1
|
Bar A, Berkowicz P, Kurpinska A, Mohaissen T, Karaś A, Kaczara P, Suraj-Prażmowska J, Sternak M, Marczyk B, Malinowska A, Kij A, Jasztal A, Czyzynska-Cichon I, Pieterman EJ, Princen HMG, Wiśniewski JR, Chlopicki S. Effects of life-long hyperlipidaemia on age-dependent development of endothelial dysfunction in humanised dyslipidaemic mice. GeroScience 2025:10.1007/s11357-025-01578-w. [PMID: 40240752 DOI: 10.1007/s11357-025-01578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
Little is known, how life-long hyperlipidaemia affects vascular ageing, before atherosclerosis. Here, we characterise effects of mild, life-long hyperlipidaemia on age-dependent endothelial dysfunction (ED) in humanised dyslipidaemia model of E3L.CETP mice. Vascular function was characterised using magnetic resonance imaging in vivo and wire myograph ex vivo. Plasma endothelial biomarkers and non-targeted proteomics in plasma and aorta were analysed. Early atherosclerosis lesions were occasionally present only in 40-week-old or older E3L.CETP mice. However, age-dependent ED developed earlier, in 14-week-old male and 22-week-old female E3L.CETP mice as compared with 40-week-old female and male C57BL/6J mice. Acetylcholine-induced vasodilation in 8-week-old E3L.CETP, especially female mice, was blocked by catalase and attributed to H2O2. In 8-week-old female E3L.CETP mice, changes in plasma proteome in response to hyperlipidaemia were modest, while in male mice a number of differentially expressed proteins were identified that were involved in oxidative stress response, inflammation and regulation of metabolic pathways. In contrast, in older E3L.CETP and C57BL/6J mice, either plasma or aortic proteome displayed similar pattern of vascular ageing, dominating over hyperlipidaemia-induced changes. Interestingly, in 48-week-old male but not female E3L.CETP mice, vascular mitochondrial functional response was impaired. Early resilience of hyperlipidaemia-induced detrimental effects in young female E3L.CETP mice on a functional level was associated with a switch in vasodilation mechanism, blunted systemic proteomic response in plasma and slower ED development as compared to male E3L.CETP mice. The results indicate that profile of early vascular response to risk factors in young age may determine level of ED in older age before atherosclerosis development.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Piotr Berkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- University of Copenhagen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 København, Copenhagen, Denmark
| | - Agnieszka Karaś
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agata Malinowska
- Polish Academy of Sciences, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Pawińskiego St 5a, 02-106, Warsaw, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Elsbet J Pieterman
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Jacek R Wiśniewski
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Planegg, Martinsried, Germany
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
- Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
2
|
Liu J, Zheng Z, Sun J, Gu X, Yu X, Wang Y, Yu X. Conjunctival microvascular alteration in patients with coronary artery disease assessed using optical coherence tomographic angiography. Microvasc Res 2025; 157:104733. [PMID: 39236912 DOI: 10.1016/j.mvr.2024.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND To quantify conjunctival microvascular characteristics obtained by optical coherence tomographic angiography (OCTA) and investigate their relationship with the presence and severity of coronary artery disease (CAD). METHODS This cross-sectional study included 103 consecutive CAD patients confirmed by coronary angiography and 125 non-CAD controls. The temporal conjunctivas along the limbus of each participant were scanned using OCTA. Quantification of conjunctival microvasculature was performed by AngioTool software. The severity of the disease was evaluated using SYNTAX and Gensini scores. RESULTS Compared to the controls, the CAD group exhibited significantly lower vessel area density (30.22 ± 3.34 vs. 26.70 ± 4.43 %, p < 0.001), lower vessel length density (6.39 ± 0.77 vs. 5.71 ± 0.89/m, p < 0.001), lower junction density (3.44 ± 0.56 vs. 3.05 ± 0.63/m, p < 0.001), and higher lacunarity (0.11 ± 0.03 vs. 0.14 ± 0.05, p < 0.001). Among all participants, lower vessel area density, lower vessel length density, lower junction density, and higher lacunarity were associated with greater odds of having CAD; the adjusted ORs (95 % confidence intervals) per one SD decrease were 2.71 (1.71, 4.29), 2.51(1.61, 3.90), 2.06 (1.39, 3.05), and 0.36 (0.23, 0.58), respectively. Among CAD patients, junction density was negatively associated with the Gensini score (r = -0.359, p = 0.037) and the Syntax score (r = -0.350, p = 0.042) in women but not in men (p > 0.05). CONCLUSIONS Conjunctival microvascular characteristics were significantly associated with the presence of CAD. Junction density significantly associated with the severity of CAD among women patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaoxia Zheng
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiayi Sun
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoya Gu
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xiaobing Yu
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Vakili S, Cao K. Angiopoietin-2: A Therapeutic Target for Vascular Protection in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2024; 25:13537. [PMID: 39769300 PMCID: PMC11676795 DOI: 10.3390/ijms252413537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke. Despite the availability of lonafarnib, the only US Food and Drug Administration-approved treatment for HGPS, cardiovascular complications remain the leading cause of morbidity and mortality in affected patients. Defective angiogenesis-the process of forming new blood vessels from existing ones-plays a crucial role in the development of cardiovascular disease. A recent study suggests that Angiopoietin-2 (Ang2), a pro-angiogenic growth factor that regulates angiogenesis and vascular stability, may offer therapeutic potential for the treatment of HGPS. In this review, we describe the clinical features and key cellular processes impacted by progerin and discuss the therapeutic potential of Ang2 in addressing these challenges.
Collapse
Affiliation(s)
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
4
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Minhas AS, Countouris M, Ndumele CE, Selvin E, Vaught AJ, Gandley R, Hays AG, Ouyang P, Villanueva FS, Bennett WL, Michos ED, Catov JM. Association of Gestational Diabetes With Subclinical Cardiovascular Disease. JACC. ADVANCES 2024; 3:101111. [PMID: 39105123 PMCID: PMC11299583 DOI: 10.1016/j.jacadv.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 08/07/2024]
Abstract
Background Gestational diabetes mellitus (GDM) is associated with increased long-term risk of cardiovascular disease but the cardiovascular structural and functional changes that contribute to risk are not well understood. Objectives The purpose of this study was to determine whether GDM is associated with adverse cardiac remodeling and endothelial dysfunction a decade after delivery, independent of type 2 diabetes. Methods Women with deliveries between 2008 and 2009 were initially selected from a prospective clinical cohort. Pregnancy history was chart abstracted and a follow-up study visit was conducted at 8 to 10 years postpartum. Cardiac structure and function were assessed with echocardiography. Endothelial function was measured with peripheral arterial tonometry and glycocalyx analysis. Results Among 254 women assessed at an average age of 38 years, 53 (21%) had prior GDM. At follow-up, women with GDM had more incident prediabetes or diabetes (58% vs 20% without GDM), more impairment in peripheral arterial tonometry (reactive hyperemia 1.58 vs 1.95; P = 0.01) and reduced perfusion, a marker of glycocalyx assessment (red blood cell filling 0.70 ± 0.04 vs 0.72 ± 0.05; P < 0.01). Despite adjustment for demographic and reproductive characteristics, women with GDM had great septal wall thickness by 8% (95% CI: 2.3%-14.7%) and worse diastology with higher E/E' by 11% (95% CI: 1.1%-21.5%). After additional adjustment for diabetes and prediabetes, several parameters remained significantly impaired. Conclusions Having GDM within the past decade was associated with more adverse cardiac structure/function and vascular endothelial function. Some, but not all, risks may be mediated through the development of prediabetes or type 2 diabetes. Enhanced preventive efforts are needed to mitigate cardiovascular risk among women with GDM.
Collapse
Affiliation(s)
- Anum S. Minhas
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Ciccarone Center for Prevention of Cardiovascular Disease, Johns Hopkins University, Baltimore, Maryland, USA
| | - Malamo Countouris
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chiadi E. Ndumele
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Ciccarone Center for Prevention of Cardiovascular Disease, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arthur J. Vaught
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robin Gandley
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Magee Women’s Research Institute and Foundation, Pittsburgh, Pennsylvania, USA
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pamela Ouyang
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Wendy L. Bennett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Division of General Internal Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Erin D. Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Ciccarone Center for Prevention of Cardiovascular Disease, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Janet M. Catov
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Magee Women’s Research Institute and Foundation, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Palatnik A, Kulinski J. Hypertensive disorders of pregnancy & vascular dysfunction. Front Cardiovasc Med 2024; 11:1411424. [PMID: 38883989 PMCID: PMC11177763 DOI: 10.3389/fcvm.2024.1411424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are a leading cause of maternal and fetal morbidity and mortality. One of the more severe HDP diagnoses is preeclampsia, which is recognized as a sex-specific cardiovascular risk enhancer with long-term implications for women's health, increasing lifetime risk of ischemic heart disease, stroke, and heart failure. Though the mechanisms accounting for the increased risk of cardiovascular disease following HDP are not yet well understood, vascular dysfunction has been implicated. In this perspective piece, we summarize the existing evidence for vascular dysfunction in HDP with a focus on non-invasive assessments, highlight advances in the field, and suggest future directions for improving risk stratification of women with HDP.
