1
|
Hsiao WWW, Pham UK, Le TN, Lam XM, Chiang WH. Advances in aggregation-induced emission luminogens for biomedicine: From luminescence mechanisms to diagnostic applications. Biosens Bioelectron 2025; 270:116942. [PMID: 39566330 DOI: 10.1016/j.bios.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Advancements in early detection have demonstrated the significance of biomarkers as indicators of health and disease. Traditional detection methods often face limitations, such as low sensitivity and time consumption. Fluorescence-based techniques are considered promising approaches because of their noninvasiveness and rapid response. However, these conventional methods have some drawbacks, such as low quantum yield, photobleaching, and aggregation-caused quenching. Recently, aggregation-induced emission (AIE) has emerged as a potential alternative, characterized by luminous emission upon aggregation, thus improving detection sensitivity and stability. This review explores the recent advancements in AIE luminogens (AIEgens) in biomedical engineering, with a particular focus on their application in biomarker detection. Here, we discuss the different types of AIE mechanisms and their advantages in disease diagnosis and imaging. In addition, we summarize the development of various AIEgen-based probes for the detection of diverse biomarkers. Finally, we address the remaining challenges and future directions for AIE materials in modern biomedical engineering, emphasizing the potential of AIEgens in biomarker detection and disease diagnosis strategies.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| | - Uyen Khanh Pham
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Xuan Mai Lam
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| |
Collapse
|
2
|
Taha SM, Abd El-Aziz NK, Abdelkhalek A, Pet I, Ahmadi M, El-Nabtity SM. Chitosan-Loaded Lagenaria siceraria and Thymus vulgaris Potentiate Antibacterial, Antioxidant, and Immunomodulatory Activities against Extensive Drug-Resistant Pseudomonas aeruginosa and Vancomycin-Resistant Staphylococcus aureus: In Vitro and In Vivo Approaches. Antioxidants (Basel) 2024; 13:428. [PMID: 38671876 PMCID: PMC11047512 DOI: 10.3390/antiox13040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance poses considerable issues for current clinical care, so the modified use of antimicrobial agents and public health initiatives, coupled with new antimicrobial approaches, may help to minimize the impact of multidrug-resistant (MDR) bacteria in the future. This study aimed to evaluate the antimicrobial, antioxidant, and immunomodulatory activities of Lagenaria siceraria, Thymus vulgaris, and their chitosan nanocomposites against extensive drug-resistant (XDR) Pseudomonas aeruginosa and vancomycin-resistant Staphylococcus aureus (VRSA) using both in vitro and in vivo assays. The in vitro antimicrobial susceptibilities of P. aeruginosa and VRSA strains revealed 100% sensitivity to imipenem (100%). All P. aeruginosa strains were resistant to cefoxitin, cefepime, trimethoprim + sulfamethoxazole, and fosfomycin. However, S. aureus strains showed a full resistance to cefoxitin, amoxicillin, ampicillin, erythromycin, chloramphenicol, and fosfomycin (100% each). Interestingly, all S. aureus strains were vancomycin-resistant (MIC = 32-512 μg/mL), and 90% of P. aeruginosa and S. aureus strains were XDR. The antimicrobial potential of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles demonstrated marked inhibitory activities against XDR P. aeruginosa and VRSA strains with inhibition zones' diameters up to 50 mm and MIC values ranging from 0.125 to 1 μg/mL and 1 to 8 μg/mL, respectively. The results of the in vivo approach in male Sprague Dawley rats revealed that infection with P. aeruginosa and S. aureus displayed significant changes in biochemical, hematological, and histopathological findings compared to the negative control group. These values returned to the normal range after treatment by chitosan nanoparticles, either loaded with Lagenaria siceraria or Thymus vulgaris. Real-time quantitative polymerase chain reaction (RT-qPCR) findings presented significant upregulation of the relative expression of the IL10 gene and downregulation of the IFNG gene throughout the experimental period, especially after treatment with chitosan nanoparticles loaded either with Lagenaria siceraria or Thymus vulgaris in comparison to the positive control groups. In conclusion, this is the first report suggesting the use of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles as a promising contender for combating XDR P. aeruginosa and VRSA infections as well as a manager for inflammatory situations and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Selwan M Taha
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Adel Abdelkhalek
- Food Safety, Hygiene and Technology Department, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| | - Sameh M El-Nabtity
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Rai B, Srivastava J, Saxena P. The Functional Role of microRNAs and mRNAs in Diabetic Kidney Disease: A Review. Curr Diabetes Rev 2024; 20:e201023222412. [PMID: 37867275 DOI: 10.2174/0115733998270983231009094216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pragati Saxena
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Hakimi S, Dutta P, Layton AT. Coupling of renal sodium and calcium transport: a modeling analysis of transporter inhibition and sex differences. Am J Physiol Renal Physiol 2023; 325:F536-F551. [PMID: 37615047 DOI: 10.1152/ajprenal.00145.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Ca2+ transport along the nephron occurs via specific transcellular and paracellular pathways and is coupled to the transport of other electrolytes. Notably, Na+ transport establishes an electrochemical gradient to drive Ca2+ reabsorption. Hence, alterations in renal Na+ handling, under pathophysiological conditions or pharmacological manipulations, can have major effects on Ca2+ transport. An important class of pharmacological agent is diuretics, which are commonly prescribed for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate Na+ transport but also indirectly affect renal Ca2+ handling. To better understand the underlying mechanisms, we developed a computational model of electrolyte transport along the superficial nephron in the kidney of a male and female rat. Sex differences in renal Ca2+ handling are represented. Model simulations predicted in the female rat nephron lower Ca2+ reabsorption in the proximal tubule and thick ascending limb, but higher reabsorption in the late distal convoluted tubule and connecting tubule, compared with the male nephron. The male rat kidney model yielded a higher urinary Ca2+ excretion than the female model, consistent with animal experiments. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occurred in parallel, but those processes were dissociated in the distal convoluted tubule. Additionally, we conducted simulations of inhibition of channels and transporters that play a major role in Na+ and Ca2+ transport. Simulation results revealed alterations in transepithelial Ca2+ transport, with differential effects among nephron segments and between the sexes.NEW & NOTEWORTHY The kidney plays an important role in the maintenance of whole body Ca2+ balance by regulating Ca2+ reabsorption and excretion. This computational modeling study provides insights into how Ca2+ transport along the nephron is coupled to Na+. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occur in parallel, but those processes were dissociated in the distal convoluted tubule. Simulations also revealed sex-specific responses to different pharmacological manipulations.
Collapse
Affiliation(s)
- Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Sharma K, Zhang G, Hansen J, Bjornstad P, Lee HJ, Menon R, Hejazi L, Liu JJ, Franzone A, Looker HC, Choi BY, Fernandez R, Venkatachalam MA, Kugathasan L, Sridhar VS, Natarajan L, Zhang J, Sharma VS, Kwan B, Waikar SS, Himmelfarb J, Tuttle KR, Kestenbaum B, Fuhrer T, Feldman HI, de Boer IH, Tucci FC, Sedor J, Heerspink HL, Schaub J, Otto EA, Hodgin JB, Kretzler M, Anderton CR, Alexandrov T, Cherney D, Lim SC, Nelson RG, Gelfond J, Iyengar R. Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients. J Clin Invest 2023; 133:e170341. [PMID: 37616058 PMCID: PMC10575723 DOI: 10.1172/jci170341] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.
Collapse
Affiliation(s)
- Kumar Sharma
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Petter Bjornstad
- Division of Nephrology, Department of Medicine and Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hak Joo Lee
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Rajasree Menon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Leila Hejazi
- Center for Precision Medicine and
- SygnaMap Inc., San Antonio, Texas, USA
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Byeong Yeob Choi
- Center for Precision Medicine and
- Department of Population Health Sciences and
| | | | - Manjeri A. Venkatachalam
- Center for Precision Medicine and
- Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Luxcia Kugathasan
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Vikas S. Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Loki Natarajan
- Herbert Wertheim School of Public Health and
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Jing Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Varun S. Sharma
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Brian Kwan
- Department of Health Science, California State University, Long Beach, Long Beach, California, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University, Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Katherine R. Tuttle
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bryan Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Harold I. Feldman
- Center for Clinical Epidemiology and Biostatistics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | | | | | - Hiddo Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Jennifer Schaub
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A. Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B. Hodgin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher R. Anderton
- Center for Precision Medicine and
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada. Department of Physiology and Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Center, Admiralty Medical Center, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Jonathan Gelfond
- Center for Precision Medicine and
- Department of Population Health Sciences and
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
6
|
Sharma K, Zhang G, Hansen J, Bjornstad P, Lee HJ, Menon R, Hejazi L, Liu JJ, Franzone A, Looker HC, Choi BY, Fernandez R, Venkatachalam MA, Kugathasan L, Sridhar VS, Natarajan L, Zhang J, Sharma V, Kwan B, Waikar S, Himmelfarb J, Tuttle K, Kestenbaum B, Fuhrer T, Feldman H, de Boer IH, Tucci FC, Sedor J, Heerspink HL, Schaub J, Otto E, Hodgin JB, Kretzler M, Anderton C, Alexandrov T, Cherney D, Lim SC, Nelson RG, Gelfond J, Iyengar R. Role of endogenous adenine in kidney failure and mortality with diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290681. [PMID: 37398187 PMCID: PMC10312877 DOI: 10.1101/2023.05.31.23290681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.
