1
|
Davis JS, Montuelle SJ, Williams SH. Symphyseal morphology and jaw muscle recruitment levels during mastication in musteloid carnivorans. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:163-171. [PMID: 38149465 DOI: 10.1002/jez.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
In studies of mammalian mastication, a possible relationship has been proposed between bilateral recruitment of jaw adductor muscle force during unilateral chewing and the degree of fusion of the mandibular symphysis. Specifically, species that have unfused, mobile mandibular symphyses tend to utilize lower levels of jaw adductor force on the balancing (nonchewing) than the working (chewing) side of the head, when compared to related species with fused symphyses. Here, we compare jaw adductor recruitment levels in two species of musteloid carnivoran: the carnivorous ferret (unfused symphysis), and the frugivorous kinkajou (fused symphysis). During forceful chewing, we observe that ferrets recruit far more working-side muscle force than kinkajous, regardless of food toughness and that high working-to-balancing side ratios are the result of increased working-side force, often coupled with reduced balancing-side force. We propose that in carnivorans, high working-to-balancing side force ratios coupled with an unfused mandibular symphysis are necessary to rotate the hemimandible for precise unilateral occlusion of the carnassial teeth and to sustain laterally oriented force on the jaw to engage the carnassial teeth during shearing of tough foods. In contrast, the kinkajou's flattened cheekteeth permit less precise occlusion and require medially-oriented forces for grinding, thus, a fused symphysis is mechanically beneficial.
Collapse
Affiliation(s)
- Jillian Summer Davis
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Pathology, Anatomy, and Laboratory Medicine Department, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stephane J Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Warrensville Heights, Ohio, USA
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
2
|
Gould FDH, Lammers AR, Mayerl C, Ohlemacher J, German RZ. Muscle activity and kinematics show different responses to recurrent laryngeal nerve lesion in mammal swallowing. J Neurophysiol 2020; 124:1743-1753. [PMID: 32966748 DOI: 10.1152/jn.00409.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the interactions between neural and musculoskeletal systems is key to identifying mechanisms of functional failure. Mammalian swallowing is a complex, poorly understood motor process. Lesion of the recurrent laryngeal nerve, a sensory and motor nerve of the upper airway, results in airway protection failure (liquid entry into the airway) during swallowing through an unknown mechanism. We examined how muscle and kinematic changes after recurrent laryngeal nerve lesion relate to airway protection in eight infant pigs. We tested two hypotheses: 1) kinematics and muscle function will both change in response to lesion in swallows with and without airway protection failure, and 2) differences in both kinematics and muscle function will predict whether airway protection failure occurs in lesion and intact pigs. We recorded swallowing with high-speed videofluoroscopy and simultaneous electromyography of oropharyngeal muscles pre- and postrecurrent laryngeal nerve lesion. Lesion changed the relationship between airway protection and timing of tongue and hyoid movements. Changes in onset and duration of hyolaryngeal muscles postlesion were less associated with airway protection outcomes. The tongue and hyoid kinematics all predicted airway protection outcomes differently pre- and postlesion. Onset and duration of activity in only one infrahyoid and one suprahyoid muscle showed a change in predictive relationship pre- and postlesion. Kinematics of the tongue and hyoid more directly reflect changes in airway protections pre- and postlesion than muscle activation patterns. Identifying mechanisms of airway protection failure requires specific functional hypotheses that link neural motor outputs to muscle activation to specific movements.NEW & NOTEWORTHY Kinematic and muscle activity patterns of oropharyngeal structures used in swallowing show different patterns of response to lesion of the recurrent laryngeal nerve. Understanding how muscles act on structures to produce behavior is necessary to understand neural control.
Collapse
Affiliation(s)
- François D H Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, New Jersey
| | | | - Christopher Mayerl
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jocelyn Ohlemacher
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| | - Rebecca Z German
- Department of Anatomy and Neuroscience, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
3
|
Panagiotopoulou O, Iriarte-Diaz J, Mehari Abraha H, Taylor AB, Wilshin S, Dechow PC, Ross CF. Biomechanics of the mandible of Macaca mulatta during the power stroke of mastication: Loading, deformation, and strain regimes and the impact of food type. J Hum Evol 2020; 147:102865. [PMID: 32905895 PMCID: PMC7541691 DOI: 10.1016/j.jhevol.2020.102865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Mandible morphology has yet to yield definitive information on primate diet, probably because of poor understanding of mandibular loading and strain regimes, and overreliance on simple beam models of mandibular mechanics. We used a finite element model of a macaque mandible to test hypotheses about mandibular loading and strain regimes and relate variation in muscle activity during chewing on different foods to variation in strain regimes. The balancing-side corpus is loaded primarily by sagittal shear forces and sagittal bending moments. On the working side, sagittal bending moments, anteroposterior twisting moments, and lateral transverse bending moments all reach similar maxima below the bite point; sagittal shear is the dominant loading regime behind the bite point; and the corpus is twisted such that the mandibular base is inverted. In the symphyseal region, the predominant loading regimes are lateral transverse bending and negative twisting about a mediolateral axis. Compared with grape and dried fruit chewing, nut chewing is associated with larger sagittal and transverse bending moments acting on balancing- and working-side mandibles, larger sagittal shear on the working side, and larger twisting moments about vertical and transverse axes in the symphyseal region. Nut chewing is also associated with higher minimum principal strain magnitudes in the balancing-side posterior ramus; higher sagittal shear strain magnitudes in the working-side buccal alveolar process and the balancing-side oblique line, recessus mandibulae, and endocondylar ridge; and higher transverse shear strains in the symphyseal region, the balancing-side medial prominence, and the balancing-side endocondylar ridge. The largest food-related differences in maximum principal and transverse shear strain magnitudes are in the transverse tori and in the balancing-side medial prominence, extramolar sulcus, oblique line, and endocondylar ridge. Food effects on the strain regime are most salient in areas not traditionally investigated, suggesting that studies seeking dietary effects on mandible morphology might be looking in the wrong places.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia.