Collapse
Affiliation(s)
- Anna Palatnik
- Division of Maternal Fetal Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jacquelyn Kulinski
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Screm G, Mondini L, Salton F, Confalonieri P, Trotta L, Barbieri M, Romallo A, Galantino A, Hughes M, Lerda S, Confalonieri M, Ruaro B. Vascular Endothelial Damage in COPD: Where Are We Now, Where Will We Go? Diagnostics (Basel) 2024; 14:950. [PMID: 38732364 PMCID: PMC11083092 DOI: 10.3390/diagnostics14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has higher rates among the general population, so early identification and prevention is the goal. The mechanisms of COPD development have not been completely established, although it has been demonstrated that endothelial dysfunction plays an important role. However, to date, the measurement of endothelial dysfunction is still invasive or not fully established. Nailfold video capillaroscopy (NVC) is a safe, non-invasive diagnostic tool that can be used to easily evaluate the microcirculation and can show any possible endothelial dysfunctions early on. The aim of this review is to evaluate if nailfold microcirculation abnormalities can reflect altered pulmonary vasculature and can predict the risk of cardiovascular comorbidities in COPD patients. METHODS A systematic literature search concerning COPD was performed in electronic databases (PUBMED, UpToDate, Google Scholar, ResearchGate), supplemented with manual research. We searched in these databases for articles published until March 2024. The following search words were searched in the databases in all possible combinations: chronic obstructive pulmonary disease (COPD), endothelial damage, vascular impairment, functional evaluation, capillaroscopy, video capillaroscopy, nailfold video capillaroscopy. Only manuscripts written in English were considered for this review. Papers were included only if they were able to define a relationship between COPD and endothelium dysfunction. RESULTS The search selected 10 articles, and among these, only three previous reviews were available. Retinal vessel imaging, flow-mediated dilation (FMD), and skin autofluorescence (AF) are reported as the most valuable methods for assessing endothelial dysfunction in COPD patients. CONCLUSIONS It has been assumed that decreased nitric oxide (NO) levels leads to microvascular damage in COPD patients. This finding allows us to assume NVC's potential effectiveness in COPD patients. However, this potential link is based on assumption; further investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Gianluca Screm
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Mariangela Barbieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Antonio Romallo
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Alessandra Galantino
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milan, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| |
Collapse
|
10
|
Lee CY, Park JM, Yeom MI. Risk factors of internal carotid artery stenosis in patients with proliferative diabetic retinopathy: an analysis using optical coherence tomography and optical coherence tomography angiography. BMC Ophthalmol 2024; 24:156. [PMID: 38594643 PMCID: PMC11003116 DOI: 10.1186/s12886-024-03391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND This research investigates the correlation between the severity of internal carotid artery (ICA) stenosis and retinal parameters in patients with proliferative diabetic retinopathy (PDR), aiming to uncover potential risk factors. METHODS A retrospective analysis of 68 patients (136 eyes) diagnosed with bilateral PDR from January 1, 2017, to December 31, 2021, was conducted. Carotid artery stenosis (CAS) was assessed using neck computed tomography angiography (CTA) and carotid duplex ultrasound (CDUS), with stenosis classified into two groups: normal (group 1) and mild or above (group 2), based on the North American Symptomatic Carotid Endarterectomy Trial (NASCET) criteria. Optical coherence tomography (OCT) and OCT angiography (OCTA) measured several retinal parameters, including sub foveal choroidal thickness (SFCT), retinal nerve fiber layer (RNFL) thickness, ganglion cell-inner plexiform layer (GCIPL) thickness, vessel density (VD), and foveal avascular zone (FAZ) area. Statistical analyses determined correlations between ICA degrees and retinal parameters. RESULTS This study showed significant differences between groups in total VD, FAZ area, total RNFL thickness, and temporal RNFL thickness, indicating that patients with more severe ICA stenosis had noticeable retinal changes. Other parameters such as hyperlipidemia, total cholesterol levels, and intraocular pressure (IOP) also differed significantly, while no notable differences were observed in SFCT, central VD, average GCIPL, and superior, nasal, and inferior RNFL thickness. CONCLUSION The study findings highlight retinal changes, such as an increased FAZ area, decreased total VD, and a total and thinner temporal RNFL, which suggest the need for carotid artery evaluation in patients. These findings have important clinical implications for the need for carotid work up in patients with PDR.
Collapse
Affiliation(s)
- Chae Yoon Lee
- Department of Ophthalmology, Maryknoll Hospital, 121 Junggu-ro, Jung-gu, 48972, Busan, Korea
| | - Jung Min Park
- Department of Ophthalmology, Maryknoll Hospital, 121 Junggu-ro, Jung-gu, 48972, Busan, Korea
| | - Myeong In Yeom
- Department of Ophthalmology, Maryknoll Hospital, 121 Junggu-ro, Jung-gu, 48972, Busan, Korea.
| |
Collapse
|
11
|
De Luca M, Crisci G, Armentaro G, Cicco S, Talerico G, Bobbio E, Lanzafame L, Green CG, McLellan AG, Debiec R, Caferra P, Scicali R, Cannatà A, Israr MZ, Heaney LM, Salzano A. Endothelial Dysfunction and Heart Failure with Preserved Ejection Fraction-An Updated Review of the Literature. Life (Basel) 2023; 14:30. [PMID: 38255646 PMCID: PMC10817572 DOI: 10.3390/life14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) is a clinical syndrome consisting of typical symptoms and signs due to structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressures and/or inadequate cardiac output. The vascular system plays a crucial role in the development and progression of HF regardless of ejection fraction, with endothelial dysfunction (ED) as one of the principal features of HF. The main ED manifestations (i.e., impaired endothelium-dependent vasodilation, increased oxidative stress, chronic inflammation, leukocyte adhesion, and endothelial cell senescence) affect the systemic and pulmonary haemodynamic and the renal and coronary circulation. The present review is aimed to discuss the contribution of ED to HF pathophysiology-in particular, HF with preserved ejection fraction-ED role in HF patients, and the possible effects of pharmacological and non-pharmacological approaches. For this purpose, relevant data from a literature search (PubMed, Scopus, EMBASE, and Medline) were reviewed. As a result, ED, assessed via venous occlusion plethysmography or flow-mediated dilation, was shown to be independently associated with poor outcomes in HF patients (e.g., mortality, cardiovascular events, and hospitalization due to worsening HF). In addition, SGLT2 inhibitors, endothelin antagonists, endothelial nitric oxide synthase cofactors, antioxidants, and exercise training were shown to positively modulate ED in HF. Despite the need for future research to better clarify the role of the vascular endothelium in HF, ED represents an interesting and promising potential therapeutic target.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy
- Italian Clinical Outcome Research and Reporting Program (I-CORRP), 80131 Naples, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100 Catanzaro, Italy
| | - Sebastiano Cicco
- Internal Medicine Unit “Guido Baccelli” and Arterial Hypertension Unit “Anna Maria Pirrelli”, Department of Precision and Regenerative Medicine and Jonic Area (DiMePReJ), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, 70124 Bari, Italy
| | | | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Kuggen, 417 56 Gothenburg, Sweden
| | - Lorena Lanzafame
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Christopher G. Green
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abbie G. McLellan
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Radek Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Paolo Caferra
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonio Cannatà
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Cardiovascular Sciences, Faculty of Life Sciences & Medicine, King’s College, London SE1 8WA, UK
| | - Muhammad Zubair Israr
- Department of Cardiovascular Sciences, University of Leicester, Leicester (UK), IHR Leicester Biomedical Research Centre, Groby Road, Leicester LE3 9QP, UK
| | - Liam M. Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Andrea Salzano
- Cardiac Unit, AORN A Cardarelli, 80131 Naples, Italy
- Cardiac Unit, University Hospital of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
12
|
Khreba N, Khedr D, Abdel-Baky A, Kannishy GE, Samaan E. Nephron index rather than serum FGF 23 predicts endothelial dysfunction in early but not advanced chronic kidney disease patients. Int Urol Nephrol 2023; 55:3159-3165. [PMID: 37043155 PMCID: PMC10611818 DOI: 10.1007/s11255-023-03589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Endothelial dysfunction is the primary step for the development of CKD-related cardiovascular disease. Early prediction and management can influence patient survival. Serum testing of FGF 23 hormone and urinary phosphate excretion were studied as predictors of all-cause cardiovascular morbidity in CKD patients; however, their relation to endothelial dysfunction is controversial. A combination of both in one index is hypothesized to increase their sensitivity in detecting endothelial dysfunction, especially in the early stages of CKD before the dominance of hyperphosphatemia, the original risk. METHODS A cross-sectional comparative analysis between thirty CKD stage 3 patients and sixty stage 4-5 CKD patients was conducted. All patients were tested for markers of mineral bone disorders including serum FGF 23 and 24-h urinary phosphate excretion. A combination of both in one index (nephron index) is calculated and hypothesized to correlate with nephron number. Endothelial dysfunction was assessed by measuring the post-occlusion brachial flow-mediated dilatation (FMD). RESULTS In univariate and multivariate regression analyses, the nephron index was the only predictor of endothelial dysfunction in individuals with stage 3 CKD (r = 0.74, P 0.01). This was not applied to stage 4-5 CKD patients where serum phosphorus (r = - 0.53, P 0.001), intact PTH (r = - 0.53, P 0.001), uric acid (r = - 0.5, P 0.001), and measured GFR (r = 0.59, P 0.001) were the highest correlates to FMD; the Nephron index had the weakest correlation (r = 0.28, P = 0.02) and is not predictive of endothelial dysfunction. CONCLUSION Nephron index calculation showed better correlation with endothelial dysfunction than using any of its determinants alone in early stages of CKD when FGF 23 levels are just beginning to rise. In advanced CKD patients, hyperphosphatemia, hyperparathyroidism, hyperuricemia, and measured GFR are more reliable than nephron index.
Collapse
Affiliation(s)
- Nora Khreba
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Doaa Khedr
- Diagnostic and Interventional Radiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Azza Abdel-Baky
- Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ghada El Kannishy
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Ribeiro-Silva JC, Marques VB, Dos Santos L. Effects of dipeptidyl peptidase 4 inhibition on the endothelial control of the vascular tone. Am J Physiol Cell Physiol 2023; 325:C972-C980. [PMID: 37642237 PMCID: PMC11932530 DOI: 10.1152/ajpcell.00246.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a serine protease known to cleave incretin hormones, which stimulate insulin secretion after food intake, a fact that supported the development of its inhibitors (DPP4i or gliptins) for the treatment of type 2 diabetes mellitus. In addition to their glucose-lowering effects, DPP4i show benefits for the cardiovascular system that could be related, at least in part, to their protective action on vascular endothelium. DPP4i have been associated with the reversal of endothelial dysfunction, an important predictor of cardiovascular events and a hallmark of diseases such as atherosclerosis, diabetes mellitus, hypertension, and heart failure. In animal models of these diseases, DPP4i increase nitric oxide bioavailability and limits oxidative stress, thereby improving the endothelium-dependent relaxation. Similar effects on flow-mediated dilation and attenuation of endothelial dysfunction have also been noted in human studies, suggesting a value for gliptins in the clinical scenario, despite the variability of the results regarding the DPP4i used, treatment duration, and presence of comorbidities. In this mini-review, we discuss the advances in our comprehension of the DPP4i effects on endothelial regulation of vascular tone. Understanding the role of DPP4 and its involvement in the signaling mechanisms leading to endothelial dysfunction will pave the way for a broader use of DPP4i in conditions that endothelial dysfunction is a pivotal pathophysiological player.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
14
|
Patterson PD, Friedman JC, Ding S, Miller RS, Martin-Gill C, Hostler D, Platt TE. Acute Effect of Night Shift Work on Endothelial Function with and without Naps: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6864. [PMID: 37835134 PMCID: PMC10572584 DOI: 10.3390/ijerph20196864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
We examined the breadth and depth of the current evidence investigating napping/sleeping during night shift work and its impact on non-invasive measures of endothelial function. We used a scoping review study design and searched five databases: Ovid Medline, EMBASE, Ovid APA PsycInfo, Web of Science Core Collection, and EBSCO CINAHL. We limited our search to English language and publications from January 1980 to September 2022. Our reporting adhered to the PRISMA-ScR guidance for scoping reviews. Our search strategy yielded 1949 records (titles and abstracts) after deduplication, of which 36 were retained for full-text review. Five articles were retained, describing three observational and two experimental research studies with a total sample of 110 individuals, which examined the non-invasive indicators of endothelial function in relation to the exposure to night shift work. While there is some evidence of an effect of night shift work on the non-invasive indicators of endothelial function, this evidence is incomplete, limited to a small samples of shift workers, and is mostly restricted to one measurement technique for assessing endothelial function with diverse protocols. In addition, there is no identifiable research investigating the potential benefits of napping during night shift work on non-invasive measures of endothelial function.