Collapse
|
7
|
Abou Daher A, Alkhansa S, Azar WS, Rafeh R, Ghadieh HE, Eid AA. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy. Antioxid Redox Signal 2022; 37:802-819. [PMID: 34544257 DOI: 10.1089/ars.2021.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802-819.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia, USA
| | - Rim Rafeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
A small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS One 2021; 16:e0255022. [PMID: 34339435 PMCID: PMC8328318 DOI: 10.1371/journal.pone.0255022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Prolyl hydroxylase (PH) enzymes control the degradation of hypoxia-inducible factor (HIF), a transcription factor known to regulate erythropoiesis, angiogenesis, glucose metabolism, cell proliferation, and apoptosis. HIF-PH inhibitors (HIF-PHIs) correct anemia in patients with renal disease and in animal models of anemia and kidney disease. However, the effects of HIF-PHIs on comorbidities associated with kidney disease remain largely unknown. We evaluated the effects of the HIF-PHI FG-2216 in obese ZSF1 (Ob-ZSF1) rats, an established model of kidney failure with metabolic syndrome. Following unilateral nephrectomy (Nx) at 8 weeks of age, rats were treated with 40 mg/kg FG-2216 or vehicle by oral gavage three times per week for up to 18 weeks. FG-2216 corrected blood hemoglobin levels and improved kidney function and histopathology in Nx-Ob-ZSF1 rats by increasing the glomerular filtration rate, decreasing proteinuria, and reducing peritubular fibrosis, tubular damage, glomerulosclerosis and mesangial expansion. FG-2216 increased renal glucose excretion and decreased body weight, fat pad weight, and serum cholesterol in Nx-Ob-ZSF1 rats. Additionally, FG-2216 corrected hypertension, improved diastolic and systolic heart function, and reduced cardiac hypertrophy and fibrosis. In conclusion, the HIF-PHI FG-2216 improved renal and cardiovascular outcomes, and reduced obesity in a rat model of kidney disease with metabolic syndrome. Thus, in addition to correcting anemia, HIF-PHIs may provide renal and cardiac protection to patients suffering from kidney disease with metabolic syndrome.
Collapse
|
9
|
Li D, Li B, Peng LX, Liu R, Zeng N. Therapeutic Efficacy of Piperazine Ferulate Combined With Irbesartan in Diabetic Nephropathy: A Systematic Review and Meta-analysis. Clin Ther 2020; 42:2196-2212. [PMID: 33158581 DOI: 10.1016/j.clinthera.2020.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE Irbesartan is widely used clinically in the treatment of diabetic nephropathy (DN). It is believed that piperazine ferulate (PF) combined with irbesartan could result in an improved efficacy in the treatment of DN. We present the latest meta-analysis that details the combination of PF and irbesartan therapy. METHODS Before January 31, 2020, we searched various electronic databases for appropriate articles. Our search was not restricted by keyword or language. We then filtered all articles using certain criteria and assessed the quality of the qualified studies. FINDINGS The meta-analysis included 12 trials that involved 1300 patients (650 in the experimental group and 650 in the control group). The ages of the patients ranged from 30 to 79 years. Compared with irbesartan alone, the total effective rate of PF combined with irbesartan was significantly higher (odds ratio [OR] = 4.95; 95% CI, 3.11-7.58; P < 0.0001). The blood glucose level was controlled by significantly decreasing the fasting plasma glucose level (mean difference [MD] = -1.40; 95% CI, -2.70 to -0.11; P = 0.03) and 2-h plasma glucose level (MD = -1.65; 95% CI, -2.49 to -0.82; P < 0.0001). The combination therapy significantly decreased the levels of serum creatinine (MD = -10.24; 95% CI, -15.25 to -5.23; P < 0.0001), 24-h urinary protein (MD = -0.07; 95% CI, -0.09 to -0.05; P < 0.0001), urinary albumin excretion rate (MD = -22.52; 95% CI, -30.20 to -14.84; P < 0.0001), urinary β2-microglobulin (MD = -0.15; 95% CI, -0.17 to -0.13; P < 0.0001), and blood urea nitrogen (MD = -1.54; 95% CI, -2.36 to -0.72; P = 0.0002), which was beneficial for improving and protecting renal function. The renal microcirculation was improved by significantly decreasing the whole blood viscosity low shear (MD = -1.41; 95% CI, -1.84 to -0.99; P < 0.0001), whole blood viscosity high shear (MD = -0.54; 95% CI, -0.63 to -0.45; P < 0.0001), whole blood viscosity (MD = -1.31; 95% CI, -1.79 to -0.83; P < 0.0001), whole blood reduction viscosity (MD = -1.42; 95% CI, -1.79 to -1.06; P < 0.0001), platelet aggregation rate (MD = -0.42; 95% CI, -0.50 to -0.35; P < 0.0001), plasma viscosity (MD = -13.02; 95% CI, -15.47 to -10.56; P < 0.0001), and fibrinogen content (MD = -0.25; 95% CI, -0.42 to -0.09; P = 0.003). IMPLICATIONS PF combined with irbesartan could improve the efficiency in the treatment of DN. However, these results should be handled carefully. These findings should be verified by several rigorous randomized controlled trials.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Wenjiang District, Chengdu, Sichuan Province, 611137, PR China
| | - Bo Li
- Chengdu Hanpharm Pharmaceutical Co., Ltd, Pengzhou, Sichuan Province, 611930, PR China
| | - Li-Xia Peng
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Wenjiang District, Chengdu, Sichuan Province, 611137, PR China
| | - Rong Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Wenjiang District, Chengdu, Sichuan Province, 611137, PR China.
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Wenjiang District, Chengdu, Sichuan Province, 611137, PR China.
| |
Collapse
|
10
|
Yasmin S, Cerchia C, Badavath VN, Laghezza A, Dal Piaz F, Mondal SK, Atlı Ö, Baysal M, Vadivelan S, Shankar S, Siddique MUM, Pattnaik AK, Singh RP, Loiodice F, Jayaprakash V, Lavecchia A. A Series of Ferulic Acid Amides Reveals Unexpected Peroxiredoxin 1 Inhibitory Activity with in vivo Antidiabetic and Hypolipidemic Effects. ChemMedChem 2020; 16:484-498. [PMID: 33030290 DOI: 10.1002/cmdc.202000564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Insulin resistance is a major pathophysiological feature in the development of type 2 diabetes (T2DM). Ferulic acid is known for attenuating the insulin resistance and reducing the blood glucose in T2DM rats. In this work, we designed and synthesized a library of new ferulic acid amides (FAA), which could be considered as ring opening derivatives of the antidiabetic PPARγ agonists Thiazolidinediones (TZDs). However, since these compounds displayed weak PPAR transactivation capacity, we employed a proteomics approach to unravel their molecular target(s) and identified the peroxiredoxin 1 (PRDX1) as a direct binding target of FAAs. Interestingly, PRDX1, a protein with antioxidant and chaperone activity, has been implied in the development of T2DM by inducing hepatic insulin resistance. SPR, mass spectrometry-based studies, docking experiments and in vitro inhibition assay confirmed that compounds VIe and VIf bound PRDX1 and induced a dose-dependent inhibition. Furthermore, VIe and VIf significantly improved hyperglycemia and hyperlipidemia in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats as confirmed by histopathological examinations. These results provide guidance for developing the current FAAs as new potential antidiabetic agents.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia
| | - Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| | - Vishnu Nayak Badavath
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Antonio Laghezza
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Susanta K Mondal
- TCG Lifesciences Ltd., Block-EP & GP, BIPL Tower-B, Saltlake, Sector-V, Kolkata, 700091, West Bengal, India
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Yunus Emre Kampüsü, 26470, Eskişehir, Turkey
| | - Sankaran Vadivelan
- Advinus Limited, 21 & 22 Peenya Industrial Area, 560058, Bengaluru, India
| | - S Shankar
- Advinus Limited, 21 & 22 Peenya Industrial Area, 560058, Bengaluru, India
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Fulvio Loiodice
- Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835 215, India
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131, Napoli, Italy
| |
Collapse
|
11
|
Poovitha S, Parani M. Protein extracts from Momordica charantia var. charantia and M. charantia var. muricata show anti-lipidemic and antioxidant properties in experimental type 2 diabetic rats. J Food Biochem 2020; 44:e13370. [PMID: 32643818 DOI: 10.1111/jfbc.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
Abstract
Plant-derived compounds are used to manage dyslipidemia and oxidative stress in type 2 diabetic condition. In this study, anti-lipidemic and antioxidant properties of the protein extracts from "Charantia" (PEC) and "Muricata" (PEM) varieties of Momordica charantia were analyzed by quantifying lipids, hepatic, renal, and oxidative stress markers, and histopathological examination of liver and kidney tissues. Protein extracts were orally administered at 10 (PEC10, PEM10) or 20 mg/kg body weight (PEC20, PEM20). Levels of cholesterol, low-density lipoprotein, and triglycerides decreased but high-density lipoprotein increased significantly in treated rats as compared to untreated diabetic rats (p < .01), and attained normal physiological range in both doses. Levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione increased but thiobarbituric acid reactive substances decreased significantly in treated rats as compared to untreated diabetic rats (p < .01), and attained normal physiological range in PEM20 only. Histopathological examinations supported a protective role for the protein extracts against oxidative stress. PRACTICAL APPLICATIONS: Momordica charantia, a well-known medicinal plant is traditionally used for treating diabetes in India as well as other countries. The whole plant was shown to have medicinal importance. Anti-diabetic potential of this plant was scientifically established largely using organic extracts and water extract mainly from the fruits of this plant. However, protein extracts from the seeds and fruit pulp of this plant were also proven to have anti-diabetic activity. The present study illustrates the anti-lipidemic and antioxidant effect of protein extracts from the fruit pulp of two varieties of M. charantia (Charantia and Muricata) in Streptozotocin-induced type 2 diabetic rats. This study provides experimental evidence in support of its use in the management of type 2 diabetes-related complications.