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Hyab Mehari Abraha
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | | | - Simon Wilshin
- Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL97TA, UK
| | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
van Eck A, Franks E, Vinyard CJ, Galindo-Cuspinera V, Fogliano V, Stieger M, Scholten E. Sauce it up: influence of condiment properties on oral processing behavior, bolus formation and sensory perception of solid foods. Food Funct 2020; 11:6186-6201. [DOI: 10.1039/d0fo00821d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Foods are rarely consumed on their own. Food oral processing behavior and sensory perception of composite foods varying in properties were investigated in this study.
Collapse
Affiliation(s)
- Arianne van Eck
- TiFN
- 6700 AN Wageningen
- The Netherlands
- Food Quality and Design
- Wageningen University
| | - Erin Franks
- Department of Anatomy and Neurobiology
- Northeast Ohio Medical University
- Rootstown
- USA
| | | | | | - Vincenzo Fogliano
- TiFN
- 6700 AN Wageningen
- The Netherlands
- Food Quality and Design
- Wageningen University
| | - Markus Stieger
- TiFN
- 6700 AN Wageningen
- The Netherlands
- Food Quality and Design
- Wageningen University
| | - Elke Scholten
- TiFN
- 6700 AN Wageningen
- The Netherlands
- Physics and Physical Chemistry of Foods
- Wageningen University
| |
Collapse
|
5
|
Davis JS, Williams SH. The influence of diet on masticatory motor patterns in musteloid carnivorans: An analysis of jaw adductor activity in ferrets (Mustela putorius furo) and kinkajous (Potos flavus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:551-561. [PMID: 29441707 DOI: 10.1002/jez.2141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 11/06/2022]
Abstract
Broad similarities in the timing of jaw adductor activity driving jaw movements across distantly related and morphologically disparate species have led to the hypothesis that mammalian masticatory motor patterns are conserved. However, some quantitative analyses also suggest that masticatory motor patterns have evolved in concert with dietary and/or morphological specialization. Here, we assess this relationship in two closely related carnivoran species with divergent diets and morphology: carnivorous ferrets and frugivorous kinkajous. Using electromyography to characterize jaw adductor activity during rhythmic mastication, we test the hypotheses that (1) carnivoran masticatory motor patterns differ from those of non-carnivorans based on previously published data, and (2) differences between ferret and kinkajou motor patterns are associated with dietary and morphological differences. We find that both species exhibit highly synchronous jaw adductor activity that is likely typical of most carnivorans. Kinkajous differ from ferrets, however, in having a balancing-side zygomaticomandibularis that is active later than all other adductors. The significance of these different masticatory motor patterns may relate to morphological differences in the dentition of ferrets and kinkajous. Whereas ferret cheek teeth have vertical occlusal surfaces that limit jaw closing to a primarily dorsally directed movement, kinkajous have relatively flat occlusal surfaces that allow more transverse movement, which may be essential for processing fruits. Our results suggest that some aspects of masticatory motor patterns are highly conserved yet some components are modified in concert with functional and morphological evolution of the masticatory apparatus.
Collapse
Affiliation(s)
- Jillian S Davis
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Exercise Science Department, High Point University, High Point, North Carolina
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| |
Collapse
|
6
|
Perry JMG, Prufrock KA. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of “Paleomyology”. Anat Rec (Hoboken) 2018; 301:538-555. [DOI: 10.1002/ar.23772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Kristen A. Prufrock
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
7
|
ORSBON COURTNEYP, GIDMARK NICHOLASJ, ROSS CALLUMF. Dynamic Musculoskeletal Functional Morphology: Integrating diceCT and XROMM. Anat Rec (Hoboken) 2018; 301:378-406. [PMID: 29330951 PMCID: PMC5786282 DOI: 10.1002/ar.23714] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
The tradeoff between force and velocity in skeletal muscle is a fundamental constraint on vertebrate musculoskeletal design (form:function relationships). Understanding how and why different lineages address this biomechanical problem is an important goal of vertebrate musculoskeletal functional morphology. Our ability to answer questions about the different solutions to this tradeoff has been significantly improved by recent advances in techniques for quantifying musculoskeletal morphology and movement. Herein, we have three objectives: (1) review the morphological and physiological parameters that affect muscle function and how these parameters interact; (2) discuss the necessity of integrating morphological and physiological lines of evidence to understand muscle function and the new, high resolution imaging technologies that do so; and (3) present a method that integrates high spatiotemporal resolution motion capture (XROMM, including its corollary fluoromicrometry), high resolution soft tissue imaging (diceCT), and electromyography to study musculoskeletal dynamics in vivo. The method is demonstrated using a case study of in vivo primate hyolingual biomechanics during chewing and swallowing. A sensitivity analysis demonstrates that small deviations in reconstructed hyoid muscle attachment site location introduce an average error of 13.2% to in vivo muscle kinematics. The observed hyoid and muscle kinematics suggest that hyoid elevation is produced by multiple muscles and that fascicle rotation and tendon strain decouple fascicle strain from hyoid movement and whole muscle length. Lastly, we highlight current limitations of these techniques, some of which will likely soon be overcome through methodological improvements, and some of which are inherent. Anat Rec, 301:378-406, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- COURTNEY P. ORSBON