Collapse
Affiliation(s)
- Paul D. Patterson
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Community Health Services and Rehabilitation Sciences, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jacob C. Friedman
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Community Health Services and Rehabilitation Sciences, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samuel Ding
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Community Health Services and Rehabilitation Sciences, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rebekah S. Miller
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christian Martin-Gill
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David Hostler
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA;
| | - Thomas E. Platt
- Department of Community Health Services and Rehabilitation Sciences, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Podolyan NP, Mizeva IA, Mamontov OV, Zaytsev VV, Belaventseva AV, Sakovskaia AV, Romashko RV, Kamshilin AA. Imaging photoplethysmography quantifies endothelial dysfunction in patients with risk factors for cardiovascular complications. Biomed Signal Process Control 2023; 86:105168. [DOI: 10.1016/j.bspc.2023.105168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
16
|
Huang S, Taylor CG, Zahradka P. Growth State-Dependent Activation of eNOS in Response to DHA: Involvement of p38 MAPK. Int J Mol Sci 2023; 24:ijms24098346. [PMID: 37176054 PMCID: PMC10179717 DOI: 10.3390/ijms24098346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our laboratory previously reported that docosahexaenoic acid (DHA) differentially activates p38 mitogen-activated protein kinase (MAPK) in growing and quiescent human endothelial cells, which represent the dysfunctional and healthy states in vivo, respectively. Since endothelial nitric oxide synthase (eNOS) activity differs between healthy and dysfunctional endothelial cells, and p38 MAPK reportedly regulates both the activity and expression of eNOS, we hypothesized that the beneficial actions of DHA on endothelial cells are due to eNOS activation by p38 MAPK. The contribution of mitogen- and stress-activated protein kinase (MSK), a p38 MAPK substrate, was also investigated. Growing and quiescent EA.hy926 cells, prepared on Matrigel®-coated plates, were incubated with inhibitors of p38MAPK or MSK before adding DHA. eNOS phosphorylation and levels were quantified by Western blotting. Treatment with 20 µM DHA activated eNOS in both growth states whereas 125 µM DHA suppressed eNOS activation in growing cells. Quiescent cells had higher basal levels of eNOS than growing cells, while 125 µM DHA decreased eNOS levels in both growth states. p38 MAPK inhibition enhanced eNOS activation in quiescent cells but suppressed it in growing cells. Interestingly, 125 µM DHA counteracted these effects of p38 MAPK inhibition in both growth states. MSK was required for eNOS activation in both growth states, but it only mediated eNOS activation by DHA in quiescent cells. MSK thus affects eNOS via a pathway independent of p38MAPK. Quiescent cells were also more resistant to the apoptosis-inducing effect of 125 µM DHA compared to growing cells. The growth state-dependent regulation of p38MAPK and eNOS by DHA provides novel insight into the molecular mechanisms by which DHA influences endothelial cell function.
Collapse
Affiliation(s)
- Shiqi Huang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
17
|
Bethel M, Annex BH. Peripheral arterial disease: A small and large vessel problem. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 28:100291. [PMID: 38511071 PMCID: PMC10945902 DOI: 10.1016/j.ahjo.2023.100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2024]
Abstract
Peripheral arterial disease (PAD) is one clinical manifestation of systemic atherosclerosis and is very common. Despite its prevalence, PAD remains underdiagnosed, undertreated, and understudied. The most common symptom in patients with PAD is intermittent claudication (IC), or pain in the lower extremities with walking or exertion, which is relieved after a short period of rest. Many patients with confirmed PAD are asymptomatic or have symptoms other than IC. Regardless of symptoms, patients with PAD have poor cardiovascular outcomes. PAD has largely been viewed a disease of large vessel atherosclerosis but what is becoming clear is that arterial plaques and occlusions are only one piece of the puzzle. Recent work has shown that abnormalities in the microvasculature contribute to the outcome of patients with PAD. From the perspective of the leg, limitation in blood flow is not the only problem as patients have a myriad of other problems, including muscle fibrosis, neuropathic changes, changes in the cellular respiration machinery and dysfunction of the small vessels that perfuse skeletal muscle and the supporting structures. Supervised exercise training remains one of the most effective tool to treat patients with PAD, however, the mechanisms behind its effectiveness are still being elucidated and use of structured exercise programs is not widespread. Medical therapy to treat systemic atherosclerosis is underutilized in patients with PAD. Invasive therapies are used only when patients with PAD have reached an advanced stage. While invasive strategies are effective in some patients with PAD, these strategies are costly, carry risk, and many patients are not amenable to invasive therapy. Appreciating the complex pathophysiology of PAD will hopefully spur new research and development of effective therapies for PAD.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brian H. Annex
- Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
18
|
Theodorakopoulou MP, Zafeiridis A, Dipla K, Faitatzidou D, Koutlas A, Alexandrou ME, Doumas M, Papagianni A, Sarafidis P. Muscle Oxygenation and Microvascular Reactivity Across Different Stages of CKD: A Near-Infrared Spectroscopy Study. Am J Kidney Dis 2023; 81:655-664.e1. [PMID: 36608922 DOI: 10.1053/j.ajkd.2022.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/19/2022] [Indexed: 01/05/2023]
Abstract
RATIONALE & OBJECTIVE Previous studies in chronic kidney disease (CKD) showed that vascular dysfunction in different circulatory beds progressively deteriorates with worsening CKD severity. This study evaluated muscle oxygenation and microvascular reactivity at rest, during an occlusion-reperfusion maneuver, and during exercise in patients with different stages of CKD versus controls. STUDY DESIGN Observational controlled study. SETTING & PARTICIPANTS 90 participants (18 per CKD stage 2, 3a, 3b, and 4, as well as 18 controls). PREDICTOR CKD stage. OUTCOME The primary outcome was muscle oxygenation at rest. Secondary outcomes were muscle oxygenation during occlusion-reperfusion and exercise, and muscle microvascular reactivity (hyperemic response). ANALYTICAL APPROACH Continuous measurement of muscle oxygenation [tissue saturation index (TSI)] using near-infrared spectroscopy at rest, during occlusion-reperfusion, and during a 3-minute handgrip exercise (at 35% of maximal voluntary contraction). Aortic pulse wave velocity and carotid intima-media thickness were also recorded. RESULTS Resting muscle oxygenation did not differ across the study groups (controls: 64.3% ± 2.9%; CKD stage 2: 63.8% ± 4.2%; CKD stage 3a: 64.1% ± 4.1%; CKD stage 3b: 62.3% ± 3.3%; CKD stage 4: 62.7% ± 4.3%; P=0.6). During occlusion, no significant differences among groups were detected in the TSI occlusion magnitude and TSI occlusion slope. However, during reperfusion the maximum TSI value was significantly lower in groups of patients with more advanced CKD stages compared with controls, as was the hyperemic response (controls: 11.2%±3.7%; CKD stage 2: 8.3%±4.6%; CKD stage 3: 7.8%±5.5%; CKD stage 3b: 7.3%±4.4%; CKD stage 4: 7.2%±3.3%; P=0.04). During the handgrip exercise, the average decline in TSI was marginally lower in patients with CKD than controls, but no significant differences were detected across CKD stages. LIMITATIONS Moderate sample size, cross-sectional evaluation. CONCLUSIONS Although no differences were observed in muscle oxygenation at rest or during occlusion, the microvascular hyperemic response during reperfusion was significantly impaired in CKD and was most prominent in more advanced CKD stages. This impaired ability of microvasculature to respond to stimuli may be a crucial component of the adverse vascular profile of patients with CKD and may contribute to exercise intolerance.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Koutlas
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
19
|
Rudakovskaya PG, Barmin RA, Kuzmin PS, Fedotkina EP, Sencha AN, Gorin DA. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems. Pharmaceutics 2022; 14:1236. [PMID: 35745808 PMCID: PMC9227336 DOI: 10.3390/pharmaceutics14061236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.
Collapse
Affiliation(s)
- Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Roman A. Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Pavel S. Kuzmin
- Institute of Materials for Modern Energy and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Elena P. Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Alexander N. Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| |
Collapse
|
20
|
Endothelial thioredoxin interacting protein (TXNIP) modulates endothelium-dependent vasorelaxation in hyperglycemia. Microvasc Res 2022; 143:104396. [PMID: 35644243 DOI: 10.1016/j.mvr.2022.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Endothelial dysfunction, hallmarked by an imbalance between vasoconstriction and vasorelaxation, is associated with diabetes. Thioredoxin Interacting protein (TXNIP), controlled by an exquisitely glucose sensitive gene, is increasingly recognized for its role in diabetes. However, the role of TXNIP in modulating diabetes-related endothelial dysfunction remains unclear. To elucidate the role of TXNIP, we generated two novel mouse strains; endothelial-specific TXNIP knockout (EKO) and a Tet-O inducible, endothelial-specific TXNIP overexpression (EKI). Hyperglycemia was induced by streptozotocin (STZ) treatment in floxed control (fl/fl) and EKO mice. Doxycycline (DOX) was given to EKI mice to induce endothelial TXNIP overexpression. The ablation of endothelial TXNIP improved glucose tolerance in EKO mice. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in STZ-treated fl/fl mice while this STZ impaired vasorelaxation was attenuated in EKO mice. Hyperglycemia induction of NLRP3 and reductions in Akt and eNOS phosphorylation were also mitigated in EKO mice. Overexpression of endothelial TXNIP did not impair glucose tolerance in DOX-treated EKI mice, however induction of endothelial TXNIP led to impaired vasorelaxation in EKI mice. This was associated with increased NLRP3 and reduced Akt and eNOS activation. In conclusion, deletion of endothelial TXNIP is protective against and overexpression of endothelial TXNIP induces endothelial dysfunction; thus, endothelial TXNIP plays a critical role in modulating endothelial dysfunction.
Collapse
|
21
|
Zhong P, Qin J, Li Z, Jiang L, Peng Q, Huang M, Lin Y, Liu B, Li C, Wu Q, Kuang Y, Cui S, Yu H, Liu Z, Yang X. Development and Validation of Retinal Vasculature Nomogram in Suspected Angina Due to Coronary Artery Disease. J Atheroscler Thromb 2022; 29:579-596. [PMID: 33746138 PMCID: PMC9135645 DOI: 10.5551/jat.62059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS To develop and validate a nomogram using retinal vasculature features and clinical variables to predict coronary artery disease (CAD) in patients with suspected angina. METHODS The prediction model consisting of 795 participants was developed in a training set of 508 participants with suspected angina due to CAD, and data were collected from January 2018 to June 2019. The held-out validation was conducted with 287 consecutive patients from July 2019 to November 2019. All patients with suspected CAD received optical coherence tomography angiography (OCTA) examination before undergoing coronary CT angiography. LASSO regression model was used for data reduction and feature selection. Multivariable logistic regression analysis was used to develop the retinal vasculature model for predicting the probability of the presence of CAD. RESULTS Three potential OCTA parameters including vessel density of the nasal and temporal perifovea in the superficial capillary plexus and vessel density of the inferior parafovea in the deep capillary plexus were further selected as independent retinal vasculature predictors. Model clinical electrocardiogram (ECG) OCTA (clinical variables+ECG+OCTA) was presented as the individual prediction nomogram, with good discrimination (AUC of 0.942 [95% CI, 0.923-0.961] and 0.897 [95% CI, 0.861-0.933] in the training and held-out validation sets, respectively) and good calibration. Decision curve analysis indicated the clinical applicability of this retinal vasculature nomogram. CONCLUSIONS The presented retinal vasculature nomogram based on individual probability can accurately identify the presence of CAD, which could improve patient selection and diagnostic yield of aggressive testing before determining a diagnosis.