Collapse
Affiliation(s)
- Sundar Poovitha
- Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
12
|
Marques C, Gonçalves A, Pereira PMR, Almeida D, Martins B, Fontes-Ribeiro C, Reis F, Fernandes R. The dipeptidyl peptidase 4 inhibitor sitagliptin improves oxidative stress and ameliorates glomerular lesions in a rat model of type 1 diabetes. Life Sci 2019; 234:116738. [PMID: 31398418 DOI: 10.1016/j.lfs.2019.116738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
AIMS Oxidative stress has been linked to the development and progression of diabetic nephropathy (DN). The present study evaluated whether the dipeptidyl peptidase-4 inhibitor sitagliptin attenuates glomerular lesions and oxidative stress evoked by chronic hyperglycemia, by a mechanism independent of insulin secretion and glycemia normalization. MAIN METHODS A rat model of DN caused by streptozotocin injection was established and the effects of sitagliptin (5 mg/kg/day) were evaluated after two weeks of treatment. KEY FINDINGS Sitagliptin treatment did not change body weight, glycemic and lipid profiles. However, histopathological observation revealed that sitagliptin attenuates diabetes-induced glomerular lesions on diabetic rats. Sitagliptin also ameliorated the increase in DPP-4 content and promoted the stabilization of GLP-1 in the diabetic kidney. Furthermore, sitagliptin treatment significantly attenuated the increase of free-radical formation and the decrease of antioxidant defenses, attenuating therefore the oxidative stress in the kidneys of diabetic animals. SIGNIFICANCE The results suggest that sitagliptin treatment alleviates kidney oxidative stress in type 1 diabetic rats, which could play a key role in reducing the progression of DN.
Collapse
Affiliation(s)
- Catarina Marques
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Andreia Gonçalves
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Manuela Ribeiro Pereira
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Almeida
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Martins
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Torkamani N, Jerums G, Crammer P, Skene A, Power DA, Panagiotopoulos S, Clarke M, MacIsaac RJ, Ekinci EI. Three Dimensional Glomerular Reconstruction: A Novel Approach to Evaluate Renal Microanatomy in Diabetic Kidney Disease. Sci Rep 2019; 9:1829. [PMID: 30755701 PMCID: PMC6372585 DOI: 10.1038/s41598-019-38646-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
Mesangial metrics reflect glomerular filtration surface area in diabetes. The point-sampled intercept (PSI) method is the conventional method to calculate these parameters. However, this is time consuming and subject to underestimation. We introduce a novel three-dimensional (3D) reconstruction method applicable to light microscopy to measure mesangial metrics. Transmission electron microscopy (TEM), PSI and our new 3D imaging methods were used to quantify mesangial metrics from 22 patients with type 2 diabetes, normo-, micro- and macroalbuminuria and an estimated glomerular filtration rate of <60 mL/min/1.73 m2. Repeated-measures ANOVA test was used to test the equality of the measurement means from the three methods and the degree of inter method variability. Repeated-measures and post-estimation ANOVA tests together with correlation coefficient measurements were used to compare the methods with TEM as reference. There was a statistically significant difference in mesangial volume measurements (F(2, 16) = 15.53, p = 0.0002). The PSI method underestimated measurements compared to TEM and 3D methods by 30% (p = 0.001) and 15%, respectively (p < 0.001). 3D and TEM measurements did not differ significantly. 3D reconstruction is a reliable and time efficient method for calculating mesangial metrics. It may prove to be a useful tool in clinical and experimental diabetic kidney disease.
Collapse
Affiliation(s)
- Niloufar Torkamani
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia. .,Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.
| | - George Jerums
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
| | - Paul Crammer
- Department of Anatomical Pathology, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Alison Skene
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - David A Power
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Nephrology, Austin Health, Melbourne, Victoria, Australia
| | | | - Michele Clarke
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne and University of Melbourne, Fitzroy, Victoria, Australia
| | - Elif I Ekinci
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Chen K, Feng L, Hu W, Chen J, Wang X, Wang L, He Y. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J 2018; 33:4571-4585. [DOI: 10.1096/fj.201801749rrr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kehong Chen
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| | - Lei Feng
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| | - Wei Hu
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
- Department of NephrologyPeople's Liberation Army (PLA) 324 Hospital Chongqing China
| | - Jia Chen
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| | - Xiaoyue Wang
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| | - Liming Wang
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| | - Yani He
- Department of NephrologyDaping HospitalResearch Institute of SurgeryArmy Military Medical University Chongqing China
| |
Collapse
|
15
|
Hu J, Du Y. Managing chronic kidney disease in diabetes patients with the latest chemical therapies. Expert Rev Clin Pharmacol 2018; 12:53-60. [DOI: 10.1080/17512433.2019.1552829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jingbo Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yongzhong Du
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Krishan P, Singh G, Bedi O. Carbohydrate restriction ameliorates nephropathy by reducing oxidative stress and upregulating HIF-1α levels in type-1 diabetic rats. J Diabetes Metab Disord 2017; 16:47. [PMID: 29270392 PMCID: PMC5735925 DOI: 10.1186/s40200-017-0331-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Background Carbohydrate restricted diet regimen is widely accepted as therapeutic approach for the treatment of kidney disease associated with type-2 diabetes, obesity and hypertensive disorders. The present study tested the influence of carbohydrate-energy restricted diet (CR) on type-1 diabetes induced renal dysfunction, hypoxia and structural alterations against diabetic rat group fed control diet (ad libitium). Methods Male wistar rats weighing between 180 and 190 g were subjected to 30% carbohydrate energy restricted diet (CR) and diabetes was induced by administration of streptozotocin (45 mg/kg., i.p). Assessment of renal function was done after 4 weeks by determining the serum levels of creatinine, BUN, proteinuria. Oxidative stress was determined by estimating the reduced glutathione, malonaldehyde levels, catalase activity and extent of renal hypoxia by estimating the HIF-1α levels in kidney tissue homogenates. Histological studies were conducted on kidney sections using hematoxylin and eosin, periodic acid-schiff staining. Results Diabetic rats exhibited marked hyperglycemia and renal dysfunction developed in diabetic rats fed control diet (ad libitium) as shown by significantly elevated levels of serum creatinine, BUN and massive proteinuria after 4 weeks period. CR diet treatment in diabetic rats significantly lowered hyperglycemia, reversed the above renal functional abnormalities, reduced oxidative stress and enhanced HIF-1α levels. Furthermore histological examination of kidney sections from CR diet treated diabetic rat group showed absence of glomerular hypertrophy, mesangial expansion and tubular vacoulations. Conclusion Our results demonstrated that CR diet treatment in diabetic rats attenuated renal damage by reducing oxidative stress and preventing the development of hypoxia by up-regulating HIF-1α levels.