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637
| | | | - CALLUM F. ROSS
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
8
|
Gharpure P, Kontogiorgos ED, Opperman LA, Ross CF, Strait DS, Smith A, Pryor LC, Wang Q, Dechow PC. Elastic Properties of Chimpanzee Craniofacial Cortical Bone. Anat Rec (Hoboken) 2017; 299:1718-1733. [PMID: 27870344 DOI: 10.1002/ar.23466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3 > E2 > E1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poorva Gharpure
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Elias D Kontogiorgos
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, Texas
| | - Lynne A Opperman
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Callum F Ross
- Department of Organismal Biology & Anatomy, University of Chicago, 1027 East 57th Street, Chicago, Illinois
| | - David S Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri
| | - Amanda Smith
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri
| | - Leslie C Pryor
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| |
Collapse
|
9
|
|
10
|
Kondo S, Naitoh M, Matsuno M, Kanazawa E, Takai M. Protuberance or fossa on the lateral surface of the mandible in primates. Ann Anat 2015; 203:77-84. [PMID: 25817174 DOI: 10.1016/j.aanat.2015.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
In order to clarify the morphological characteristics and function of the protuberance and/or fossa on the lateral surface of the mandible, we examined 778 mandibles of 9 genera, 19 species of non-human primates. Both protuberance and fossa were found in Macaca, Chlorocebus, and Cercocebus at frequencies ranging from 0% to 60%. The protuberance was composed of compact bone and was similar to the mandibular torus in humans. A well-developed protuberance extended from the fourth premolar to third molar region, and was situated at the central part of the mandibular body, or continued on the oblique line. Sometimes the protuberance localized on the mandibular base. A deep and large fossa was found in all individuals of Papio, Theropithecus, and Mandrillus, and the bone width was thin in the center of the fossa. The fossa extended from the third premolar to the second molar region, and the deepest area was the first molar region. In Macaca, Chlorocebus, and Cercocebus, the curvature of the external table of the mandible created a fossa. In Colobus, and Hylobates, the external surface of the mandible looked concave because of the thickened mandibular base. These concavo-convex structures have some biological functions and represent an adaptive change for mastication.
Collapse
Affiliation(s)
- Shintaro Kondo
- Department of Anatomy, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | - Munetaka Naitoh
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi-Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Masanobu Matsuno
- Department of Anatomy, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Eisaku Kanazawa
- Department of Anatomy, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Masanaru Takai
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama 484-8506, Japan
| |
Collapse
|
11
|
Koç H, Çakir E, Vinyard C, Essick G, Daubert C, Drake M, Osborne J, Foegeding E. Adaptation of Oral Processing to the Fracture Properties of Soft Solids. J Texture Stud 2013. [DOI: 10.1111/jtxs.12051] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H. Koç
- Department of Food, Bioprocessing, and Nutrition Sciences; North Carolina State University; Box 7624 Raleigh NC 27695-7624
| | - E. Çakir
- Fonterra; Palmerston North New Zealand
| | - C.J. Vinyard
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University; Rootstown OH
| | - G. Essick
- Department of Prosthodontics; School of Dentistry; University of North Carolina at Chapel Hill; Chapel Hill NC
| | - C.R. Daubert
- Department of Food, Bioprocessing, and Nutrition Sciences; North Carolina State University; Box 7624 Raleigh NC 27695-7624
| | - M.A. Drake
- Department of Food, Bioprocessing, and Nutrition Sciences; North Carolina State University; Box 7624 Raleigh NC 27695-7624
| | - J. Osborne
- Department of Statistics; North Carolina State University; Box 7624 Raleigh NC 27695-7624
| | - E.A. Foegeding
- Department of Food, Bioprocessing, and Nutrition Sciences; North Carolina State University; Box 7624 Raleigh NC 27695-7624
| |
Collapse
|
12
|
Pascua Y, Koç H, Foegeding EA. Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Koç H, Vinyard C, Essick G, Foegeding E. Food Oral Processing: Conversion of Food Structure to Textural Perception. Annu Rev Food Sci Technol 2013; 4:237-66. [DOI: 10.1146/annurev-food-030212-182637] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H. Koç
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695-7624; ,
| | - C.J. Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272;
| | - G.K. Essick
- Department of Prosthodontics, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599-7450;
| | - E.A. Foegeding
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695-7624; ,
| |
Collapse
|
14
|
Hanna JB, Schmitt D. Comparative triceps surae morphology in primates: a review. ANATOMY RESEARCH INTERNATIONAL 2011; 2011:191509. [PMID: 22567288 PMCID: PMC3335445 DOI: 10.1155/2011/191509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Primate locomotor evolution, particularly the evolution of bipedalism, is often examined through morphological studies. Many of these studies have examined the uniqueness of the primate forelimb, and others have examined the primate hip and thigh. Few data exist, however, regarding the myology and function of the leg muscles, even though the ankle plantar flexors are highly important during human bipedalism. In this paper, we draw together data on the fiber type and muscle mass variation in the ankle plantar flexors of primates and make comparisons to other mammals. The data suggest that great apes, atelines, and lorisines exhibit similarity in the mass distribution of the triceps surae. We conclude that variation in triceps surae may be related to the shared locomotor mode exhibited by these groups and that triceps surae morphology, which approaches that of humans, may be related to frequent use of semiplantigrade locomotion and vertical climbing.