Collapse
Affiliation(s)
- Pingting Zhong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jie Qin
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhixi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lei Jiang
- Guangdong Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingsheng Peng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Manqing Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingwen Lin
- Shantou University Medical College, Shantou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baoyi Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiaowei Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Yu Kuang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shirong Cui
- Department of Statistics, University of California, Davis, CA, USA
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
22
|
Moschetti L, Piantoni S, Vizzardi E, Sciatti E, Riccardi M, Franceschini F, Cavazzana I. Endothelial Dysfunction in Systemic Lupus Erythematosus and Systemic Sclerosis: A Common Trigger for Different Microvascular Diseases. Front Med (Lausanne) 2022; 9:849086. [PMID: 35462989 PMCID: PMC9023861 DOI: 10.3389/fmed.2022.849086] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the complex interplay between inflammation, vasculopathy and fibrosis that involve the heart and peripheral small vessels, leading to endothelial stiffness, vascular damage, and early aging in patients with systemic lupus erythematosus and systemic sclerosis, which represents two different models of vascular dysfunction among systemic autoimmune diseases. In fact, despite the fact that diagnostic methods and therapies have been significantly improved in the last years, affected patients show an excess of cardiovascular mortality if compared with the general population. In addition, we provide a complete overview on the new techniques which are used for the evaluation of endothelial dysfunction in a preclinical phase, which could represent a new approach in the assessment of cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Liala Moschetti
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- *Correspondence: Silvia Piantoni,
| | - Enrico Vizzardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Mauro Riccardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Zhong P, Li Z, Lin Y, Peng Q, Huang M, Jiang L, Li C, Kuang Y, Cui S, Yu D, Yu H, Yang X. Retinal microvasculature impairments in patients with coronary artery disease: An optical coherence tomography angiography study. Acta Ophthalmol 2022; 100:225-233. [PMID: 33629471 DOI: 10.1111/aos.14806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the association between retinal microvasculature and the presence and severity of coronary artery disease (CAD) using optical coherence tomography angiography (OCTA). METHODS The cross-sectional study was conducted in Guangdong Provincial People's Hospital, China. Retinal microvasculature parameters were measured by OCTA of the optic disc, including the vessel density (VD) and retinal nerve fibre thickness of the radial peripapillary capillary. In terms of the entire macula, VD of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and foveal density (FD-300) were included. The Gensini score was used to evaluate the severity of coronary artery obstructive lesions in CAD patients. RESULTS A total of 410 participants (270 CAD patients and 140 controls) were included. Overall, participants showed significantly greater odds of having CAD in the lower versus higher VD for mean SCP, OR = 2.33 (95% CI 1.49-3.65); in the parafoveal SCP, OR = 2.68 (95% CI 1.70-4.23); and in the perifoveal SCP, OR = 2.36 (95% CI 1.49-3.72). Additionally, participants showed significantly greater odds of having CAD in the lower versus higher VD for mean DCP, OR = 4.04 (95% CI 2.53-6.45); in the parafoveal DCP, OR = 4.08 (95% CI 2.54-6.55); and in the perifoveal DCP, OR = 3.88 (95% CI 2.43-6.19). Among CAD patients, lower VD of DCP was associated with significantly greater adjusted Gensini scores (p = 0.004 for mean DCP; p = 0.035 for parafoveal DCP; p = 0.006 for perifoveal DCP). CONCLUSIONS SCP and DCP were found to be associated with the presence of CAD among the whole population, while DCP was found to be associated with Gensini scores in CAD patients. Retinal microvasculature was associated with the presence and severity of coronary artery stenosis in CAD patients.
Collapse
Affiliation(s)
- Pingting Zhong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Zhixi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingwen Lin
- Shantou University Medical College, Shantou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingsheng Peng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Manqing Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Jiang
- Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu Kuang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shirong Cui
- Department of Statistics, University of California, Davis, CA, USA
| | - Danqing Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
24
|
Saenz-Medina J, Muñoz M, Rodriguez C, Sanchez A, Contreras C, Carballido-Rodríguez J, Prieto D. Endothelial Dysfunction: An Intermediate Clinical Feature between Urolithiasis and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020912. [PMID: 35055099 PMCID: PMC8778796 DOI: 10.3390/ijms23020912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED An epidemiological relationship between urolithiasis and cardiovascular diseases has extensively been reported. Endothelial dysfunction is an early pathogenic event in cardiovascular diseases and has been associated with oxidative stress and low chronic inflammation in hypertension, coronary heart disease, stroke or the vascular complications of diabetes and obesity. The aim of this study is to summarize the current knowledge about the pathogenic mechanisms of urolithiasis in relation to the development of endothelial dysfunction and cardiovascular morbidities. METHODS A non-systematic review has been performed mixing the terms "urolithiasis", "kidney stone" or "nephrolithiasis" with "cardiovascular disease", "myocardial infarction", "stroke", or "endothelial dysfunction". RESULTS Patients with nephrolithiasis develop a higher incidence of cardiovascular disease with a relative risk estimated between 1.20 and 1.24 and also develop a higher vascular disease risk scores. Analyses of subgroups have rendered inconclusive results regarding gender or age. Endothelial dysfunction has also been strongly associated with urolithiasis in clinical studies, although no systemic serum markers of endothelial dysfunction, inflammation or oxidative stress could be clearly related. Analysis of urine composition of lithiasic patients also detected a higher expression of proteins related to cardiovascular disease. Experimental models of hyperoxaluria have also found elevation of serum endothelial dysfunction markers. CONCLUSIONS Endothelial dysfunction has been strongly associated with urolithiasis and based on the experimental evidence, should be considered as an intermediate and changeable feature between urolithiasis and cardiovascular diseases. Oxidative stress, a key pathogenic factor in the development of endothelial dysfunction has been also pointed out as an important factor of lithogenesis. Special attention must be paid to cardiovascular morbidities associated with urolithiasis in order to take advantage of pleiotropic effects of statins, angiotensin receptor blockers and allopurinol.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain
- Department of Medical Specialities and Public Health, Faculty of Health Sciences, King Juan Carlos University, 28933 Móstoles, Spain
- Correspondence:
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Ana Sanchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Joaquín Carballido-Rodríguez
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, Autonoma University, 08193 Bellaterra, Spain;
| | - Dolores Prieto
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| |
Collapse
|
25
|
Zhong P, Hu Y, Jiang L, Peng Q, Huang M, Li C, Kuang Y, Tan N, Yu H, Yang X. Retinal Microvasculature Changes in Patients With Coronary Total Occlusion on Optical Coherence Tomography Angiography. Front Med (Lausanne) 2022; 8:708491. [PMID: 34977052 PMCID: PMC8716542 DOI: 10.3389/fmed.2021.708491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Retinal microvasculature has been associated with coronary artery disease (CAD), but the exact contributory role in coronary total occlusion (CTO) is unclear. We aimed to investigate whether retinal vasculature is associated with CTO and could provide incremental value in the assessment of CTO. Methods: A total of 218 CAD patients including 102 CTO and 116 non-CTO were enrolled. Retinal vasculature was measured by optical coherence tomography angiography (OCTA) for all patients. Receiver operating characteristic (ROC) curve was used to assess the performance of retinal vasculature in differentiating CTO from non-CTO patients. Results: In non-CTO CAD patients, vessel density (VD) of mean superficial capillary plexus (SCP) and parafovea SCP were 49.85 and 52.56%, respectively; in CTO patients, VD of mean SCP and parafovea SCP were 47.77, and 49.58%, respectively. After multiple adjustment, VD in the SCP was significantly lower in CTO patients compared to non-CTO patients. VD of superior hemi in the parafovea SCP combined with the clinical variates showed the best ability to predict CTO from CAD with an area under the curve (AUC) of 0.812 (specificity of 89.0% and sensitivity of 65.9%). Conclusions: In CTO patients, retinal VD was significantly decreased, and microvascular damage might specifically target to arterioles than capillaries. Retinal vasculature could thus be a surrogate for detecting the microvascular damage and assist in the assessment of CTO patients. OCTA examination could be suggested to monitor the process of coronary arteries lesions.