Collapse
Affiliation(s)
- Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India
| | - Gaaminepreet Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India
| | - Onkar Bedi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India.,JRF, DST-SERB, New Delhi, India
| |
Collapse
|
17
|
Mehrabani S, Abbasi B, Darvishi L, Esfahani MA, Maghsoudi Z, Khosravi-Boroujeni H, Ghiasvand R. Effects of Yogurt and Yogurt Plus Shallot Consumption on Lipid Profiles in Type 2 Diabetic Women. Int J Prev Med 2017; 8:54. [PMID: 28928912 PMCID: PMC5553271 DOI: 10.4103/2008-7802.211605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2016] [Indexed: 11/23/2022] Open
Abstract
Background: Identification of food with lowering cholesterol level properties plays a vital role to control impaired lipid profile among type 2 diabetic patients. the current study aimed to evaluate the effects of yogurt and yogurt plus shallot intake on lipid profiles in type 2 diabetic women. Methods: Forty-eight participants with type 2 diabetes were enrolled in this study. Participants in the first group (n = 22) received 150 ml of low-fat yogurt (1.5% fat) and those in the second group (n = 26) received 150 ml of low-fat yogurt (1.5% fat) plus shallot for 10 weeks. Serum triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) concentrations, and fasting blood sugar (FBS) were measured before and after each intervention. Results: comparison of parameters between two groups after intervention showed that TG and TC concentrations decreased more in participants who consumed yogurt plus shallot than who consumed yogurt (P = 0.003 and P = 0.04, respectively), also LDL-C level of participants who were in yogurt plus shallot group was lower than that of participants in yogurt group, but this difference was marginally significant (P = 0.06). However, FBS level was not statistically different between two groups. Conclusions: This study found that yogurt plus shallot intake significantly decreased LDL-C, TG, and TC levels in diabetic women compared with yogurt intake.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnod Abbasi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Darvishi
- Students' Research Committee, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Asemi Esfahani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Maghsoudi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Ghiasvand
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Poovitha S, Siva Sai M, Parani M. Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Namgung S, Yoon JJ, Yoon CS, Han BH, Choi ES, Oh H, Kim YC, Lee YJ, Kang DG, Lee HS. Prunella vulgaris Attenuates Diabetic Renal Injury by Suppressing Glomerular Fibrosis and Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:475-495. [PMID: 28359196 DOI: 10.1142/s0192415x1750029x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy is both the most common complication and the leading cause of mortality associated with diabetes. Prunella vulgaris, a well-known traditional medicinal plant, is used for the cure of abscess, scrofula, hypertension and urinary diseases. This study confirmed whether an aqueous extract of Prunella vulgaris (APV) suppresses renal inflammation and fibrosis. In human mesangial cell (HMC), pretreatment of APV attenuated 25[Formula: see text]mM HG-induced suppressed TGF-[Formula: see text] and Smad-2/4 expression; it increased the expression level of Smad-7. Connective tissue growth factor (CTGF) and collagen IV, fibrosis biomarkers, were significantly decreased by APV. APV suppressed inflammatory factors such as intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). APV inhibited activation and translocation of nuclear factor kappa-B (NF-[Formula: see text]B) in HG-stimulated HMCs. Moreover, APV significantly improved HG-induced ROS in a dose-dependent manner. In diabetic rat models, APV significantly decreased blood glucose, blood urea nitrogen (BUN) and ameliorated plasma creatinine (PCr). APV reduced the PAS positivity staining intensity and basement membrane thickening in glomeruli of diabetic rats. Fibrosis related proteins such as collagen IV and TGF-[Formula: see text]1 were also inhibited by APV. These results suggest that APV has a significant protective effect against diabetic renal dysfunction including inflammation and fibrosis through disruption of the TGF-[Formula: see text]/Smad signaling. Therefore, APV may be useful in potential therapies that target glomerulonephritis and glomerulosclerosis, which lead to diabetic nephropathy.
Collapse
Affiliation(s)
- Seung Namgung
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chi-Su Yoon
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung Hyuk Han
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Eun Sik Choi
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyuncheol Oh
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Youn-Chul Kim
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yun Jung Lee
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae Gill Kang
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho Sub Lee
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
20
|
Jemil I, Nasri R, Abdelhedi O, Aristoy MC, Salem RBSB, Kallel C, Marrekchi R, Jamoussi K, ElFeki A, Hajji M, Toldrá F, Nasri M. Beneficial effects of fermented sardinelle protein hydrolysates on hypercaloric diet induced hyperglycemia, oxidative stress and deterioration of kidney function in wistar rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:313-325. [PMID: 28242930 PMCID: PMC5306024 DOI: 10.1007/s13197-016-2464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
This study investigated the potential effects of fermented sardinelle protein hydrolysates (FSPHs) obtained by two proteolytic bacteria, Bacillus subtilis A26 (FSPH-A26) and Bacillus amyloliquefaciens An6 (FSPH-An6), on hypercaloric diet (HCD) induced hyperglycemia and oxidative stress in rats. Effects of FSPHs on blood glucose level, glucose tolerance, α-amylase activity and hepatic glycogen content were investigated, as well as their effect on the oxidative stress state. Biochemical findings revealed that, while undigested sardinelle proteins did not exhibit hypoglycemic activity, oral administration of FSPHs to HCD-fed rats reduced significantly α-amylase activity as well as glycemia and hepatic glycogen levels. Further, the treatment with FSPHs improved the redox status by decreasing the levels of lipid peroxidation products and increasing the activities of the antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) and the level of glutathione in the liver and kidneys, as compared to those of HCD-fed rats. FSPHs were also found to exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in alkaline phosphatase activity and a modulation of creatinine and uric acid contents. These results indicated the beneficial effect of FSPHs on the prevention from hyperglycemia and oxidative stress.
Collapse
Affiliation(s)
- Ines Jemil
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Maria-Concepción Aristoy
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Rabeb Ben Slama-Ben Salem
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Choumous Kallel
- Laboratory of Hematology, Habib Bourguiba Hospital, 3029 Sfax, Tunisia
| | - Rim Marrekchi
- Laboratory of Biochemistry, CHU Hedi Chaker, 3029 Sfax, Tunisia
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU Hedi Chaker, 3029 Sfax, Tunisia
| | - Abdelfattah ElFeki
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax (FSS), University of Sfax, P. O. Box 95, 3052 Sfax, Tunisia
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| |
Collapse
|
21
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
22
|
Tervahartiala P, Kivisaari L, Kivisaari R, Virtanen I. Contrast Media-Induced Renal Morphologic Lesions in Diabetic Rats. Acta Radiol 2016. [DOI: 10.1177/028418519303400304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus was induced in rats with streptozotocin and after 3 months the animals (n = 48) received an i.v. injection of 1 or 3 g I/kg in the form of high-osmolar diatrizoate, low-osmolar iopromide or iohexol, or of 0.6 g I/kg of high-osmolar Gd-DTPA. The controls were given an i.v. injection of physiologic saline. After 2 hours the kidneys were fixed by perfusion and the renal morphologic changes were semiquantitatively analyzed by two independent observers unaware of the agent administered. The contrast media (CM) induced pronounced cytoplasmic vacuolization in the proximal convoluted tubular cells. Such a lysosomal alteration may indicate CM uptake into the cell, and the ultrastructural evaluation revealed intracellular injuries related to the process. The alterations were most marked following administration of iohexol, but diatrizoate also induced a statistically highly significant vacuolization (p < 0.001). The lysosomal alterations following iopromide administration were not as striking, and Gd-DTPA induced only minor changes.