Collapse
Affiliation(s)
- Jandy B. Hanna
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Vinyard CJ, Williams SH, Wall CE, Doherty AH, Crompton AW, Hylander WL. A preliminary analysis of correlations between chewing motor patterns and mandibular morphology across mammals. Integr Comp Biol 2011; 51:260-70. [PMID: 21724618 DOI: 10.1093/icb/icr066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The establishment of a publicly-accessible repository of physiological data on feeding in mammals, the Feeding Experiments End-user Database (FEED), along with improvements in reconstruction of mammalian phylogeny, significantly improves our ability to address long-standing questions about the evolution of mammalian feeding. In this study, we use comparative phylogenetic methods to examine correlations between jaw robusticity and both the relative recruitment and the relative time of peak activity for the superficial masseter, deep masseter, and temporalis muscles across 19 mammalian species from six orders. We find little evidence for a relationship between jaw robusticity and electromyographic (EMG) activity for either the superficial masseter or temporalis muscles across mammals. We hypothesize that future analyses may identify significant associations between these physiological and morphological variables within subgroups of mammals that share similar diets, feeding behaviors, and/or phylogenetic histories. Alternatively, the relative peak recruitment and timing of the balancing-side (i.e., non-chewing-side) deep masseter muscle (BDM) is significantly negatively correlated with the relative area of the mandibular symphysis across our mammalian sample. This relationship exists despite BDM activity being associated with different loading regimes in the symphyses of primates compared to ungulates, suggesting a basic association between magnitude of symphyseal loads and symphyseal area among these mammals. Because our sample primarily represents mammals that use significant transverse movements during chewing, future research should address whether the correlations between BDM activity and symphyseal morphology characterize all mammals or should be restricted to this "transverse chewing" group. Finally, the significant correlations observed in this study suggest that physiological parameters are an integrated and evolving component of feeding across mammals.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine, Rootstown, OH 44272, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Hylander WL, Vinyard CJ, Wall CE, Williams SH, Johnson KR. Functional and Evolutionary significance of the recruitment and firing patterns of the jaw adductors during chewing in verreaux's sifaka (Propithecus verreauxi). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:531-47. [DOI: 10.1002/ajpa.21529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 11/09/2022]
|
17
|
de Jong WC, Korfage JAM, Langenbach GEJ. The role of masticatory muscles in the continuous loading of the mandible. J Anat 2011; 218:625-36. [PMID: 21492160 DOI: 10.1111/j.1469-7580.2011.01375.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Muscles are considered to play an important role in the ongoing daily loading of bone, especially in the masticatory apparatus. Currently, there are no measurements describing this role over longer periods of time. We made simultaneous and wireless in vivo recordings of habitual strains of the rabbit mandible and masseter muscle and digastric muscle activity up to ∼25 h. The extent to which habitually occurring bone strains were related to muscle-activity bursts in time and in amplitude is described. The data reveal the masseter muscle to load the mandible almost continuously throughout the day, either within cyclic activity bouts or with thousands of isolated muscle bursts. Mandibular strain events rarely took place without simultaneous masseter activity, whereas the digastric muscle only played a small role in loading the mandible. The average intensity of masseter-muscle activity bouts was strongly linked to the average amplitude of the concomitant bone-strain events. However, individual pairs of muscle bursts and strain events showed no relation in amplitude within cyclic loading bouts. Larger bone-strain events, presumably related to larger muscle-activity levels, had more constant principal-strain directions. Finally, muscle-to-bone force transmissions were detected to take place at frequencies up to 15 Hz. We conclude that in the ongoing habitual loading of the rabbit mandible, the masseter muscle plays an almost non-stop role. In addition, our results support the possibility that muscle activity is a source of low-amplitude, high-frequency bone loading.
Collapse
Affiliation(s)
- W C de Jong
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Allen Foegeding E, Çakır E, Koç H. Using dairy ingredients to alter texture of foods: Implications based on oral processing considerations. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Vinyard CJ, Taylor AB. A preliminary analysis of the relationship between jaw-muscle architecture and jaw-muscle electromyography during chewing across primates. Anat Rec (Hoboken) 2010; 293:572-82. [PMID: 20235313 DOI: 10.1002/ar.21121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The architectural arrangement of the fibers within a muscle has a significant impact on how a muscle functions. Recent work on primate jaw-muscle architecture demonstrates significant associations with dietary variation and feeding behaviors. In this study, the relationship between masseter and temporalis muscle architecture and jaw-muscle activity patterns is explored using Belanger's treeshrews and 11 primate species, including two genera of strepsirrhines (Lemur and Otolemur) and five genera of anthropoids (Aotus, Callithrix, Cebus, Macaca, and Papio). Jaw-muscle weights, fiber lengths, and physiologic cross-sectional areas (PCSA) were quantified for this preliminary analysis or collected from the literature and compared to published electromyographic recordings from these muscles. Results indicate that masseter architecture is unrelated to the superficial masseter working-side/balancing-side (W/B) ratio across primate species. Alternatively, relative temporalis architecture is correlated with temporalis W/B ratios across primates. Specifically, relative temporalis PCSA is inversely related to the W/B ratio for the anterior temporalis, indicating that as animals recruit a larger relative percentage of their balancing-side temporalis, they possess the ability to generate relatively larger amounts of force from these muscles. These findings support three broader conclusions. First, masseter muscle architecture may have experienced divergent evolution across different primate clades related to novel functional roles in different groups. Second, the temporalis may be functionally constrained (relative to the masseter) across primates in its functional role of creating vertical occlusal forces during chewing. Finally, the contrasting results for the masseter and temporalis suggest that the fiber architecture of these muscles has evolved as distinct functional units in primates.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA.