Collapse
Affiliation(s)
- Pingting Zhong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Institute of Refractive Surgery, Refractive Surgery Center, Guangzhou Aier Eye Hospital, Guangzhou, China
| | - Lei Jiang
- Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingsheng Peng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Manqing Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cong Li
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu Kuang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
26
|
Li L, Yang Y, Bai J, Zhang Y, Yang H, Zhang Y, Lv H. Impaired Vascular Endothelial Function is Associated with Peripheral Neuropathy in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:1437-1449. [PMID: 35573865 PMCID: PMC9091688 DOI: 10.2147/dmso.s352316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE It is believed that vascular endothelial dysfunction is involved in the occurrence of cardiovascular disease (CVD), and diabetic peripheral neuropathy (DPN) is associated with flow-mediated dilation (FMD), however, the correlation is still unclear. Aims of the present study is to explore the relationship between DPN parameters and FMD, providing a new approach for the prevention of CVD. PATIENTS AND METHODS A total of 272 patients with T2DM from the Department of Endocrinology of The First Hospital of Lanzhou University according to the grading criteria were selected. FMD was measured by a new vascular ultrasound system and patients were divided into FMD>7%, 4%≤FMD≤7%, and FMD<4% groups. The Toronto Clinical Scoring System (TCSS) was used to assess the severity of DPN. The nerve conduction studies (NCS) assessed large fibre neuropathy by nerve conduction velocity (CV), compound muscle action potential (CMAP) amplitude (Amp), and distal motor latency (DML). SPSS 25.0 was used for statistical analysis. RESULTS TCSS evaluation revealed that the percentage of patients with severe nerve injury was significantly higher in FMD<4% (70%) compared to FMD>7% (2%). Among the TCSS indicators of all subjects, the proportion of temperature disturbance was the most (73%), and joint position disturbance was the least (0). TCSS scores were negatively correlated with FMD (r=-0.756, p<0.001). More interesting, in FMD<4% group, CV and Amp were positively correlated with FMD, while DML was negatively correlated (p<0.05). Linear regression analysis model showed that different systolic blood pressure (SBP), triglyceride (TG), TCSS and CV had statistically different effects on FMD. CONCLUSION High TCSS score and decreased CV of common peroneal and tibial nerves are risk factors of FMD injury, which provide potential value for timely prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lingling Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Ying Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Jia Bai
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yangyang Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Hong Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yuqi Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Correspondence: Haihong Lv, Email
| |
Collapse
|
27
|
Lee HM, Choi JW, Choi MS. Role of Nitric Oxide and Protein S-Nitrosylation in Ischemia-Reperfusion Injury. Antioxidants (Basel) 2021; 11:57. [PMID: 35052559 PMCID: PMC8772765 DOI: 10.3390/antiox11010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a process in which damage is induced in hypoxic tissue when oxygen supply is resumed after ischemia. During IRI, restoration of reduced nitric oxide (NO) levels may alleviate reperfusion injury in ischemic organs. The protective mechanism of NO is due to anti-inflammatory effects, antioxidant effects, and the regulation of cell signaling pathways. On the other hand, it is generally known that S-nitrosylation (SNO) mediates the detrimental or protective effect of NO depending on the action of the nitrosylated target protein, and this is also applied in the IRI process. In this review, the effect of each change of NO and SNO during the IRI process was investigated.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Min Sik Choi
- Laboratory of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
28
|
Adegoke TE, Sabinari IW, Areola ED, Ajao F, Asafa OO, Soluoku TK, Bello A, Adesanmi AM, Yusuf SO, Omoleye A, Ayinla MT, Olatunji LA. Inhibition of dipeptidyl peptidase-4 averts free fatty acids deposition in the hearts of oral estrogen-progestin contraceptive-induced hyperinsulinemic female rats. Can J Physiol Pharmacol 2021; 99:1316-1323. [PMID: 34310895 DOI: 10.1139/cjpp-2021-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free fatty acid (FFA) deposition in non-adipose tissues such as the heart is a characteristic of insulin resistant states which feature hyperinsulinemia and dipeptidyl peptidase-4 (DPP-4) activation. Estrogen-progestin oral contraceptives (OC) treatment reportedly increased DPP-4 activity in rat tissue, and DPP-4 inhibitors have anti-diabetic and anti-inflammatory properties. This study aims to investigate the effects of DPP-4 inhibition on cardiac FFA deposition in estrogen-progestin-treated female rats. From our data, estrogen-progestin OC exposure in female rats led to elevated plasma insulin, cardiac DPP-4 activity, FFA and triglyceride (TG) accumulation, TG/high-density lipoprotein cholesterol (TG/HDL-C) ratio, adenosine deaminase/xanthine oxidase/uric acid pathway (ADA/XO/UA), lipid peroxidation, glycogen synthase activity, and alanine phosphatase; whereas cardiac glucose-6-phosphate dehydrogenase, Na+/K+-ATPase and nitric oxide (NO) were decreased. However, DPP-4 inhibition resulted in decreased plasma insulin, cardiac DPP-4 activity, FFA, TG, TG/HDL-C ratio, and alkaline phosphatase. These were accompanied by reduced ADA/XO/UA pathway, lipid peroxidation, and augmented NO and Na+/K+-ATPase in estrogen-progestin OC-treated rats. DPP-4 inhibition attenuated cardiac lipid deposition accompanied by reduced activity in the ADA/XO/UA pathway in estrogen-progestin OC-treated female rats. DPP-4 is therefore a plausible therapeutic target in cardiometabolic disorders.
Collapse
Affiliation(s)
- Tolulope Eniola Adegoke
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Damilare Areola
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Folasade Ajao
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Olayinka Olawale Asafa
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Talha Kolade Soluoku
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdullahi Bello
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adejoke Mosunmade Adesanmi
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Shukurat Olaide Yusuf
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - AyokunleOlusuyi Omoleye
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mariam Tayo Ayinla
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
29
|
Dube R. Does endothelial dysfunction correlate with endocrinal abnormalities in patients with polycystic ovary syndrome? Avicenna J Med 2021; 6:91-102. [PMID: 27843797 PMCID: PMC5054651 DOI: 10.4103/2231-0770.191445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To study and critically analyze the published evidence on correlation of hormonal abnormalities and endothelial dysfunction (ED) in polycystic ovary syndrome (PCOS) through a systematic review. The databases including MEDLINE, PubMed, Up-To-Date, and Science Direct were searched using Medical subject handling terms and free text term keywords such as endocrine abnormalities in PCOS, ED assessment in PCOS, ED in combination with insulin resistance (IR), hyperandrogenism (HA), increased free testosterone, free androgen index (FAI), gonadotrophin levels, luteinizing hormone (LH), prolactin, estrogen, adipocytokines to search trials, and observational studies published from January 1987 to September 2015. Authors of original studies were contacted for additional data when necessary. PCOS increases the risk of cardiovascular disease in women. ED, which is a reliable indicator of cardiovascular risk in general population, is seen in most (but not all) women with PCOS. IR, seen in 70% patients with PCOS, is associated with ED in these women, but patients can have normal endothelial function even in the presence of IR. Free testosterone and FAI are consistently associated with ED, but endothelial function can be normal despite HA. Estradiol (not estrone) appears to be protective against ED though estrone is the predominant estrogen produced in PCOS. Increased levels of adipocytokines (visfatin) are promising in predicting ED and cardiovascular risk. However, more studies are required focusing on direct correlation of levels of prolactin, LH, estrone, and visfatin with ED in PCOS.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, Ras al-Khaimah Medical and Health Sciences University, Al Qusaidat, Ras al-Khaimah, United Arab Emirates
| |
Collapse
|
30
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Sarafidis P. Εndothelial and microvascular function in CKD: Evaluation methods and associations with outcomes. Eur J Clin Invest 2021; 51:e13557. [PMID: 33774823 DOI: 10.1111/eci.13557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cardiovascular disease is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Endothelial dysfunction, the hallmark of atherosclerosis, is suggested to be involved pathogenetically in cardiovascular and renal disease progression in these patients. METHODS This is a narrative review presenting the techniques and markers used for assessment of microvascular and endothelial function in patients with CKD and discussing findings of the relevant studies on the associations of endothelial dysfunction with co-morbid conditions and outcomes in this population. RESULTS Venous Occlusion Plethysmography was the first method to evaluate microvascular function; subsequently, several relevant techniques have been developed and used in patients with CKD, including brachial Flow-Mediated Dilatation, and more recently, Near-Infrared Spectroscopy and Laser Speckle Contrast Analysis. Furthermore, several circulating biomarkers are commonly used in clinical research. Studies assessing endothelial function using the above techniques and biomarkers suggest that endothelial dysfunction occurs early in CKD and contributes to the target organ damage, cardiovascular events, death and progression towards end-stage kidney disease. CONCLUSIONS Older and newer functional methods and several biomarkers have assessed endothelial dysfunction in CKD; accumulated evidence supports an association of endothelial dysfunction with outcomes. Future research with new, non-invasive and easily applicable methods could further delineate the role of endothelial dysfunction on cardiovascular and renal disease progression in patients with CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
31
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
32
|
Sušić L, Maričić L, Vincelj J, Vadoci M, Sušić T. Understanding the association between endothelial dysfunction and left ventricle diastolic dysfunction in development of coronary artery disease and heart failure. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021204. [PMID: 34212905 PMCID: PMC8343725 DOI: 10.23750/abm.v92i3.11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases (CVDs) have been the most common cause of death worldwide for decades. Until recently the most affected patients were middle-aged and elderly, predominantly men, with more frequent ST elevation myocardial infarction (STEMI) caused by obstructive coronary artery disease (CAD). However, in the last two decades we have noticed an increased incidence of ischemia with non-obstructive coronary arteries (INOCA), which includes myocardial infarction with non-obstructive coronary arteries (MINOCA) and non-myocardial infarction syndromes, such as microvascular and vasospastic angina, conditions that have been particularly pronounced in women and young adults - the population we considered low-risky till than. Therefore, it has become apparent that for this group of patients conventional methods of assessing the risk of future cardiovascular (CV) events are no longer specific and sensitive enough. Heart failure with preserved ejection fraction (HFpEF) is another disease, the incidence of which has been rising rapidly during last two decades, and predominantly affects elderly population. Although the etiology and pathophysiology of INOCA and HFpEF are complex and not fully understood, there is no doubt that the underlying cause of both conditions is endothelial dysfunction (ED) which further promotes the development of left ventricular diastolic dysfunction (LVDD). Plasma biomarkers of ED, as well as natriuretic peptides (NPs), have been intensively investigated recently, and some of them have great potential for early detection and better assessment of CV risk in the future.
Collapse
Affiliation(s)
- Livija Sušić
- Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia and Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Lana Maričić
- Cardiology, University Hospital Centre Osijek, Osijek, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Josip Vincelj
- Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Milena Vadoci
- 1Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia.
| | | |
Collapse
|
33
|
Little PJ, Askew CD, Xu S, Kamato D. Endothelial Dysfunction and Cardiovascular Disease: History and Analysis of the Clinical Utility of the Relationship. Biomedicines 2021; 9:biomedicines9060699. [PMID: 34203043 PMCID: PMC8234001 DOI: 10.3390/biomedicines9060699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The endothelium is the single-cell monolayer that lines the entire vasculature. The endothelium has a barrier function to separate blood from organs and tissues but also has an increasingly appreciated role in anti-coagulation, vascular senescence, endocrine secretion, suppression of inflammation and beyond. In modern times, endothelial cells have been identified as the source of major endocrine and vaso-regulatory factors principally the dissolved lipophilic vosodilating gas, nitric oxide and the potent vascular constricting G protein receptor agonists, the peptide endothelin. The role of the endothelium can be conveniently conceptualized. Continued investigations of the mechanism of endothelial dysfunction will lead to novel therapies for cardiovascular disease. In this review, we discuss the impact of endothelial dysfunction on cardiovascular disease and assess the clinical relevance of endothelial dysfunction.
