1
|
Mussalo L, Avesani S, Shahbaz MA, Závodná T, Saveleva L, Järvinen A, Lampinen R, Belaya I, Krejčík Z, Ivanova M, Hakkarainen H, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Aakko-Saksa P, Chew S, Rönkkö T, Jalava P, Kanninen KM. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167038. [PMID: 37709087 DOI: 10.1016/j.scitotenv.2023.167038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 μm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, VTT, 02044 Espoo, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Irina Belaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | | | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
2
|
Combined Toxicological Effects of Di (2-Ethylhexyl) Phthalate and UV-B Irradiation through Endoplasmic Reticulum Stress-Tight Junction Disruption in Human HaCaT Keratinocytes. Int J Mol Sci 2022; 23:ijms23147860. [PMID: 35887207 PMCID: PMC9318540 DOI: 10.3390/ijms23147860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer, and human exposure to DEHP is widespread and frequent. However, information about the combined effect of DEHP and ultraviolet (UV)-B on the skin are still limited. We investigated the cytotoxic effects of DEHP and UV-B on HaCaT keratinocytes and evaluated the related underlying mechanisms involving endoplasmic reticulum (ER) stress signals and the disruption of junction complexes as an effective target for skin inflammation. Our results revealed that co-treatment with DEHP and UV-B irradiation alleviated the cell cytotoxicity and markedly decreased X-box binding protein 1 (XBP1), endoplasmic reticulum oxidoreductase 1 alpha (Ero1α), and C/EBP homologous protein (CHOP) whereas a single dose of 40 mJ/cm2 UV-B generated mild ER stress to slightly less or similar levels as that seen with DEHP. DEHP was also shown to inhibit tight junctions (TJs) after UV-B irradiation, increased apoptosis by altering apoptotic gene Bax and stress kinases, JNK, and p38 MAPK. Furthermore, exposure of HaCaT cells to DEHP and UV-B irradiation resulted in the marked suppression of the nuclear factor kappa B (NF-κB)/p65 signaling pathway. Taken together, our data suggest that nontoxic DEHP and UV-B irradiation regulated ER stress and epidermal TJ disruption with the induction of apoptosis activation and the secretion of proinflammatory cytokines such as interleukin 1 beta (IL-1β) and IL-6 in human keratinocytes. Further investigation is needed to confirm the mechanisms implicated in its toxicity and determine the effects of exposure to DEHP and UV-B irradiation on markers involved in this study.
Collapse
|
3
|
Skin-Whitening and Antiwrinkle Proprieties of Maackia amurensis Methanolic Extract Lead Compounds. Processes (Basel) 2022. [DOI: 10.3390/pr10050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: This study aimed to investigate the feasibility of using Maackia amurensis branch extract as a cosmetic ingredient with skin-whitening and antiwrinkle effects. (2) Methods: The skin-whitening effect of M. amurensis branch extract was confirmed by investigating α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis and melanogenic protein expression in B16F1 cells. The antiwrinkle effect of M. amurensis branch extract was verified by assessing matrix metalloproteinase (MMP)-1 expression and soluble collagen content in CCD-986sk cells. The major compounds in M. amurensis branch extract were identified through isolation and characterization and confirmed by high-performance liquid chromatography analysis. (3) Results: M. amurensis branch extract significantly inhibited α-MSH-induced melanin synthesis by 49%, 42%, and 18% at 50, 37.5, and 25 μg/mL concentrations, respectively, compared with the negative control (NC). M. amurensis branch extract also significantly reduced the expression of the microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase in B16F1 cells. Furthermore, M. amurensis branch extracts decreased ultraviolet A-induced MMP-1 expression and increased soluble collagen synthesis in CCD-986sk cells. In addition, the major compounds present in M. amurensis branch extract were found to be formononetin, genistein, trans-resveratrol, piceatannol, and tectoridin. (4) Conclusions: M. amurensis branch extract has skin-whitening and antiwrinkle properties. Therefore, it can be used as an ingredient in functional cosmetics with skin-whitening and antiwrinkle effects.
Collapse
|
4
|
Hwangbo H, Ji SY, Kim MY, Kim SY, Lee H, Kim GY, Kim S, Cheong J, Choi YH. Anti-Inflammatory Effect of Auranofin on Palmitic Acid and LPS-Induced Inflammatory Response by Modulating TLR4 and NOX4-Mediated NF-κB Signaling Pathway in RAW264.7 Macrophages. Int J Mol Sci 2021; 22:ijms22115920. [PMID: 34072916 PMCID: PMC8198732 DOI: 10.3390/ijms22115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1β, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea;
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (S.Y.J.); (M.Y.K.); (S.Y.K.); (H.L.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (S.Y.J.); (M.Y.K.); (S.Y.K.); (H.L.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - So Young Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (S.Y.J.); (M.Y.K.); (S.Y.K.); (H.L.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (S.Y.J.); (M.Y.K.); (S.Y.K.); (H.L.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Suhkmann Kim
- Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Correspondence: (J.C.); (Y.H.C.); Tel.: +82-051-510-2277 (J.C.); +82-051-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea; (S.Y.J.); (M.Y.K.); (S.Y.K.); (H.L.)