| | | |
Collapse
|
20
|
Vinyard CJ, Yamashita N, Tan C. Linking Laboratory and Field Approaches in Studying the Evolutionary Physiology of Biting in Bamboo Lemurs. INT J PRIMATOL 2008. [DOI: 10.1007/s10764-007-9178-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Vinyard CJ, Wall CE, Williams SH, Hylander WL. Patterns of variation across primates in jaw-muscle electromyography during mastication. Integr Comp Biol 2008; 48:294-311. [PMID: 21669792 DOI: 10.1093/icb/icn071] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christopher J Vinyard
- *Department of Anatomy and Neurobiology, NEOUCOM, Rootstown, OH, USA; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | | | | | | |
Collapse
|
22
|
Roberts TJ, Gabaldón AM. Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force. Integr Comp Biol 2008; 48:312-20. [PMID: 21669793 DOI: 10.1093/icb/icn056] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electromyography is often used to infer the pattern of production of force by skeletal muscles. The interpretation of muscle function from the electromyogram (EMG) is challenged by the fact that factors such as type of muscle fiber, muscle length, and muscle velocity can all influence the relationship between electrical and mechanical activity of a muscle. Simultaneous measurements of EMG, muscle force, and fascicle length in hindlimb muscles of wild turkeys allow us to probe the quantitative link between force and EMG. We examined two features of the force-EMG relationship. First, we measured the relaxation electromechanical delay (r-EMD) as the time from the end of the EMG signal to time of the end of force. This delay varied with locomotor speed in the lateral gastrocnemius (LG); it was longer at slow walking speeds than for running. This variation in r-EMD was not explained by differences in muscle length trajectory, as the magnitude of r-EMD was not correlated with the velocity of shortening of the muscle during relaxation. We speculate that the longer relaxation times at slow walking speeds compared with running may reflect the longer time course of relaxation in slower muscles fibers. We also examined the relationship between magnitude of force and EMG across a range of walking and running speeds. We analyzed the force-EMG relationship during the swing phase separately from the force-EMG relationship during stance phase. During stance, force amplitude (average force) was linearly related to mean EMG amplitude (average EMG). Forces during swing phase were lower than predicted from the stance phase force-EMG relationship. The different force-EMG relationships during the stance and swing phases may reflect the contribution of passive structures to the development of force, or a nonlinear force-EMG relationship at low levels of muscle activity. Together the results suggest that any inference of force from EMG must be done cautiously when a broad range of activities is considered.
Collapse
Affiliation(s)
- Thomas J Roberts
- *Ecology and Evolutionary Biology Department, Brown University, Box G-B205 Providence, RI 02912, USA; Biology Department, Colorado State University-Pueblo, Pueblo, CO 81001, USA
| | | |
Collapse
|
23
|
Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. ACTA ACUST UNITED AC 2007; 210:1046-63. [PMID: 17337717 DOI: 10.1242/jeb.02733] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulation of force during mammalian mastication provides insight into force modulation in rhythmic, cyclic behaviors. This study uses in vivo bone strain data from the mandibular corpus to test two hypotheses regarding bite force modulation during rhythmic mastication in mammals: (1) that bite force is modulated by varying the duration of force production, or (2) that bite force is modulated by varying the rate at which force is produced. The data sample consists of rosette strain data from 40 experiments on 11 species of mammals, including six primate genera and four nonprimate species: goats, pigs, horses and alpacas. Bivariate correlation and multiple regression methods are used to assess relationships between maximum (epsilon(1)) and minimum (epsilon(2)) principal strain magnitudes and the following variables: loading time and mean loading rate from 5% of peak to peak strain, unloading time and mean unloading rate from peak to 5% of peak strain, chew cycle duration, and chew duty factor. Bivariate correlations reveal that in the majority of experiments strain magnitudes are significantly (P<0.001) correlated with strain loading and unloading rates and not with strain loading and unloading times. In those cases when strain magnitudes are also correlated with loading times, strain magnitudes are more highly correlated with loading rate than loading time. Multiple regression analyses reveal that variation in strain magnitude is best explained by variation in loading rate. Loading time and related temporal variables (such as overall chew cycle time and chew duty factor) do not explain significant amounts of additional variance. Few and only weak correlations were found between strain magnitude and chew cycle time and chew duty factor. These data suggest that bite force modulation during rhythmic mastication in mammals is mainly achieved by modulating the rate at which force is generated within a chew cycle, and less so by varying temporal parameters. Rate modulation rather than time modulation may allow rhythmic mastication to proceed at a relatively constant frequency, simplifying motor control computation.