Collapse
Affiliation(s)
- Peter J. Little
- Sunshine Coast Health Institute, School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia;
- Department of Pharmacy, Xinhua College, Sun Yat-sen University, Tianhe District, Guangzhou 510520, China;
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Christopher D. Askew
- Sunshine Coast Health Institute, School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia;
- VasoActive Research Group, School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology, Hefei 230037, China;
| | - Danielle Kamato
- Department of Pharmacy, Xinhua College, Sun Yat-sen University, Tianhe District, Guangzhou 510520, China;
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
34
|
Ortillon J, Le Bail JC, Villard E, Léger B, Poirier B, Girardot C, Beeske S, Ledein L, Blanchard V, Brieu P, Naimi S, Janiak P, Guillot E, Meloni M. High Glucose Activates YAP Signaling to Promote Vascular Inflammation. Front Physiol 2021; 12:665994. [PMID: 34149446 PMCID: PMC8213390 DOI: 10.3389/fphys.2021.665994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Aims The YAP/TAZ signaling is known to regulate endothelial activation and vascular inflammation in response to shear stress. Moreover, YAP/TAZ signaling plays a role in the progression of cancers and renal damage associated with diabetes. However, whether YAP/TAZ signaling is also implicated in diabetes-associated vascular complications is not known. Methods The effect of high glucose on YAP/TAZ signaling was firstly evaluated in vitro on endothelial cells cultured under static conditions or subjected to shear stress (either laminar or oscillatory flow). The impact of diabetes on YAP/TAZ signaling was additionally assessed in vivo in db/db mice. Results In vitro, we found that YAP was dephosphorylated/activated by high glucose in endothelial cells, thus leading to increased endothelial inflammation and monocyte attachment. Moreover, YAP was further activated when high glucose was combined to laminar flow conditions. YAP was also activated by oscillatory flow conditions but, in contrast, high glucose did not exert any additional effect. Interestingly, inhibition of YAP reduced endothelial inflammation and monocyte attachment. Finally, we found that YAP is also activated in the vascular wall of diabetic mice, where inflammatory markers are also increased. Conclusion With the current study we demonstrated that YAP signaling is activated by high glucose in endothelial cells in vitro and in the vasculature of diabetic mice, and we pinpointed YAP as a regulator of high glucose-mediated endothelial inflammation and monocyte attachment. YAP inhibition may represent a potential therapeutic opportunity to improve diabetes-associated vascular complications.
Collapse
Affiliation(s)
- Jeremy Ortillon
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | | | - Elise Villard
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Bertrand Léger
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Bruno Poirier
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | | | - Sandra Beeske
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Laetitia Ledein
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Véronique Blanchard
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Patrice Brieu
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Souâd Naimi
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Philip Janiak
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Etienne Guillot
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Marco Meloni
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| |
Collapse
|
35
|
Au CT, Chan KCC, Chook P, Wing YK, Li AM. Cardiovascular risks of children with primary snoring: A 5-year follow-up study. Respirology 2021; 26:796-803. [PMID: 34056796 DOI: 10.1111/resp.14089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to investigate if childhood primary snoring (PS) was associated with adverse cardiovascular outcomes at 5-year follow-up. METHODS This was a prospective matched cohort study. Subjects were recruited from a hospital-based cohort established from years 2006 to 2012 and they were aged 6-18 years at baseline. Each subject with PS was gender, age and BMI z-score matched with a control who had normal sleep study (obstructive apnoea-hypopnoea index [OAHI] < 1/h) and without habitual snoring (<3 nights/week) at baseline. All subjects underwent measurements of flow-mediated dilation (FMD) and carotid intima-media thickness (cIMT) and sleep study at baseline and follow-up visits. Twenty-four hour ambulatory blood pressure (ABP) was also recorded at follow-up. RESULTS Fifty-five case-control pairs were recruited and the length of follow-up was 5.1 ± 1.3 years. At follow-up visit, subjects with PS at baseline had significantly lower FMD (-0.34% [-0.59 to -0.10]), greater cIMT (+0.01 mm [+0.001 to +0.013]), higher wake systolic blood pressure (SBP) (+2.6 mm Hg [+0.02 to +5.1]), sleep SBP (+3.0 mm Hg [+0.3 to +5.6]), sleep diastolic blood pressure (+2.2 mm Hg [+0.04 to +4.4]) and sleep mean arterial pressure (+2.2 mm Hg [+0.1 to +4.2]) compared to matched controls in the fully adjusted model for variables including change in OAHI and parental history of cardiovascular diseases. CONCLUSION Childhood PS is associated with poorer endothelial function, greater cIMT and higher ABP at 5-year follow-up irrespective of change in obstructive sleep apnoea severity.
Collapse
Affiliation(s)
- Chun Ting Au
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kate Ching-Ching Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ping Chook
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Martin Li
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
36
|
Theodorakopoulou MP, Bakaloudi DR, Dipla K, Zafeiridis A, Boutou AK. Vascular endothelial damage in COPD: current functional assessment methods and future perspectives. Expert Rev Respir Med 2021; 15:1121-1133. [PMID: 33874819 DOI: 10.1080/17476348.2021.1919089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cardiovascular disease is a major cause of death in chronic obstructive pulmonary disease (COPD), but the relationship between these two entities is not fully understood; smoking, inflammation, arterial stiffness and endothelial dysfunction are significant determinants. Endothelial dysfunction is not only associated with cardiovascular disease, but also with COPD severity.Areas covered: Several functional methods have been developed to evaluate endothelial function in healthy and diseased individuals; from the invasive angiography of epicardial coronary arteries and Venous-Occlusion-Plethysmography, to more modern, noninvasive approaches such as Flow-Mediated-Dilatation, Peripheral-Arterial-Tonometry and Near-Infrared-Spectroscopy, all these methods have boosted clinical research in this field. In this context, this narrative review, which included articles published in PubMed and Scopus up to 25-November-2020, summarizes available functional methods for endothelial damage assessment in COPD and discusses existing evidence on their associations with comorbidities and outcomes in this population.Expert opinion: Accumulated evidence suggests that endothelial dysfunction occurs in early stages of CΟPD and worsens with pulmonary obstruction severity and during acute exacerbations. Novel methods evaluating endothelial function offer a detailed, real-time assessment of different parameters related to vascular function and should be increasingly used to shed more light on the role of endothelial damage on cardiovascular and COPD progression.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
37
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
38
|
Barr LC, Pudwell J, Smith GN. Postpartum microvascular functional alterations following severe preeclampsia. Am J Physiol Heart Circ Physiol 2021; 320:H1393-H1402. [PMID: 33481699 DOI: 10.1152/ajpheart.00767.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia is associated with adverse maternal health outcomes later in life. Vascular endothelial dysfunction has been previously described following preeclampsia. We hypothesized that microvascular endothelial dysfunction associated with preeclampsia persists postpartum and may identify those at greatest risk of future cardiovascular disease. The objective of this study was to examine postpartum microvascular endothelial function in women after a pregnancy complicated by preeclampsia. Women with previous preeclampsia (n = 30) and normotensive controls (n = 30) between 6 mo and 5 yr postpartum were recruited. Severity of preeclampsia [severe (n = 16) and mild (n = 14)] was determined by standardized chart review. Microvascular reactivity in the forearm was measured with laser speckle contrast imaging, coupled with iontophoresis; endothelium-dependent and endothelium-independent vasodilation was induced with 1% acetylcholine and sodium nitroprusside solutions, respectively. A postocclusive reactive hyperemia test assessed vasodilatory response following three minutes of suprasystolic (200 mmHg) occlusion with a mechanized cuff. Women with prior severe preeclampsia exhibited significantly higher vasodilation to acetylcholine and sodium nitroprusside compared to controls (P < 0.01; P = 0.03) and prior mild preeclampsia (P = 0.03; P < 0.01). Neither the degree of postocclusive reactive hyperemia (P = 0.98), nor time to return halfway to baseline [OR = 1.026 (0.612, 1.72); P = 0.92], differed between preeclampsia and controls. In conclusion, severe preeclampsia is associated with heightened postpartum microvascular endothelium-dependent and endothelium-independent vasoreactivity. These changes, or a common antecedent, may be linked to postpartum alterations in vascular function that predispose women to disease after preeclampsia. Further investigation should identify the contributing mechanism and the degree to which it could be amenable to medical intervention.NEW & NOTEWORTHY We examine maternal microvascular function after preeclampsia, identifying heightened endothelium-dependent and endothelium-independent microvascular reactivity following severe disease. Our study represents a noteworthy addition to the existing literature with the use of a novel imaging modality, vascular perturbation, postpartum time point, and patient population with differentiation of preeclampsia into severe and nonsevere subtypes. These results represent a novel addition to the growing clinical and academic understanding of maternal health outcomes following preeclampsia.
Collapse
Affiliation(s)
- Logan C Barr
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jessica Pudwell
- Department of Obstetrics & Gynaecology, Queen's University, Kingston, Ontario, Canada
| | - Graeme N Smith
- Department of Obstetrics & Gynaecology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Mahtab S, Zar HJ, Ntusi NAB, Joubert S, Asafu-Agyei NAA, Luff NJ, Jele N, Zuhlke L, Myer L, Jao J. Endothelial Dysfunction in South African Youth Living With Perinatally Acquired Human Immunodeficiency Virus on Antiretroviral Therapy. Clin Infect Dis 2020; 71:e672-e679. [PMID: 32285090 PMCID: PMC7744981 DOI: 10.1093/cid/ciaa396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and antiretroviral therapy (ART) confer cardiovascular disease (CVD) risk in adults with HIV. Few studies have assessed endothelial dysfunction (ED), an early marker of subclinical CVD risk, in youth living with perinatally acquired HIV (YLPHIV). METHODS Using peripheral arterial tonometry, we compared ED in YLPHIV and age-matched youth without HIV. A reactive hyperemic index ≤1.35 was defined as ED. Eligible participants included those aged 9-14 years and on ART ≥6 months at enrollment. RESULTS Overall, 431 YLPHIV and 93 youth without HIV with a median age of 14.1 versus 13.9 years, respectively, were included. YLPHIV had a lower BMI z score (BMIZ; -0.2 vs 0.4; P < .01) but higher rates of hypercholesterolemia (10% vs 1%; P = .01) than youth without HIV. Among YLPHIV, mean log viral load (VL) was 4.83 copies/mL with 21.7% having a CD4 count <500 cell/mm3; median duration on ART was 9.8 years with 38% initiating at <2 years of age. YLPHIV had higher rates of ED than youth without HIV (50% vs 34%; P = .01); this relationship persisted after adjusting for age, sex, BMIZ, elevated BP, and hypercholesterolemia (RR, 1.43; P = .02). Among YLPHIV, CD4 count >500 cell/mm3 (RR, 1.04; P = .76), VL (RR, 1.01; P = .78), and current ART class (protease inhibitor based vs nonnucleoside inhibitor based: relative risk, 0.90; P = .186) were not associated with ED after adjustment. CONCLUSIONS Even after adjusting for physiologic differences, YLPHIV appear to be at increased risk of ED compared with age-matched youth without HIV. These findings have important implications for the life course of YLPHIV who may be at increased risk of premature CVD and complications.