Collapse
|
23
|
Extracellular superoxide dismutase ameliorates streptozotocin-induced rat diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life Sci 2015; 135:77-86. [DOI: 10.1016/j.lfs.2015.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 04/25/2015] [Indexed: 12/29/2022]
|
24
|
Brott DA, Furlong ST, Adler SH, Hainer JW, Arani RB, Pinches M, Rossing P, Chaturvedi N. Characterization of renal biomarkers for use in clinical trials: effect of preanalytical processing and qualification using samples from subjects with diabetes. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3191-8. [PMID: 26124642 PMCID: PMC4482374 DOI: 10.2147/dddt.s78792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Identifying the potential for drug-induced kidney injury is essential for the successful research and development of new drugs. Newer and more sensitive preclinical drug-induced kidney injury biomarkers are now qualified for use in rat toxicology studies, but biomarkers for clinical studies are still undergoing qualification. The current studies investigated biomarkers in healthy volunteer (HV) urine samples with and without the addition of stabilizer as well as in urine from patients with normoalbuminuric diabetes mellitus (P-DM). METHODS Urine samples from 20 male HV with stabilizer, 69 male HV without stabilizer, and 95 male DM without stabilizer (39 type 1 and 56 type 2) were analyzed for the following bio-markers using multiplex assays: α-1-microglobulin (A1M), β-2-microglobulin, calbindin, clusterin, connective tissue growth factor (CTGF), creatinine, cystatin-C, glutathione S-transferase α (GSTα), kidney injury marker-1 (KIM-1), microalbumin, neutrophil gelatinase-associated lipocalin, osteopontin, Tamm-Horsfall urinary glycoprotein (THP), tissue inhibitor of metalloproteinase 1, trefoil factor 3 (TFF3), and vascular endothelial growth factor. RESULTS CTGF and GSTα assays on nonstabilized urine were deemed nonoptimal (>50% of values below assay lower limits of quantification). "Expected values" were determined for HV with stabilizer, HV without stabilizer, and P-DM without stabilizer. There was a statistically significant difference between HV with stabilizer compared to HV without stabilizer for A1M, CTGF, GSTα, and THP. DM urine samples differed from HV (without stabilizer) for A1M CTGF, GSTα, KIM-1, microalbumin, osteopontin, and TFF3. A1M also correctly identified HV and DM with an accuracy of 89.0%. SUMMARY These studies: 1) determined that nonstabilized urine can be used for assays under qualification; and 2) documented that A1M, CTGF, GSTα, KIM-1, microalbumin, osteopontin, and TFF3 were significantly increased in urine from P-DM. In addition, the 89.0% accuracy of A1M in distinguishing P-DM from HV may allow this biomarker to be used to monitor efficacy of potential renal protective agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Pinches
- Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Alderley Park, UK
| | - Peter Rossing
- Steno Diabetes Center, Gentofte, Denmark ; Aarhus University, Aarhus, Denmark ; University of Copenhagen, Denmark
| | - Nish Chaturvedi
- Institute of Cardiovascular Sciences, University College London, London, UK
| | | |
Collapse
|
25
|
Gopal V, Mandal V, Tangjang S, Mandal SC. Serum Biochemical, Histopathology and SEM Analyses of the Effects of the Indian Traditional Herb Wattakaka Volubilis Leaf Extract on Wistar Male Rats. J Pharmacopuncture 2015; 17:13-9. [PMID: 25780685 PMCID: PMC4331981 DOI: 10.3831/kpi.2014.17.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
Objectives: The present study investigated the protective effect of Wattakaka (W.) volubilis leaf extract against streptozotocin (STZ)-induced diabetes in rats. Methods: Male Wistar rats were divided into five groups (with six rats in each group) and were fed ad libitum. The rats were fasted for sixteen hours before diabetes was induced by injecting a single dose of 90 mg/kg body weight of STZ in 0.9-percent normal saline through an intraperitoneal route. The five groups were as follows: Group 1: normal control (saline-treated), Group 2: untreated diabetic rats, Groups 3 and 4: diabetic rats treated orally with petroleum ether cold maceration extract (PEME) of W. volubilis(50 and 100 mg/kg body weight), and Group 5: diabetic rats treated orally with metformin (250 mg/kg body weight). All rats received treatment for 21 days. For the STZ-induced diabetic rats, the blood-glucose, α-amylase, total protein and alanine transaminase (ALT) levels were measured on days 7,14 and 21 of the treatment with PEME of W. volubilis and the treatment with metformin. Histopathological changes in the liver were examined with hematoxylin-eosin staining. Morphological changes in the liver were also examined with glutaraldehyde fixation. Results: The treatments with PEME of W. volubilis and with metformin in experimental rats by oral injections for 21 days produced reductions in the levels of serum biochemical markers. Histopathology and scanning electron microscopy results showed that the administrations of PEME of W. volubilis and of metformin suppressed the generation of abnormal liver cells in the STZ-treated rats. Conclusion: These results suggest that both PEME of W. volubilis and metformin have a protective effect against STZ-induced diabetes.
Collapse
Affiliation(s)
- Velmani Gopal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vivekananda Mandal
- Institute of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
| | - Sumpam Tangjang
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
26
|
Gopal V, Agrawal N, Mandal SC. Biological Parameters for Evaluating the Toxic Potency of Petroleum Ether Extract of Wattakaka volubilis in Wistar Female Rats. J Pharmacopuncture 2015; 17:7-15. [PMID: 25780704 PMCID: PMC4332012 DOI: 10.3831/kpi.2014.17.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023] Open
Abstract
Objectives: The present study investigated the toxic properties of petroleum ether extract of Wattakaka (W.) volubilis in Wistar female rats. Methods: An in vitro brine shrimp lethality bioassay was studied in A. Salina nauplii, and the lethality concentrations were assessed for petroleum ether extract of W. volubilis. A water soluble portion of the test extract was used in different concentrations from 100-1000 μg/mL of 1 mg/mL stock solution. A 24-hours incubation with a 1-mL aliquot in 50 mL of aerated sea water was considered to calculate the percentage rate of dead nauplii with test extract administration against a potassium-dichromate positive control. The acute and the sub-acute toxicities of petroleum ether extract of W. volubilis were evaluated orally by using gavage in female Wistar rats. Food and water intake, body weight, general behavioral changes and mortality of animals were noted. Toxicity or death was evaluated following the administration of petroleum ether extract for 28 consecutive days in the female rats. Serum biochemical parameters, such as alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, total cholesterol, triglyceride, total protein, glucose, urea, creatinine, sodium, potassium and α-amylase levels, were measured in the toxicity evaluations. Pathological changes in isolated organs, such as the liver, kidneys, and pancreas, were also examined using hematoxylin and eosin dye fixation after the end of the test extract’s administration. Results: The results of the brine-shrimp assay indicate that the evaluated concentrations of petroleum ether extract of W. volubilis were found to be non-toxic. In the acute and the sub-acute toxicity evaluations, no significant differences were observed between the control animals and the animals treated with extract of W. volubilis. No abnormal histological changes were observed in any of the animal groups treated with petroleum ether extract of W. volubilis. Conclusion: These results suggest that petroleum ether extract of W. volubilis has a non-toxic effect in Wistar female rats.
Collapse
Affiliation(s)
- Velmani Gopal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nitin Agrawal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
27
|
Berredjem H, Reggami Y, Benlaifa M, Berredjem M, Bouzerna N. Antidiabetic and Hypolipidemic Potential of 3, 4-dihydroisoquinolin-2(1H)- Sulfonamide in Alloxan Induced Diabetic Rats. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.226.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Chen J, Chen Y, Luo Y, Gui D, Huang J, He D. Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats. Eur J Pharmacol 2014; 736:86-94. [PMID: 24809932 DOI: 10.1016/j.ejphar.2014.04.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
Podocyte loss and dysfunction play key role during the development of diabetic nephropathy (DN). The aim of this study was to observe the protective effects of astragaloside IV on podocyte in diabetic rats and explore its mechanisms preliminary. Healthy male Sprague-Dawley (SD) rats were randomized into normal control group, diabetic nephropathy group and diabetic nephropathy with AS-IV treatment group. DN was induced by intraperitoneal injection of streptozotocin (STZ). AS-IV treatment started 2 weeks before STZ injection and lasted 14 weeks. 24h Urinary proteins were measured 4, 8 and 12 weeks after STZ injection. Body weight, blood glucose, blood urea nitrogen (BUN), creatinine (Cr), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured 12 weeks after STZ injection. Renal pathology, podocyte morphological changes, podocyte density, protein and mRNA expression of integrin α3, integrin β1 and integrin-linked kinase (ILK) were detected by histopathology, electron microscopy, immunohistochemistry, western blot and real-time PCR, respectively. Hyperglycemia, proteinuria, mesangial expansion and podocyte loss, increased protein expression of ILK and decreased protein expression of integrin α3 and integrin β1 were detected in diabetic rats. AS-IV treatment ameliorated podocyte loss, renal histopathology and podocyte foot process effacement, decreased proteinuria, partially restored protein expression of integrin α3, integrin β1 and ILK. These findings suggested that AS-IV may protect podocyte and ameliorate diabetic nephropathy by inhibiting the expression of ILK and restoring the expression of integrin α3β1 in diabetic rats.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China.
| | - Yifang Chen
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China
| | - Yunling Luo
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Sixth People׳s Hospital, Shanghai, PR China
| | - Jianhua Huang
- Institute of Integrated Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Dongyuan He
- Department of Nephrology, ZheJiang Hospital, HangZhou, PR China.
| |
Collapse
|
29
|
Antioxidative and ACE inhibitory activities of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014; 171:1917-42. [PMID: 24720258 PMCID: PMC3976613 DOI: 10.1111/bph.12503] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- G C Higgins
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
31
|
Hung CC, Tsai JC, Kuo HT, Chang JM, Hwang SJ, Chen HC. Dyslipoproteinemia and impairment of renal function in diabetic kidney disease: an analysis of animal studies, observational studies, and clinical trials. Rev Diabet Stud 2013; 10:110-20. [PMID: 24380087 DOI: 10.1900/rds.2013.10.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dyslipoproteinemia is highly prevalent in diabetes, chronic kidney disease, and diabetic kidney disease (DKD). Both diabetes and chronic kidney disease (CKD) are associated with hypertriglyceridemia, lower high-density lipoprotein, and higher small, dense low-density lipoprotein. A number of observational studies have reported that dyslipidemia may be associated with albuminuria, renal function impairment, and end-stage renal disease (ESRD) in the general population, and especially in CKD and DKD patients. Diabetic glomerulopathy and the related albuminuria are the main manifestations of DKD. Numerous animal studies support the finding that glomerular atherosclerosis is the main mechanism of glomerulosclerosis in CKD and DKD. Some randomized, controlled trials suggest the use of statins for the prevention of albuminuria and renal function impairment in CKD and DKD patients. However, a large clinical study, the Study of Heart and Renal Protection (SHARP), does not support that statins could reduce ESRD in CKD. In this article, we analyze the complex association of dyslipoproteinemia with DKD and deduce its relevance from animal studies, observational studies, and clinical trials. We show that special subgroups could benefit from the statin treatment.