Collapse
Affiliation(s)
- Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wall CE, Vinyard CJ, Johnson KR, Williams SH, Hylander WL. Phase II jaw movements and masseter muscle activity during chewing inPapio anubis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 129:215-24. [PMID: 16278877 DOI: 10.1002/ajpa.20290] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It was proposed that the power stroke in primates has two distinct periods of occlusal contact, each with a characteristic motion of the mandibular molars relative to the maxillary molars. The two movements are called phase I and phase II, and they occur sequentially in that order (Kay and Hiiemae [1974] Am J. Phys. Anthropol. 40:227-256, Kay and Hiiemae [1974] Prosimian Biology, Pittsburgh: University of Pittsburgh Press, p. 501-530). Phase I movement is said to be associated with shearing along a series of crests, producing planar phase I facets and crushing on surfaces on the basins of the molars. Phase I terminates in centric occlusion. Phase II movement is said to be associated with grinding along the same surfaces that were used for crushing at the termination of phase I. Hylander et al. ([1987] Am J. Phys. Anthropol. 72:287-312; see also Hiiemae [1984] Food Acquisition and Processing, London: Academic Press, p. 257-281; Hylander and Crompton [1980] Am J. Phys. Anthropol. 52:239-251, [1986] Arch. Oral. Biol. 31:841-848) analyzed data on macaques and suggested that phase II movement may not be nearly as significant for food breakdown as phase I movement simply because, based on the magnitude of mandibular bone strain patterns, adductor muscle and occlusal forces are likely negligible during movement out of centric occlusion. Our goal is to better understand the functional significance of phase II movement within the broader context of masticatory kinematics during the power stroke. We analyze vertical and transverse mandibular motion and relative activity of the masseter and temporalis muscles during phase I and II movements in Papio anubis. We test whether significant muscle activity and, by inference, occlusal force occurs during phase II movement. We find that during phase II movement, there is negligible force developed in the superficial and deep masseter and the anterior and posterior temporalis muscles. Furthermore, mandibular movements are small during phase II compared to phase I. These results suggest that grinding during phase II movement is of minimal importance for food breakdown, and that most food breakdown on phase II facets occurs primarily at the end of phase I movement (i.e., crushing during phase I movement). We note, however, that depending on the orientation of phase I facets, significant grinding also occurs along phase I facets during phase I.
Collapse
Affiliation(s)
- Christine E Wall
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
25
|
Williams SH, Wright BW, Truong VD, Daubert CR, Vinyard CJ. Mechanical properties of foods used in experimental studies of primate masticatory function. Am J Primatol 2005; 67:329-46. [PMID: 16287104 DOI: 10.1002/ajp.20189] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vivo studies of jaw-muscle behavior have been integral factors in the development of our current understanding of the primate masticatory apparatus. However, even though it has been shown that food textures and mechanical properties influence jaw-muscle activity during mastication, very little effort has been made to quantify the relationship between the elicited masticatory responses of the subject and the mechanical properties of the foods that are eaten. Recent work on human mastication highlights the importance of two mechanical properties-toughness and elastic modulus (i.e., stiffness)-for food breakdown during mastication. Here we provide data on the toughness and elastic modulus of the majority of foods used in experimental studies of the nonhuman primate masticatory apparatus. Food toughness ranges from approximately 56.97 Jm(-2) (apple pulp) to 4355.45 Jm(-2) (prune pit). The elastic modulus of the experimental foods ranges from 0.07 MPa for gummy bears to 346 MPa for popcorn kernels. These data can help researchers studying primate mastication select among several potential foods with broadly similar mechanical properties. Moreover, they provide a framework for understanding how jaw-muscle activity varies with food mechanical properties in these studies.
Collapse
Affiliation(s)
- Susan H Williams
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Ross CF, Patel BA, Slice DE, Strait DS, Dechow PC, Richmond BG, Spencer MA. Modeling masticatory muscle force in finite element analysis: Sensitivity analysis using principal coordinates analysis. ACTA ACUST UNITED AC 2005; 283:288-99. [PMID: 15747351 DOI: 10.1002/ar.a.20170] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our work on a finite element model of the skull of Macaca aims to investigate the functional significance of specific features of primate skulls and to determine to which of the input variables (elastic properties, muscle forces) the model behavior is most sensitive. Estimates of muscle forces acting on the model are derived from estimates of physiological cross-sectional areas (PCSAs) of the jaw muscles scaled by relative electromyographic (EMG) amplitudes recorded in vivo. In this study, the behavior of the model was measured under different assumptions regarding the PCSAs of the jaw muscles and the latency between EMG activity in those muscles and the resulting force production. Thirty-six different loading regimes were applied to the model using four different PCSA sets and nine different PCSA scaling parameters. The four PCSA sets were derived from three different macaque species and one genus average, and the scaling parameters were either EMGs from 10, 20, 30, 40, 50 and 60 msec prior to peak bite force, or simply 100%, 50%, or 25% of peak muscle force. Principal coordinates analysis was used to compare the deformations of the model produced by the 36 loading regimes. Strain data from selected sites on the model were also compared with in vivo bone strain data. The results revealed that when varying the external muscle forces within these boundaries, the majority of the variation in model behavior is attributable to variation in the overall magnitude rather than the relative amount of muscle force generated by each muscle. Once this magnitude-related variation in model deformation was accounted for, significant variation was attributable to differences in relative muscle recruitment between working and balancing sides. Strain orientations at selected sites showed little variation across loading experiments compared with variation documented in vivo. These data suggest that in order to create an accurate and valid finite element model of the behavior of the primate skull at a particular instant during feeding, it is important to include estimates of the relative recruitment levels of the masticatory muscles. However, a lot can be learned about patterns of skull deformation, in fossil species for example, by applying external forces proportional to the estimated relative PCSAs of the jaw adductors.