Collapse
Affiliation(s)
- Sana Mahtab
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Susan Joubert
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Nana Akua A Asafu-Agyei
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Norme J Luff
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Nomawethu Jele
- Department of Pediatrics and Child Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC unit on child and adolescent Health, Red Cross War Memorial Hospital, University of Cape Town, Cape Town, South Africa
| | - Liesl Zuhlke
- Division of Pediatric Cardiology, Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jennifer Jao
- Department of Pediatrics, Division of Infectious Diseases, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Theodorakopoulou MP, Schoina M, Sarafidis P. Assessment of Endothelial and Microvascular Function in CKD: Older and Newer Techniques, Associated Risk Factors, and Relations with Outcomes. Am J Nephrol 2020; 51:931-949. [PMID: 33311014 DOI: 10.1159/000512263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelium is the inner cellular lining of the vessels that modulates multiple biological processes including vasomotor tone, permeability, inflammatory responses, hemostasis, and angiogenesis. Endothelial dysfunction, the basis of atherosclerosis, is characterized by an imbalance between endothelium-derived relaxing factors and endothelium-derived contracting factors. SUMMARY Starting from the semi-invasive venous occlusion plethysmography, several functional techniques have been developed to evaluate microvascular function and subsequently used in patients with CKD. Flow-mediated dilatation of the forearm is considered to be the "gold standard," while in the last years, novel, noninvasive methods such as laser speckle contrast imaging and near-infrared spectroscopy are scarcely used. Moreover, several circulating biomarkers of endothelial function have been used in studies in CKD patients. This review summarizes available functional methods and biochemical markers for the assessment of endothelial and microvascular function in CKD and discusses existing evidence on their associations with comorbid conditions and outcomes in this population. Key Messages: Accumulated evidence suggests that endothelial dysfunction occurs early in CKD and is associated with target organ damage, progression of renal injury, cardiovascular events, and mortality. Novel methods evaluating microvascular function can offer a detailed, real-time assessment of underlying phenomena and should be increasingly used to shed more light on the role of endothelial dysfunction on cardiovascular and renal disease progression in CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Schoina
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| |
Collapse
|
41
|
Kang H, Sun A, Wu Q, Yang J, Zhang W, Qu Y, Gao M, Deng X. Atherogenic diet-diminished endothelial glycocalyx contributes to impaired vasomotor properties in rat. Am J Physiol Heart Circ Physiol 2020; 319:H814-H823. [PMID: 32822214 DOI: 10.1152/ajpheart.00039.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia- and atherosclerosis-caused vasomotor property dysfunction may be involved in many clinic manifestations of atherosclerosis, including angina, acute myocardial infarction, and sudden cardiac death. However, its underlying mechanism is not clear. The endothelial glycocalyx is a protective surface layer on the endothelial cells, serving as a molecular sieve, cell adhesion modulator, and mechanosensor for blood flow. In the present study, we demonstrated by confocal microscopy in Sprague-Dawley (SD) male rats fed a 12-wk high-cholesterol diet (HC) compared with the normal diet (NC) that the dimension of the endothelial glycocalyx reduced significantly in both the common carotid artery (2.89 ± 0.41 µm and 3.25 ± 0.44 μm, respectively) and the internal sinus region (2.35 ± 0.07 µm and 3.46 ± 0.86 μm, respectively). Furthermore, we showed by real-time PCR that this dimension modification of endothelial glycocalyx may be attributed to a significant downregulation of heparan sulfate proteoglycan (HSPG)-related genes, including syndecan-3, glypican-1, and EXT1, not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) from the vessel wall to the plasma. Meanwhile, the mean contraction and relaxation forces of the common carotid artery with responses to norepinephrine (NE) and acetylcholine (ACh) decreased ~0.34- and 0.13-fold, respectively, accompanied by a lower level of nitric oxide (NO) release. These findings suggest that the atherogenic high cholesterol diet diminished endothelial glycocalyx and disturbed the local NO release, thus contributing to the impaired vasomotor properties of the vessel.NEW & NOTEWORTHY Twelve-week high-cholesterol (HC) diet reduces the thickness of the endothelial glycocalyx in Sprague-Dawley (SD) male rats, which is mainly attributed to a downregulation of heparan sulfate proteoglycan-related genes (syndecan-3, glypican-1, EXT1), not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) into the plasma. HC-diminished glycocalyx may disturb its mechanotransduction of local shear stress, lower nitric oxide (NO) release, and impair vasomotor responses to norepinephrine (NE) and acetylcholine (ACh).
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxin Qu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Menghan Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
42
|
Theuerle JD, Al-Fiadh AH, Amirul Islam FM, Patel SK, Burrell LM, Wong TY, Farouque O. Impaired retinal microvascular function predicts long-term adverse events in patients with cardiovascular disease. Cardiovasc Res 2020; 117:1949-1957. [PMID: 32750111 DOI: 10.1093/cvr/cvaa245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Endothelial dysfunction is a precursor to the development of symptomatic atherosclerosis. Retinal microvascular reactivity to flicker light stimulation is a marker of endothelial function and can be quantified in vivo. We sought to determine whether retinal microvascular endothelial dysfunction predicts long-term major adverse cardiovascular events (MACE). METHODS AND RESULTS In a single-centre prospective observational study, patients with coronary artery disease (CAD) or cardiovascular risk factors underwent dynamic retinal vessel assessment in response to flicker light stimulation and were followed up for MACE. Retinal microvascular endothelial dysfunction was quantified by measuring maximum flicker light-induced retinal arteriolar dilatation (FI-RAD) and flicker light-induced retinal venular dilatation (FI-RVD). In total, 252 patients underwent dynamic retinal vessel assessment and 242 (96%) had long-term follow-up. Of the 242 patients, 88 (36%) developed MACE over a median period of 8.6 years (interquartile range 6.0-9.1). After adjustment for traditional risk factors, patients within the lowest quintile of FI-RAD had the highest risk of MACE [odds ratio (OR) 5.21; 95% confidence interval (CI) 1.78-15.28]. Patients with lower FI-RAD were also more likely to die (OR 2.09; 95% CI 1.00-4.40, per standard deviation decrease in FI-RAD). In Kaplan-Meier analysis, patients with FI-RAD responses below the cohort median of 1.4% exhibited reduced MACE-free survival (55.5 vs. 71.5%; log-rank P = 0.004). FI-RVD was not predictive of MACE. CONCLUSION Retinal arteriolar endothelial dysfunction is an independent predictor of MACE in patients with CAD or cardiovascular risk factors. Dynamic retinal vessel analysis may provide added benefit to traditional risk factors in stratifying patients at risk for cardiovascular events.
Collapse
Affiliation(s)
- James D Theuerle
- Department of Cardiology, Austin Health, 145 Studley Road, Melbourne, Victoria 3084, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Ali H Al-Fiadh
- Department of Cardiology, Austin Health, 145 Studley Road, Melbourne, Victoria 3084, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Fakir M Amirul Islam
- Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Melbourne, Australia
| | - Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Louise M Burrell
- Department of Cardiology, Austin Health, 145 Studley Road, Melbourne, Victoria 3084, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical, School, National University of Singapore, Singapore, Singapore
| | - Omar Farouque
- Department of Cardiology, Austin Health, 145 Studley Road, Melbourne, Victoria 3084, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
43
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
44
|
Bar A, Targosz-Korecka M, Suraj J, Proniewski B, Jasztal A, Marczyk B, Sternak M, Przybyło M, Kurpińska A, Walczak M, Kostogrys RB, Szymonski M, Chlopicki S. Degradation of Glycocalyx and Multiple Manifestations of Endothelial Dysfunction Coincide in the Early Phase of Endothelial Dysfunction Before Atherosclerotic Plaque Development in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice. J Am Heart Assoc 2020; 8:e011171. [PMID: 30866689 PMCID: PMC6475045 DOI: 10.1161/jaha.118.011171] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The impairment of endothelium‐dependent vasodilation, increased endothelial permeability, and glycocalyx degradation are all important pathophysiological components of endothelial dysfunction. However, it is still not clear whether in atherosclerosis, glycocalyx injury precedes other features of endothelial dysfunction or these events coincide. Methods and Results Herein, we demonstrate that in 4‐ to 8‐week‐old apolipoprotein E/low‐density lipoprotein receptor‐deficient mice, at the stage before development of atherosclerotic plaques, impaired acetylcholine‐induced vasodilation, reduced NO production in aorta, and increased endothelial permeability were all observed; however, flow‐mediated dilation in the femoral artery was fully preserved. In 4‐week‐old mice, glycocalyx coverage was reduced and endothelial stiffness was increased, whereas glycocalyx length was significantly decreased at 8 weeks of age. Early changes in endothelial function were also featured by increased plasma concentration of biomarkers of glycocalyx disruption (endocan), biomarkers of endothelial inflammation (soluble vascular cell adhesion molecule 1), increased vascular permeability (angiopoietin 2), and alterations in hemostasis (tissue plasminogen activator and plasminogen activator inhibitor 1). In 28‐week‐old mice, at the stage of advanced atherosclerotic plaque development, impaired NO production and nearly all other features of endothelial dysfunction were changed to a similar extent, compared with the preatherosclerotic plaque phase. The exceptions were the occurrence of acetylcholine‐induced vasoconstriction in the aorta and brachiocephalic artery, impaired flow‐mediated vasodilation in the femoral artery, and further reduction of glycocalyx length and coverage with a concomitant further increase in endothelial permeability. Conclusions In conclusion, even at the early stage before the development of atherosclerotic plaques, endothelial dysfunction is a complex multifactorial response that has not been previously appreciated.