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Correspondence: (J.C.); (Y.H.C.); Tel.: +82-051-510-2277 (J.C.); +82-051-890-3319 (Y.H.C.)
| |
Collapse
|
5
|
Piao MJ, Kim KC, Kang KA, Fernando PDSM, Herath HMUL, Hyun JW. Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways. Biomol Ther (Seoul) 2021; 29:90-97. [PMID: 32587122 PMCID: PMC7771840 DOI: 10.4062/biomolther.2020.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Ki Cheon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Park JJ, An J, Lee JD, Kim HY, Im JE, Lee E, Ha J, Cho CH, Seo DW, Kim KB. Effects of anti-wrinkle and skin-whitening fermented black ginseng on human subjects and underlying mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:423-437. [PMID: 32546107 DOI: 10.1080/15287394.2020.1776454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effects of anti-wrinkle and skin-whitening of fermented black ginseng (FBG) in human subjects and to examine underlying biochemical mechanisms of action. A clinical study was performed to evaluate efficacy and safety using a 1% FBG cream formulation. Twenty-three subjects were recruited and instructed to apply control or FBG creams each on half of their face twice daily for 8 weeks. After 8 weeks FBG cream significantly reduced appearance of eye wrinkles compared to prior to exposure and control cream. Skin color was significantly brightened using FBG cream in comparison with control cream. To determine the mechanism of actions involved in anti-wrinkle and skin-whitening effects various concentrations of FBG were applied to human fibroblast CCD-986sk and mouse melanoma B16F1 cells. Collagen synthesis in CCD-986sk cells was improved significantly at 1, 3, 10, or 30 µg/ml of FBG. At 30 µg/ml, FBG significantly inhibited (73%) collagenase, and matrix metalloproteinase-1 (MMP-1) compared to control. Tyrosinase activity and DOPA (3,4-dihydroxy-L-phenylalanine) oxidation were significantly decreased at all tested concentrations. Melanin production in B16F1 cells was concentration-dependently reduced 15% to 60% by all concentrations of FBG. These results suggested that a 1% FBG cream exerted anti-wrinkle and skin-whitening effects.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Junmin An
- Ginseng by Pharm. Co., Ltd ., Wonju, Gangwon, Republic of Korea
| | - Jung Dae Lee
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Hyang Yeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Jueng Eun Im
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Eunyoung Lee
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Jaehyoun Ha
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Chang Hui Cho
- Skin Research Institute , Gyeonggi, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Chungnam, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Park JJ, An J, Lee JD, Kim HY, Im JE, Lee E, Ha J, Cho CH, Seo DW, Kim KB. Effects of anti-wrinkle and skin-whitening fermented black ginseng on human subjects and underlying mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:470-484. [PMID: 32564709 DOI: 10.1080/15287394.2020.1777492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effects of anti-wrinkle and skin-whitening of fermented black ginseng (FBG) in human subjects and to examine underlying biochemical mechanisms of action. A clinical study was performed to evaluate efficacy and safety using a 1% FBG cream formulation. Twenty-three subjects were recruited and instructed to apply control or FBG creams each on half of their face twice daily for 8 weeks. After 8 weeks, FBG cream significantly reduced the appearance of eye wrinkles compared to prior to exposure and control cream. Skin color was significantly brightened using FBG cream in comparison with a control cream. To determine the mechanism of actions involved in anti-wrinkle and skin-whitening effects various concentrations of FBG were applied to human fibroblast CCD-986sk and mouse melanoma B16F1 cells. Collagen synthesis in CCD-986sk cells was improved significantly at 1, 3, 10, or 30 µg/ml of FBG. At 30 µg/ml, FBG significantly inhibited (73%) collagenase, and matrix metalloproteinase-1 (MMP-1) compared to control. Tyrosinase activity and DOPA (3,4-dihydroxy-L-phenylalanine) oxidation were significantly decreased at all tested concentrations. Melanin production in B16F1 cells was concentration-dependently reduced from 15% to 60% by all concentrations of FBG. These results suggested that a 1% FBG cream exerted anti-wrinkle and skin-whitening effects.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Junmin An
- Central Research Institute, Ginseng by Pharm. Co., Ltd , Wonju, Gangwon, Republic of Korea
| | - Jung Dae Lee
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Hyang Yeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Jueng Eun Im
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Eunyoung Lee
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Jaehyoun Ha
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Chang Hui Cho
- Skin Research Institute, IEC Korea , Suwon-si, Gyeongg, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University , Cheonan, Chungnam, Republic of Korea
| |
Collapse
|