Collapse
Affiliation(s)
- Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Jer-Chia Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Hung-Tien Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| |
Collapse
|
32
|
Kim JT, Kim SS, Jun DW, Hwang YH, Park WH, Pak YK, Lee HK. Serum arylhydrocarbon receptor transactivating activity is elevated in type 2 diabetic patients with diabetic nephropathy. J Diabetes Investig 2013; 4:483-91. [PMID: 24843699 PMCID: PMC4025111 DOI: 10.1111/jdi.12081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/07/2023] Open
Abstract
Aims/Introduction Evidence is emerging that exposure to persistent organic pollutants (POPs) is a risk factor for obesity‐related diseases and for diabetes mellitus (DM). We found that POPs could be measured by a cell‐based arylhydrocarbon receptor (AhR)‐dependent reporter assay. We tested if serum AhR transactivating (AHRT) activities are a risk factor for diabetic nephropathy in people with type 2 diabetes. Materials and Methods We enrolled diabetic patients with normoalbuminuria (n = 36), microalbuminuria (n = 29), macroalbuminuria (n = 8) and end‐stage renal disease (n = 31). Sera were tested for their AHRT activities, which were standardized by an AhR ligand, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and expressed as TCDD equivalents (TCDDeq pmol/L). Results Mean serum AHRT activities were higher in patients with microalbuminuria (40.1 ± 7.1 pmol/L), macroalbuminuria (37.4 ± 5.5 pmol/L) and end‐stage renal disease (59.1 ± 20.0 pmol/L) than in subjects with normoalbuminuria (12.7 ± 5.4 pmol/L; P < 0.05 for all comparisons). Serum AhR ligands showed a correlation with estimated glomerular filtration rate (eGFR; r = −0.663, P < 0.001), serum creatinine level (r = 0.635, P < 0.001), systolic blood pressure (r = 0.223, P = 0.026), glycated hemoglobim (r = 0.339, P < 0.001) and diabetic duration (r = 0.394, P < 0.001). In a multiple regression analysis, diabetic nephropathy was found to be an independent risk factor for higher AHRT activity after controlling for the confounding factors. Conclusions The present findings suggest serum AHRT activity, thus serum AhR ligands, is a risk factor for diabetic nephropathy. Further studies are required to clarify if an accumulation of POPs in the body is causally related to diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Taek Kim
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| | | | - Dae Won Jun
- Department of Internal Medicine College of Medicine Hanyang University Seoul Korea
| | - Young Hwan Hwang
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| | - Wook-Ha Park
- Department of Physiology College of Medicine Kyung Hee University Seoul Korea
| | - Youngmi Kim Pak
- Department of Physiology College of Medicine Kyung Hee University Seoul Korea
| | - Hong Kyu Lee
- Department of Internal Medicine College of Medicine Eulji University Seoul Korea
| |
Collapse
|
33
|
Lin CC, Lin LT, Yen MH, Cheng JT, Hsing CH, Yeh CH. Renal protective effect of xiao-chai-hu-tang on diabetic nephropathy of type 1-diabetic mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:984024. [PMID: 22474533 PMCID: PMC3310293 DOI: 10.1155/2012/984024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/20/2011] [Indexed: 11/17/2022]
Abstract
Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese medicine formula consisting of seven medicinal plants, is used in the treatment of various diseases. We show here that XCHT could protect type-1 diabetic mice against diabetic nephropathy, using streptozotocin (STZ)-induced diabetic mice and high-glucose (HG)-exposed rat mesangial cell (RMC) as models. Following 4 weeks of oral administration with XCHT, renal functions and renal hypertrophy significantly improved in the STZ-diabetic mice, while serum glucose was only moderately reduced compared to vehicle treatment. Treatment with XCHT in the STZ-diabetic mice and HG-exposed RMC resulted in a decrease in expression levels of TGF-β1, fibronectin, and collagen IV, with concomitant increase in BMP-7 expression. Data from DPPH assay, DHE stain, and CM-H(2)DCFDA analysis indicated that XCHT could scavenge free radicals and inhibit high-glucose-induced ROS in RMCs. Taken together, these results suggest that treatment with XCHT can improve renal functions in STZ-diabetic mice, an effect that is potentially mediated through decreasing oxidative stress and production of TGF-β1, fibronectin, and collagen IV in the kidney during development of diabetic nephropathy. XCHT, therefore merits further investigation for application to improve renal functions in diabetic disorders.
Collapse
Affiliation(s)
- Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Tzung Lin
- Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada B3K 6R8
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| |
Collapse
|
34
|
Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis. Med Chem Res 2012. [DOI: 10.1007/s00044-012-9989-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Tahara A, Tsukada J, Tomura Y, Yatsu T, Shibasaki M. Effects of high glucose on AVP-induced hyperplasia, hypertrophy, and type IV collagen synthesis in cultured rat mesangial cells. Endocr Res 2012; 37:216-27. [PMID: 22594926 DOI: 10.3109/07435800.2012.671400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Hyperglycemia is a principal characteristic of diabetes and influences many cellular functions. Diabetic nephropathy is characterized by glomerular mesangial expansion which could result from increased mesangial cell extracellular matrix synthesis induced by hyperglycemia. METHODS To investigate whether the physiological functions of mesangial cells are altered in a diabetic environment, we evaluated the effect of high extracellular glucose concentration on thymidine/leucine incorporation, hyperplasia/hypertrophy, and type IV collagen synthesis, induced by vasopressin (AVP), in cultured rat mesangial cells. RESULTS The exposure of mesangial cells to a high glucose concentration (30 mM) significantly reduced AVP-induced thymidine incorporation and hyperplasia compared with normal glucose (10 mM). By contrast, treatment of mesangial cells with AVP in the presence of high extracellular glucose significantly increased leucine incorporation, hypertrophy, and type IV collagen synthesis compared with those at normal glucose levels. The administration of staurosporine, a protein kinase C inhibitor, reversed these effects of high-glucose conditions. Furthermore, the nonpeptide AVP V(1A) receptor-selective antagonists potently inhibited these AVP-induced physiological responses in mesangial cells cultured in high-glucose conditions. CONCLUSIONS These results demonstrate that high glucose suppresses mesangial cell proliferation but enhances hypertrophy and type IV collagen synthesis induced by AVP. This increased mesangial cell hypertrophy and extracellular matrix synthesis may play a crucial role in the glomerular mesangial expansion common to diabetic nephropathy.