Collapse
Affiliation(s)
- Anna Bar
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| | - Marta Targosz-Korecka
- 2 Center for Nanometer-Scale Science and Advanced Materials NANOSAM Faculty of Physics, Astronomy and Applied Computer Science Krakow Poland
| | - Joanna Suraj
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,4 Faculty of Pharmacy Chair and Department of Toxicology Krakow Poland
| | - Bartosz Proniewski
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Agnieszka Jasztal
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Brygida Marczyk
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| | - Magdalena Sternak
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Magdalena Przybyło
- 5 Wroclaw University of Science and Technology Department of Biomedical Engineering Wroclaw Poland
| | - Anna Kurpińska
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland
| | - Maria Walczak
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,4 Faculty of Pharmacy Chair and Department of Toxicology Krakow Poland
| | - Renata B Kostogrys
- 6 University of Agriculture H. Kollataja in Cracow Department of Human Nutrition Faculty of Food Technology Krakow Poland
| | - Marek Szymonski
- 2 Center for Nanometer-Scale Science and Advanced Materials NANOSAM Faculty of Physics, Astronomy and Applied Computer Science Krakow Poland
| | - Stefan Chlopicki
- 1 Jagiellonian University Jagiellonian Centre for Experimental Therapeutics Krakow Poland.,3 Jagiellonian University Medical College Faculty of Medicine Chair of Pharmacology Krakow Poland
| |
Collapse
|
45
|
Carracedo J, Alique M, Ramírez-Carracedo R, Bodega G, Ramírez R. Endothelial Extracellular Vesicles Produced by Senescent Cells: Pathophysiological Role in the Cardiovascular Disease Associated with all Types of Diabetes Mellitus. Curr Vasc Pharmacol 2020; 17:447-454. [PMID: 30124156 DOI: 10.2174/1570161116666180820115726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis. However, MVs produced by damage cell conveyed epigenetic signals, mainly involving microRNAs, which induce many of the injured responses in other vascular cells leading to the development of CVDs. Many studies strongly support that the quantification and characterization of the MVs released by senescent endothelial cells may be useful diagnostic tools in patients with CVDs, as well as a future therapeutic target for these diseases. In this review, we summarize the current knowledge linking senescence-associated MVs to the development of CVDs and discuss the roles of these MVs, in particular, in diabetic-associated increases the risk of CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/ University Hospital Ramon y Cajal Research Unit (IRYCIS), Madrid, Spain
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, Madrid, Spain
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, Madrid, Spain
| |
Collapse
|
46
|
Szeto CC, Chow KM, Lam CWK, Cheung R, Kwan BCH, Chung KY, Leung CB, Li PKT. Peritoneal Albumin Excretion is a Strong Predictor of Cardiovascular Events in Peritoneal Dialysis Patients: A Prospective Cohort Study. Perit Dial Int 2020. [DOI: 10.1177/089686080502500508] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Microalbuminuria is a marker of systemic endothelial dysfunction. We hypothesize that peritoneal albumin excretion in peritoneal dialysis (PD) patients, which is conceptually analogous to microalbuminuria in nonuremic patients, can predict cardiovascular disease in new PD patients. Method We studied peritoneal albumin excretion in 43 new PD patients. They were then followed prospectively for the development of cardiovascular events. All-cause mortality and duration of hospitalization for cardiovascular diseases were also recorded. Result The average duration of follow-up was 26.5 ± 17.6 months. During the follow-up period, 15 patients developed cardiovascular events. Event-free survival at 36 months was 81.4% and 53.6% for low (<300 mg/L) and high (≥300 mg/L) peritoneal albumin excretion groups respectively (log rank test, p = 0.042). By Cox regression analysis, the only independent factors for event-free survival were diabetic status and peritoneal albumin excretion rate. For every 100 mg/L increase in peritoneal albumin excretion, the adjusted hazard ratio of developing a cardiovascular event was 1.83 [95% confidence interval (CI) 1.11 – 3.02, p = 0.018]. Actuarial patient survival at 36 months was 85.7% and 59.1% for low and high peritoneal albumin excretion groups respectively (log rank test, p = 0.10). After adjusting for the duration of follow-up for individual patients, the average duration of hospitalization was 9.1 ± 16.2 and 21.7 ± 25.7 days per year of follow-up for low and high peritoneal albumin excretion groups respectively (Mann–Whitney U test, p = 0.012). Conclusion Although the sample size of our present study is small and does not have adequate statistical power, we conclude that peritoneal albumin excretion may be an important predictor of cardiovascular disease. Further studies are needed to examine the role of dialysate albumin excretion as a means of cardiovascular risk stratification in PD patients.
Collapse
Affiliation(s)
- Cheuk-Chun Szeto
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| | - Kai-Ming Chow
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| | | | - Robert Cheung
- The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bonnie Ching-Ha Kwan
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| | - Kwok-Yi Chung
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| | - Chi-Bon Leung
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| | - Philip Kam-Tao Li
- Department of Medicine & Therapeutics and Department of Chemical Pathology, Prince of Wales Hospital
| |
Collapse
|
47
|
Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020; 71:397-410. [PMID: 32077315 DOI: 10.1177/0003319720903586] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction is one of the earliest indicators of cardiovascular (CV) dysfunction, and its evaluation would be of considerable importance to stratify CV risk of many diseases and to assess the efficacy of atheroprotective treatments. Flow-mediated dilation is the most widely used method to study endothelial function. However, it is operator-dependent and can be influenced by physiological variations. Circulating biomarkers are a promising alternative. Due to the complexity of endothelial function, many of the biomarkers studied do not provide consistent information about the endothelium when measured alone. New circulating markers are being explored and some of them are thought to be suitable for the clinical setting. In this review, we focus on novel biomarkers of endothelial dysfunction, particularly endothelial microparticles, endocan, and endoglin, and discuss whether they fulfill the criteria to be applied in clinical practice.
Collapse
Affiliation(s)
- Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rita Cardoso
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ricardo Castro-Ferreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Serviço de Angiologia e Cirurgia Vascular, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Sciatti E, Cavazzana I, Vizzardi E, Bonadei I, Fredi M, Taraborelli M, Ferizi R, Metra M, Tincani A, Franceschini F. Systemic Lupus Erythematosus and Endothelial Dysfunction: A Close Relationship. Curr Rheumatol Rev 2020; 15:177-188. [PMID: 30474532 DOI: 10.2174/1573397115666181126105318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accelerated atherosclerosis, responsible for premature cardiovascular disease, has been estimated to develop or progress in 10% of systemic lupus erythematosus (SLE) patients each year and to be 6-fold more frequent in SLE compared with the general population. The mechanisms underlying accelerated atherosclerosis in SLE are complex and involve classical and "non-classical" cardiovascular risk factors. Subclinical and disseminated atherosclerosis is associated with endothelial dysfunction and arterial stiffness. OBJECTIVE The aim of this review is to analyze the association between SLE and endothelial dysfunction. RESULTS AND CONCLUSION Different mechanisms have been proposed to explain the prevalence of endothelial dysfunction in SLE, which are briefly reported in this review: impaired clearance of apoptotic cells, oxidative stress markers, B cell activation with different circulating autoantibodies, different subtypes of T lymphocytes, cytokine cascade. Several studies and meta-analyses show a significant trend towards a prevalence of subclinical accelerated atherosclerosis in patients with SLE compared with healthy controls, since childhood. Based on general considerations, we suggest a multidisciplinary management to assess endothelial dysfunction at the diagnosis of the disease and to periodically search for and treat the traditional cardiovascular risk factors. Prospective studies are needed to confirm the benefits of this management.
Collapse
Affiliation(s)
- Edoardo Sciatti
- Cardiology Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical Immunolgy Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Enrico Vizzardi
- Cardiology Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Ivano Bonadei
- Cardiology Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunolgy Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Mara Taraborelli
- Internal Medicine Unit, ASST Franciacorta, Chiari, Brescia, Italy
| | - Romina Ferizi
- Cardiology Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Marco Metra
- Cardiology Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunolgy Unit, University and ASST Spedali Civili, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunolgy Unit, University and ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
49
|
Dal Lin C, Tona F, Osto E. The crosstalk between the cardiovascular and the immune system. VASCULAR BIOLOGY 2019; 1:H83-H88. [PMID: 32923958 PMCID: PMC7439936 DOI: 10.1530/vb-19-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
The heart and the immune system are highly integrated systems cross-talking through cytokines, hormones and neurotransmitters. Their balance can be altered by numerous physical or psychological stressors leading to the onset of inflammation, endothelial dysfunction and tissue damage. Here, we review the main players and mechanisms involved in the field. A new research paradigm, which considers also novel contributors, like endothelial cells, is needed to better understand the pathophysiology of immune-mediated cardiovascular disorders and beyond.
Collapse
Affiliation(s)
- Carlo Dal Lin
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Padua, Italy
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Padua, Italy
| | - Elena Osto
- University and University Hospital Zurich, Institute of Clinical Chemistry, Zurich, Switzerland.,University Hospital Zurich, Heart Center, Zurich, Switzerland.,Swiss Federal Institute of Technology (ETH), Laboratory of Translational Nutrition Biology, Zurich, Switzerland
| |
Collapse
|
50
|
Beckman JA, Duncan MS, Damrauer SM, Wells QS, Barnett JV, Wasserman DH, Bedimo RJ, Butt AA, Marconi VC, Sico JJ, Tindle HA, Bonaca MP, Aday AW, Freiberg MS. Microvascular Disease, Peripheral Artery Disease, and Amputation. Circulation 2019; 140:449-458. [PMID: 31280589 DOI: 10.1161/circulationaha.119.040672] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The mechanism of adverse limb events associated with peripheral artery disease remains incompletely understood. We investigated whether microvascular disease is associated with amputation in a large cohort of veterans to determine whether microvascular disease diagnosed in any location increases the risk of amputation alone and in concert with peripheral artery disease. METHODS Participants in the Veterans Aging Cohort Study were recruited from April 1, 2003 through December 31, 2014. We excluded participants with known prior lower limb amputation. Using time-updated Cox proportional hazards regression, we analyzed the effect of prevalent microvascular disease (retinopathy, neuropathy, and nephropathy) and peripheral artery disease status on the risk of incident amputation events after adjusting for demographics and cardiovascular risk factors. RESULTS Among 125 674 veterans without evidence of prior amputation at baseline, the rate of incident amputation over a median of 9.3 years of follow-up was 1.16 per 1000 person-years, yielding a total of 1185 amputations. In time-updated multivariable-adjusted analyses, compared with those without peripheral artery disease or microvascular disease, microvascular disease alone was associated with a 3.7-fold (95% CI, 3.0-4.6) increased risk of amputation; peripheral artery disease alone conferred a 13.9-fold (95% CI, 11.3-17.1) elevated risk of amputation; and the combination of peripheral artery disease and microvascular disease was associated with a 22.7-fold (95% CI, 18.3-28.1) increased risk of amputation. CONCLUSIONS Independent of traditional risk factors, the presence of microvascular disease increases the risk of amputation alone and synergistically increases risk in patients with peripheral artery disease. Further research is needed to understand the mechanisms by which this occurs.
Collapse
Affiliation(s)
- Joshua A Beckman
- Division of Cardiovascular Medicine (J.A.B., M.S.D., Q.S.W., A.W.A., M.S.F.), Nashville, TN
| | - Meredith S Duncan
- Division of Cardiovascular Medicine (J.A.B., M.S.D., Q.S.W., A.W.A., M.S.F.), Nashville, TN
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania (S.M.D.), Philadelphia.,Corporal Michael Crescenz VA Medical Center (S.M.D.), Philadelphia
| | - Quinn S Wells
- Division of Cardiovascular Medicine (J.A.B., M.S.D., Q.S.W., A.W.A., M.S.F.), Nashville, TN
| | | | - David H Wasserman
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine (D.H.W.), Nashville, TN
| | - Roger J Bedimo
- Infectious Disease Section, VA North Texas Health Center and University of Texas Southwestern Medical Center, Dallas (R.J.B.)
| | - Adeel A Butt
- Department of Medicine, Weill Cornell Medical College, New York, NY (A.A.B)
| | - Vincent C Marconi
- Atlanta Veterans Affairs Medical Center and Emory University School of Medicine, GA (V.C.M.)
| | - Jason J Sico
- VA Connecticut Healthcare System, West Haven (J.J.S.)
| | - Hilary A Tindle
- Division of General Internal Medicine and Public Health (H.A.T.), Nashville, TN.,Yale School of Medicine, Departments of Neurology and Internal Medicine, New Haven, CT. Geriatric Research Education and Clinical Centers, Veterans Affairs Tennessee Valley Healthcare System, Nashville (H.A.T.)
| | - Marc P Bonaca
- University of Colorado School of Medicine and Colorado Prevention Center Clinical Research, Aurora (M.P.B.)
| | - Aaron W Aday
- Division of Cardiovascular Medicine (J.A.B., M.S.D., Q.S.W., A.W.A., M.S.F.), Nashville, TN
| | - Matthew S Freiberg
- Division of Cardiovascular Medicine (J.A.B., M.S.D., Q.S.W., A.W.A., M.S.F.), Nashville, TN
| |
Collapse
|