Collapse
Affiliation(s)
- Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Vinyard CJ, Schmitt D. New technique for studying reaction forces during primate behaviors on vertical substrates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 125:343-51. [PMID: 15386253 DOI: 10.1002/ajpa.10395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recording reaction forces from primates during behaviors on vertical substrates, such as leaping, climbing, or biting trees, typically requires the design and construction of customized recording devices or mounting commercially available force platforms in a vertical position. The technical difficulties imposed by either option have hindered in vivo research on the kinetics of primate behaviors on vertical substrates. We describe a simple, inexpensive apparatus for recording forces from primate behaviors on vertical substrates. The apparatus includes an instrumented beam fastened directly to a horizontal force platform and a surrounding vertical substrate that does not contact the instrumented beam or platform. The contact piece at the end of the instrumented beam is positioned flush with the noninstrumented vertical substrate, and reaction forces elicited on this instrumented section are directed to the force platform. Because most of the vertical substrate is not instrumented, we can isolate and record forces from a single limb or jaw during a behavior. Biewener and Full ([1992] Biomechanics Structures and Positions: A Practical Approach; New York: Oxford University press, p. 45-73) gave seven criteria to consider when designing a customized force-recording device. Where appropriate, we tested if our apparatus met their criteria. The apparatus accurately records forces in three orthogonal directions, has low cross-talk, maintains a high frequency response, exhibits a linear response up to at least 200 Newtons, and displays a uniform response to a given force across the instrumented contact piece. Our design does not easily facilitate the identification of the point of force application. Therefore, joint moments cannot be easily calculated. This limitation, however, does not affect the apparatus's ability to accurately record the magnitude and direction of a force (as shown by other tests). We developed this apparatus to measure jaw forces during tree gouging in common marmosets (Callithrix jacchus), but the general design can be readily modified to study a variety of primate behaviors on vertical substrates.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
29
|
Hylander WL, Wall CE, Vinyard CJ, Ross C, Ravosa MR, Williams SH, Johnson KR. Temporalis function in anthropoids and strepsirrhines: An EMG study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 128:35-56. [PMID: 15714512 DOI: 10.1002/ajpa.20058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire asynchronously and reach peak activity during the power stroke. Compared to these strepsirrhines, however, the balancing-side posterior temporalis of anthropoids appears to have a relatively delayed firing pattern. Moreover, based on their smaller W/B ratios, anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis. This in turn suggests that anthropoids may emphasize the duration and magnitude of the power stroke during mastication. This hypothesis, however, requires additional testing. Furthermore, during the latter portion of the power stroke, the late activity of the balancing-side posterior temporalis of anthropoids apparently assists the balancing-side deep masseter in driving the working-side molars through the terminal portion of occlusion.
Collapse
Affiliation(s)
- William L Hylander
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA. hylan0012mc.duke.edu
| | | | | | | | | | | | | |
Collapse
|
30
|
Sherwood CC, Hof PR, Holloway RL, Semendeferi K, Gannon PJ, Frahm HD, Zilles K. Evolution of the brainstem orofacial motor system in primates: a comparative study of trigeminal, facial, and hypoglossal nuclei. J Hum Evol 2005; 48:45-84. [PMID: 15656936 DOI: 10.1016/j.jhevol.2004.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 10/01/2004] [Accepted: 10/05/2004] [Indexed: 11/19/2022]
Abstract
The trigeminal motor (Vmo), facial (VII), and hypoglossal (XII) nuclei of the brainstem comprise the final common output for neural control of most orofacial muscles. Hence, these cranial motor nuclei are involved in the production of adaptive behaviors such as feeding, facial expression, and vocalization. We measured the volume and Grey Level Index (GLI) of Vmo, VII, and XII in 47 species of primates and examined these nuclei for scaling patterns and phylogenetic specializations. Allometric regression, using medulla volume as an independent variable, did not reveal a significant difference between strepsirrhines and haplorhines in the scaling of Vmo volume. In addition, correlation analysis using independent contrasts did not find a relationship between Vmo size or GLI and the percent of leaves in the diet. The scaling trajectory of VII volume, in contrast, differed significantly between suborders. Great ape and human VII volumes, furthermore, were significantly larger than predicted by the haplorhine regression. Enlargement of VII in these taxa may reflect increased differentiation of the facial muscles of expression and greater utilization of the visual channel in social communication. The independent contrasts of VII volume and GLI, however, were not correlated with social group size. To examine whether the human hypoglossal motor system is specialized to control the tongue for speech, we tested human XII volume and GLI for departures from nonhuman haplorhine prediction lines. Although human XII volumes were observed above the regression line, they did not exceed prediction intervals. Of note, orang-utan XII volumes had greater residuals than humans. Human XII GLI values also did not differ from allometric prediction. In sum, these findings indicate that the cranial orofacial motor nuclei evince a mosaic of phylogenetic specializations for innervation of the facial muscles of expression in the context of a generally conservative scaling relationship with respect to medulla size.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu ZJ, Green JR, Moore CA, Herring SW. Time series analysis of jaw muscle contraction and tissue deformation during mastication in miniature pigs. J Oral Rehabil 2004; 31:7-17. [PMID: 15125590 DOI: 10.1111/j.1365-2842.2004.01156.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle's activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.