Collapse
Affiliation(s)
- Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
36
|
Yeh CH, Chang CK, Cheng KC, Li YX, Zhang YW, Cheng JT. Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:796723. [PMID: 21876712 PMCID: PMC3163074 DOI: 10.1155/2011/796723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/01/2009] [Indexed: 07/17/2024]
Abstract
Hyperglycemia induced reactive oxygen species (ROS) generation is believed as major factors leading to diabetic nephropathy (DN). DangGui (Angelica sinensis) is mentioned to show renal protective effect in combination with other herbs. Bone morphogenetic proteins-7 (BMP-7) is produced merit in protection of DN. The role of BMP-7 in DangGui-induced renal improvement is not clear. The present study investigated the effects of DangGui on renal functions, BMP-7 expression and the levels of ROS in streptozotocin (STZ)-induced diabetic rats and high glucose-exposed rat mesangial cells (RMCs). After 1- or 4-week treatment, DangGui improved renal functions and increased renal BMP-7 expression in diabetic rats. The BMP-7 expression in RMCs was reduced by high glucose treatment and this could be reversed by DangGui. Moreover, RMCs exposed to high glucose were expired by BMP-7 RNAi transfection but those cells remained alive by scramble transfection. Thus, we employed regular RMCs to knock down BMP-7 with RNAi and we found that DangGui increased BMP-7 expression in these RMCs. Direct activation of BMP-7 expression by DangGui could be considered. The results of DPPH assay, DHE stain and lucigenin assay indicated that DangGui could inhibit high glucose-induced ROS in RMCs. These results suggest that DangGui has an ability to improve renal functions in STZ-diabetic rats through increasing endogenous BMP-7 expression and decreasing oxidative stress in kidney. The present study suggest that DangGui could be applied to improve renal functions in diabetic disorders.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
- Institute of Basic Medical Sciences and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Yung Kang City, Tainan Shan 71004, Taiwan
| | - Chen-Kuei Chang
- Department of Surgery, Mackay Memorial Hospital, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei City 10107, Taiwan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima City, Japan
| | - Ying-Xiao Li
- Department of Chinese with Western Medicine, Zhongnan Hospitial, Wuhan University, Wuhan 430071, China
| | - Ying Wen Zhang
- Department of Chinese with Western Medicine, Zhongnan Hospitial, Wuhan University, Wuhan 430071, China
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
- Institute of Basic Medical Sciences and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Yung Kang City, Tainan Shan 71004, Taiwan
| |
Collapse
|
37
|
Yeh CH, Chang CK, Cheng KC, Li YX, Zhang YW, Cheng JT. Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:796723. [PMID: 21876712 PMCID: PMC3163074 DOI: 10.1093/ecam/nep167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/01/2009] [Indexed: 11/13/2022]
Abstract
Hyperglycemia induced reactive oxygen species (ROS) generation is believed as major factors leading to diabetic nephropathy (DN). DangGui (Angelica sinensis) is mentioned to show renal protective effect in combination with other herbs. Bone morphogenetic proteins-7 (BMP-7) is produced merit in protection of DN. The role of BMP-7 in DangGui-induced renal improvement is not clear. The present study investigated the effects of DangGui on renal functions, BMP-7 expression and the levels of ROS in streptozotocin (STZ)-induced diabetic rats and high glucose-exposed rat mesangial cells (RMCs). After 1- or 4-week treatment, DangGui improved renal functions and increased renal BMP-7 expression in diabetic rats. The BMP-7 expression in RMCs was reduced by high glucose treatment and this could be reversed by DangGui. Moreover, RMCs exposed to high glucose were expired by BMP-7 RNAi transfection but those cells remained alive by scramble transfection. Thus, we employed regular RMCs to knock down BMP-7 with RNAi and we found that DangGui increased BMP-7 expression in these RMCs. Direct activation of BMP-7 expression by DangGui could be considered. The results of DPPH assay, DHE stain and lucigenin assay indicated that DangGui could inhibit high glucose-induced ROS in RMCs. These results suggest that DangGui has an ability to improve renal functions in STZ-diabetic rats through increasing endogenous BMP-7 expression and decreasing oxidative stress in kidney. The present study suggest that DangGui could be applied to improve renal functions in diabetic disorders.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Kway Jen, Tainan 71101, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Mandade R, Sreenivas S. Anti-Diabetic Effects of Aqueous Ethanolic Extract of Hibiscus rosasinensis L. on Streptozotocin-Induced Diabetic Rats and the Possible Morphologic Changes in the Liver and Kidney. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.363.369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Latha RCR, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 2011; 189:112-8. [DOI: 10.1016/j.cbi.2010.11.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
40
|
Sivakumar S, Palsamy P, Subramanian SP. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact 2010; 188:237-45. [PMID: 20643114 DOI: 10.1016/j.cbi.2010.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 02/02/2023]
Abstract
Oxidative stress plays a crucial role in the progression and development of diabetes and its complications due to chronic hyperglycemia. The present study was aimed to investigate the kidney tissue protective nature of d-pinitol, a cyclitol present in soybean, by assessing the key markers of hyperglycemia-mediated oxidative stress, proinflammatory cytokines and ultrastructural alterations in streptozotocin-induced diabetic rats. Oral administration of d-pinitol (50mg/kg body weight/day) for 30 days to diabetic group of rats showed a significant elevation in the level of total protein and significant decline in the levels of blood urea, serum uric acid, creatinine and advanced glycation endproducts (AGEs) and kidney proinflammatory cytokines such as TNF-alpha, IL-1beta, IL-6, NF-kappaB p65 subunit and nitrite. Further, d-pinitol administration elicited a significant attenuation in the activities of kidney enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and the levels of kidney non-enzymatic antioxidants such as vitamin E, vitamin C and reduced glutathione (GSH) in the diabetic group of rats, with a concomitant decline in the levels of kidney lipid peroxides, hydroperoxides and protein carbonyls. The histological and ultrastructural observations on the kidney tissues also confirmed the renoprotective nature of d-pinitol. Thus the present study demonstrated the renoprotective nature of d-pinitol by attenuating the hyperglycemia-mediated proinflammatory cytokines and antioxidant competence in kidney tissues of streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Selvaraj Sivakumar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | | | | |
Collapse
|
41
|
Decrease of Klotho in the kidney of streptozotocin-induced diabetic rats. J Biomed Biotechnol 2010; 2010:513853. [PMID: 20625492 PMCID: PMC2896693 DOI: 10.1155/2010/513853] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/22/2010] [Indexed: 12/02/2022] Open
Abstract
The klotho gene is expressed in a limited number of tissues, most notably in distal convoluted tubules in the kidney and choroid plexus in the brain. A previous study suggested that Klotho increases resistance to oxidative stress. However, changes of Klotho expression in high glucose-induced oxidative stress remain unclear. In the present study, we used streptozotocin-induced diabetic rats (STZ rats) to examine the effects of insulin, phloridzin or antioxidant, tiron on diabetic nephropathy. Both insulin and phloridzin reversed the lower Klotho expression levels in kidneys of STZ rats by the correction of hyperglycemia. Also, renal functions were improved by these treatments. In addition to the improvement of renal functions, the decrease of Klotho expression in kidney of STZ rats was also reversed by tiron without changing blood glucose levels. The reduction of oxidative stress induced by high glucose can be considered for this action of tiron. This view was further confirmed in vitro using high glucose-exposed Madin-Darby canine kidney (MDCK) epithelial cells. Thus, we suggest that decrease of oxidative stress is not only responsible for the improvement of renal function but also for the recovery of Klotho expression in kidney of STZ rats.
Collapse
|
42
|
Abstract
Diabetes is the most common cause of end-stage renal disease in industrialized countries. This article describes the structural changes in early diabetic nephropathy and the relationship with renal functional parameters, blood pressure, and albumin excretion. The detrimental influence of sustained hyperglycemia and/or glycemic fluctuations on renal structural change has been well documented. Tight glycemic control is paramount to preventing the development, and even the regression, of renal lesions. As much of the renal injury from diabetes occurs in clinical silence before symptoms or laboratory findings of renal injury are evident, finding early markers of risk is imperative so that nephropathy can be prevented. Currently, the only clinical surrogate marker of diabetic renal injury available is microalbuminuria. However, given the reports of regression of microalbuminuria back to normoalbuminuria, the reliability of this tool as an indicator of risk has been questioned. The need for alternative, noninvasive surrogate markers is described in this report.
Collapse
Affiliation(s)
- Julia M Steinke
- Division of Pediatric Nephrology, Dialysis and Transplantation, Helen Devos Children's Hospital and Clinics, , Grand Rapids, MI 49503, USA.
| |
Collapse
|
43
|
Ramkumar KM, Ponmanickam P, Velayuthaprabhu S, Archunan G, Rajaguru P. Protective effect of Gymnema montanum against renal damage in experimental diabetic rats. Food Chem Toxicol 2009; 47:2516-21. [DOI: 10.1016/j.fct.2009.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/29/2009] [Accepted: 07/10/2009] [Indexed: 12/26/2022]
|
44
|
Zanatta CM, Canani LH, Silveiro SP, Burttet L, Nabinger G, Gross JL. [Endothelin system function in diabetic nephropathy]. ACTA ACUST UNITED AC 2009; 52:581-8. [PMID: 18604370 DOI: 10.1590/s0004-27302008000400003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 02/22/2008] [Indexed: 02/04/2023]
Abstract
Diabetic Nephropathy (DN) is a major chronic complication of diabetes mellitus (DM), and one of the main causes of new cases for dialysis, being associated with increasing mortality. The main risk factors for DN are hypertension, hyperglycemia, dyslipidemia, and genetic susceptibility. The renin-angiotensin system (RAS) plays an important role in genesis and progression of DN and there is evidence of an interrelationship between this system and the endothelins. Endothelins are powerful vasoconstrictor peptides and act as modulators of vasomotor tone, cell proliferation, and hormone production. These peptides act through two types of receptors (ET-A and ET-B) and are expressed on endothelial cells and vascular smooth-muscle cells. Activation of this receptor in renal cells leads to a complex signaling cascade resulting in stimulation of mesangial cell hypertrophy, proliferation, contraction, and extracellular matrix accumulation. These hemodynamic renal alterations are associated with the onset and progress of renal disease in DM. Elevated endothelin-1 (ET-1) levels have been reported in patients with DM. There is evidence suggesting that an increase in the production of ET-1 leads to glomerular damage. The use of ET receptor antagonists has been reported as renoprotective, correcting the early hemodynamic abnormalities in experimental DM, reinforcing the importance of this system in DN.
