotrich and choreotrich species. We also predict RNA secondary structures for the ITS2 regions in 55 species, 48 species of which are reported for the first time. Based on these novel data, we make a more comprehensive phylogenetic reconstruction, revealing consistency between morphological taxonomy and an updated phylogenetic system for oligotrichs and choreotrichs. With the addition of data from ciliature patterns and genes, the phylogenetic analysis of the subclass Oligotrichia suggests three evolutionary trajectories, among which: 1) Novistrombidium asserts an ancestral ciliary pattern in Oligotrichia; 2) the subgenera division of Novistrombidium and Parallelostrombidium are fully supported; 3) the three families (Tontoniidae, Pelagostrombidiidae and Cyrtostrombidiidae) all evolved from the most diverse family Strombidiidae, which explains why strombidiids consistently form polyphyletic clades. In the subclass Choreotrichia, Strombidinopsis likely possesses an ancestral position to other choreotrichs, and both phylogenetic analysis and RNA secondary structure prediction support the hypothesis that tintinnids may have evolved from Strombidinopsis. The results presented here offer an updated hypothesis for the evolutionary history of oligotrichs and choreotrichs based on new evidence obtained by expanding sampling of molecular information across multiple gene loci.
Collapse
Affiliation(s)
- Wen Song
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Huixin Jiao
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Juan Yang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Danxu Tang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Tingting Ye
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Lu Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Lei Yang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Weibo Song
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hunter N Hines
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Weiwei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute of Shandong University, Suzhou 215123, China.
| |
Collapse
|
8
|
Jin D, Li C, Chen X, Byerly A, Stover NA, Zhang T, Shao C, Wang Y. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:300-315. [PMID: 37637252 PMCID: PMC10449743 DOI: 10.1007/s42995-023-00175-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/12/2023] [Indexed: 08/29/2023]
Abstract
One of the most diverse clades of ciliated protozoa, the class Spirotrichea, displays a series of unique characters in terms of eukaryotic macronuclear (MAC) genome, including high fragmentation that produces nanochromosomes. However, the genomic diversity and evolution of nanochromosomes and gene families for spirotrich MAC genomes are poorly understood. In this study, we assemble the MAC genome of a representative euplotid (a new model organism in Spirotrichea) species, Euplotes aediculatus. Our results indicate that: (a) the MAC genome includes 35,465 contigs with a total length of 97.3 Mb and a contig N50 of 3.4 kb, and contains 13,145 complete nanochromosomes and 43,194 predicted genes, with the majority of these nanochromosomes containing tiny introns and harboring only one gene; (b) genomic comparisons between E. aediculatus and other reported spirotrichs indicate that average GC content and genome fragmentation levels exhibit interspecific variation, and chromosome breaking sites (CBSs) might be lost during evolution, resulting in the increase of multi-gene nanochromosome; (c) gene families associated with chitin metabolism and FoxO signaling pathway are expanded in E. aediculatus, suggesting their potential roles in environment adaptation and survival strategies of E. aediculatus; and (d) a programmed ribosomal frameshift (PRF) with a conservative motif 5'-AAATAR-3' tends to occur in longer genes with more exons, and PRF genes play an important role in many cellular regulation processes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00175-0.
Collapse
Affiliation(s)
- Didi Jin
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chao Li
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
| | - Adam Byerly
- Department of Computer Science and Information Systems, Bradley University, Peoria, 61625 USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, 61625 USA
| | - Tengteng Zhang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
9
|
Pan B, Ye F, Li T, Wei F, Warren A, Wang Y, Gao S. Potential role of N 6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. iScience 2023; 26:106676. [PMID: 37182097 PMCID: PMC10173741 DOI: 10.1016/j.isci.2023.106676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
N6-adenine DNA methylation (6mA), a rediscovered epigenetic mark in eukaryotic organisms, diversifies in abundance, distribution, and function across species, necessitating its study in more taxa. Paramecium bursaria is a typical model organism with endosymbiotic algae of the species Chlorella variabilis. This consortium therefore serves as a valuable system to investigate the functional role of 6mA in endosymbiosis, as well as the evolutionary importance of 6mA among eukaryotes. In this study, we report the first genome-wide, base pair-resolution map of 6mA in P. bursaria and identify its methyltransferase PbAMT1. Functionally, 6mA exhibits a bimodal distribution at the 5' end of RNA polymerase II-transcribed genes and possibly participates in transcription by facilitating alternative splicing. Evolutionarily, 6mA co-evolves with gene age and likely serves as a reverse mark of endosymbiosis-related genes. Our results offer new insights for the functional diversification of 6mA in eukaryotes as an important epigenetic mark.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Fei Ye
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Fan Wei
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Corresponding author
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|