Collapse
Affiliation(s)
- Claudete Maria Zanatta
- Programa de Pós-Graduação em Ciências Médicas, Endocrinologia, Universidade Federal do Rio Grande do Sul
| | | | | | | | | | | |
Collapse
|
45
|
Jiang Y, Cheng DW, Levi E, Singh LP. IGF-1 increases laminin, cyclin D1, and p21Cip1 expression in glomerular mesangial cells: an investigation of the intracellular signaling pathway and cell-cycle progression. J Cell Biochem 2009; 98:208-20. [PMID: 16408277 DOI: 10.1002/jcb.20771] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin-like growth factor (IGF)-1 is accumulated in the diabetic kidney and is considered to be involved in the development of glomerular sclerosis. Here, we investigate IGF-1 regulation of laminin, an extracellular matrix (ECM) component, and cyclin D1 and p21Cip1, cell-cycle progression factor, expressions in glomerular mesangial cells. We show that IGF-1 increases the level of laminin gamma1 and beta1 subunits approximately 1.5- and 2.5-fold, respectively, in a time-dependent manner. IGF-1 also stimulates protein kinase Akt/PKB phosphorylation at Thr 308, which correlates with its activity, up to 24 h. The Akt activation is coupled with Ser 9 phosphorylation of its downstream target, glycogen synthase kinase-3beta (GSK-3beta), which inhibits its kinase activity. Laminin beta1 is reduced significantly (P < 0.03) by inhibitors of Akt and p38MAPK whereas laminin gamma1 is not affected. Surprisingly, IGF-1 activates the expression of both cyclin D1 and cell-cycle arrest factor, p21Cip1 parallely. Pharmacological inhibition of calcineurin by cyclosporin A blocks IGF-1-induced cyclin D1 and p21Cip1expression significantly (P < 0.05). IGF-1 enhances cellular metabolic activity and viability of rat mesangial cells; however, they are arrested at the G1 phase of cell cycle as revealed by the FACS analysis. These results indicate that IGF-1 mediates mesangial cell-cycle progression, hypertrophy, and ECM protein synthesis. The Akt/GSK-3beta, p38MAPK, and calcineurin pathways may play an important role in IGF-1 signaling, cell-cycle regulation, and matrix gene expression in mesangial cells leading to the development of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Yan Jiang
- Departments of Internal Medicine, Nephrology and Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
46
|
Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact 2009; 179:329-34. [DOI: 10.1016/j.cbi.2008.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/03/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
|
47
|
Singh LP, Cheng DW, Kowluru R, Levi E, Jiang Y. Hexosamine induction of oxidative stress, hypertrophy and laminin expression in renal mesangial cells: effect of the anti-oxidant alpha-lipoic acid. Cell Biochem Funct 2007; 25:537-50. [PMID: 16892452 DOI: 10.1002/cbf.1358] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that one of the potential mediators of the deleterious effects of high glucose on extracellular matrix protein (ECM) expression in renal mesangial cells is its metabolic flux through the hexosamine biosynthesis pathway (HBP). Here, we investigate further whether the hexosamines induce oxidative stress, cell-cycle arrest and ECM expression using SV-40-transformed rat mesangial (MES) cells and whether the anti-oxidant alpha-lipoic acid will reverse some of these effects. Culturing renal MES cells with high glucose (HG, 25 mM) or glucosamine (GlcN, 1.5 mM) for 48 h stimulates laminin gamma1 subunit expression significantly approximately 1.5 +/- 0.2- and 1.9 +/- 0.3-fold, respectively, when compared to low glucose (LG, 5 mM). Similarly, HG and GlcN increase the level of G0/G1 cell-cycle progression factor cyclin D1 significantly approximately 1.7 +/- 0.2- and 1.4 +/- 0.04-fold, respectively, versus LG (p < 0.01 for both). Azaserine, an inhibitor of glutamine:fruc-6-PO(4) amidotransferase (GFAT) in the HBP, blocks the HG-induced expression of laminin gamma1 and cyclin D1, but not GlcN's effect because it exerts its metabolic function distal to GFAT. HG and GlcN also elevate reactive oxygen species (ROS) generation, pro-apoptotic caspase-3 activity, and lead to mesangial cell death as revealed by TUNEL and Live/Dead assays. FACS analysis of cell-cycle progression shows that the cells are arrested at G1 phase; however, they undergo cell growth and hypertrophy as the RNA/DNA ratio is significantly (p < 0.05) increased in HG or GlcN-treated cells relative to LG. The anti-oxidant alpha-lipoic acid (150 microM) reverses ROS generation and mesangial cell death induced by HG and GlcN. Alpha-lipoic acid also reduces HG and GlcN-induced laminin gamma1 and cyclin D1 expression in MES cells. In addition, induction of diabetes in rats by streptozotocin (STZ) increases both laminin gamma1 and cyclin D1 expression in the renal cortex and treatment of the diabetic rats with alpha-lipoic acid (400 mg kg(-1) body weight) reduces the level of both proteins significantly (p < 0.05) when compared to untreated diabetic rats. These results support the hypothesis that the hexosamine pathway mediates mesangial cell oxidative stress, ECM expression and apoptosis. Anti-oxidant alpha-lipoic acid reverses the effects of high glucose, hexosamine and diabetes on oxidative stress and ECM expression in mesangial cells and rat kidney.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy/Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
48
|
Vasylyeva TL, Ferry RJ. Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res Clin Pract 2007; 76:177-86. [PMID: 17011663 PMCID: PMC1892792 DOI: 10.1016/j.diabres.2006.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 09/04/2006] [Indexed: 11/25/2022]
Abstract
Mechanisms contributing to development of diabetic nephropathy (DN) remain unclear. High ambient glucose level transforms intracellular pathways, promoting stable phenotypic changes in the glomerulus such as mesangial cell hypertrophy, podocyte apoptosis, and matrix expansion. Insulin-like growth factors (IGFs) and the high affinity IGF binding proteins (IGFBPs) exert major effects on cell growth and metabolism. Compared with diabetic patients without microalbuminuria (MA), MA diabetic patients display perturbed GH-IGF-IGFBP homeostasis, including increased circulating IGF-I and IGFBP-3 protease activity, increased excretion of bioactive GH, IGF-I, and IGFBP-3, but decreased circulating IGFBP-3 levels. In diabetic animal models, expression of IGF-I and IGFBP-1 to -4 increases in key renal tissues and glomerular ulrafiltrate. Epithelial, mesangial, and endothelial cells derived from the kidney respond to IGF-I binding with increased protein synthesis, migration, and proliferation. This article reviews classic and emerging concepts for the roles of the GH-IGF-IGFBP axis in the etiopathophysiology, treatment, and prevention of diabetic renal disease. We report IGF-independent actions of IGFBP-3 in the podocyte for the first time.
Collapse
Affiliation(s)
- Tetyana L Vasylyeva
- Department of Pediatrics, Texas Tech University Health Science Center, Amarillo, TX, USA
| | | |
Collapse
|
49
|
Riad A, Zhuo JL, Schultheiss HP, Tschöpe C. The role of the renal kallikrein-kinin system in diabetic nephropathy. Curr Opin Nephrol Hypertens 2007; 16:22-6. [PMID: 17143067 PMCID: PMC2276846 DOI: 10.1097/mnh.0b013e328011a20c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Diabetic nephropathy is one of the most common complications in diabetes mellitus. Multiple pathogenic mechanisms are now believed to contribute to this disease, including inflammatory cytokines, autacoids and oxidative stress. Numerous studies have shown that the kallikrein-kinin system may be involved in these mechanisms. This review focuses on recent research advance on the potential role of the kallikrein-kinin system in the development of diabetic nephropathy, and its clinical relevance. RECENT FINDINGS A collection of recent studies has shown that angiotensin-converting enzyme inhibitors, which inhibit angiotensin II formation and degradation of bradykinin, and vasopeptidase inhibitors attenuated the development of diabetic nephropathy in experimental animals and clinical settings. The role of the kallikrein-kinin system in diabetes is further supported by findings that diabetic nephropathy is worsened in diabetic mice lacking bradykinin B2 receptors. Although long-acting bradykinin B2 receptor agonists have been shown to have renal protective effects, their therapeutic benefits have not been well studied. SUMMARY Current experimental investigations demonstrated that pharmacological intervention of the kallikrein-kinin system improved renal conditions in diabetes mellitus. These findings suggest that the kallikrein-kinin system may be a therapeutic target in preventing and treating diabetic nephropathy.
Collapse
Affiliation(s)
- Alexander Riad
- Charité – University Medicine Berlin, Department of Cardiology, Berlin, Germany
| | - Jia Long Zhuo
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Carsten Tschöpe
- Charité – University Medicine Berlin, Department of Cardiology, Berlin, Germany
| |
Collapse
|
50
|
Lavis VR, Picolos MK, Willerson JT. Endocrine Disorders and the Heart. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|