Collapse
Affiliation(s)
- Z J Liu
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
32
|
Taylor AB. Masticatory form and function in the African apes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2002; 117:133-56. [PMID: 11815948 DOI: 10.1002/ajpa.10013] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examines variability in masticatory morphology as a function of dietary preference among the African apes. The African apes differ in the degree to which they consume leaves and other fibrous vegetation. Gorilla gorilla beringei, the eastern mountain gorilla, consumes the most restricted diet comprised of mechanically resistant foods such as leaves, pith, bark, and bamboo. Gorilla gorilla gorilla, the western lowland gorilla subspecies, consumes leaves and other terrestrial herbaceous vegetation (THV) but also consumes a fair amount of ripe, fleshy fruit. In contrast to gorillas, chimpanzees are frugivores and rely on vegetation primarily as fallback foods. However, there has been a long-standing debate regarding whether Pan paniscus, the pygmy chimpanzee (or bonobo), consumes greater quantities of THV as compared to Pan troglodytes, the common chimpanzee. Because consumption of resistant foods involves more daily chewing cycles and may require larger average bite force, the mechanical demands placed on the masticatory system are expected to be greater in folivores as compared to primates that consume large quantities of fleshy fruit. Therefore, more folivorous taxa are predicted to exhibit features that improve load-resistance capabilities and increase force production. To test this hypothesis, jaw and skull dimensions were compared in ontogenetic series of G. g. beringei, G. g. gorilla, P. t. troglodytes, and P. paniscus. Controlling for the influence of allometry, results show that compared to both chimpanzees and bonobos, gorillas exhibit some features of the jaw complex that are suggestive of improved masticatory efficiency. For example, compared to all other taxa, G. g. beringei has a significantly wider mandibular corpus and symphysis, larger area for the masseter muscle, higher mandibular ramus, and higher mandibular condyle relative to the occlusal plane of the mandible. However, the significantly wider mandibular symphysis may be an architectural response to increasing symphyseal curvature with interspecific increase in size. Moreover, Gorilla and Pan do not vary consistently in all features, and some differences run counter to predictions based on dietary variation. Thus, the morphological responses are not entirely consonant with predictions based on hypothesized loading regimes. Finally, despite morphological differences between bonobos and chimpanzees, there is no systematic pattern of differentiation that can be clearly linked to differences in diet. Results indicate that while some features may be linked to differences in diet among the African apes, diet alone cannot account for the patterns of morphological variation demonstrated in this study. Allometric constraints and dental development also appear to play a role in morphological differentiation among the African apes.
Collapse
Affiliation(s)
- Andrea B Taylor
- Departments of Community and Family Medicine/Division of Physical Therapy and Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
33
|
Hylander WL, Ravosa MJ, Ross CF, Wall CE, Johnson KR. Symphyseal fusion and jaw-adductor muscle force: an EMG study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:469-92. [PMID: 10918125 DOI: 10.1002/1096-8644(200008)112:4<469::aid-ajpa5>3.0.co;2-v] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study is to test various hypotheses about balancing-side jaw muscle recruitment patterns during mastication, with a major focus on testing the hypothesis that symphyseal fusion in anthropoids is due mainly to vertically- and/or transversely-directed jaw muscle forces. Furthermore, as the balancing-side deep masseter has been shown to play an important role in wishboning of the macaque mandibular symphysis, we test the hypothesis that primates possessing a highly mobile mandibular symphysis do not exhibit the balancing-side deep masseter firing pattern that causes wishboning of the anthropoid mandible. Finally, we also test the hypothesis that balancing-side muscle recruitment patterns are importantly related to allometric constraints associated with the evolution of increasing body size. Electromyographic (EMG) activity of the left and right superficial and deep masseters were recorded and analyzed in baboons, macaques, owl monkeys, and thick-tailed galagos. The masseter was chosen for analysis because in the frontal projection its superficial portion exerts force primarily in the vertical (dorsoventral) direction, whereas its deep portion has a relatively larger component of force in the transverse direction. The symphyseal fusion-muscle recruitment hypothesis predicts that unlike anthropoids, galagos develop bite force with relatively little contribution from their balancing-side jaw muscles. Thus, compared to galagos, anthropoids recruit a larger percentage of force from their balancing-side muscles. If true, this means that during forceful mastication, galagos should have working-side/balancing-side (W/B) EMG ratios that are relatively large, whereas anthropoids should have W/B ratios that are relatively small. The EMG data indicate that galagos do indeed have the largest average W/B ratios for both the superficial and deep masseters (2.2 and 4.4, respectively). Among the anthropoids, the average W/B ratios for the superficial and deep masseters are 1.9 and 1.0 for baboons, 1.4 and 1.0 for macaques, and both values are 1.4 for owl monkeys. Of these ratios, however, the only significant difference between thick-tailed galagos and anthropoids are those associated with the deep masseter. Furthermore, the analysis of masseter firing patterns indicates that whereas baboons, macaques and owl monkeys exhibit the deep masseter firing pattern associated with wishboning of the macaque mandibular symphysis, galagos do not exhibit this firing pattern. The allometric constraint-muscle recruitment hypothesis predicts that larger primates must recruit relatively larger amounts of balancing-side muscle force so as to develop equivalent amounts of bite force. Operationally this means that during forceful mastication, the W/B EMG ratios for the superficial and deep masseters should be negatively correlated with body size. Our analysis clearly refutes this hypothesis. As already noted, the average W/B ratios for both the superficial and deep masseter are largest in thick-tailed galagos, and not, as predicted by the allometric constraint hypothesis, in owl monkeys, an anthropoid whose body size is smaller than that of thick-tailed galagos. Our analysis also indicates that owl monkeys have W/B ratios that are small and more similar to those of the much larger-sized baboons and macaques. Thus, both the analysis of the W/B EMG ratios and the muscle firing pattern data support the hypothesis that symphyseal fusion and transversely-directed muscle force in anthropoids are functionally linked. This in turn supports the hypothesis that the evolution of symphyseal fusion in anthropoids is an adaptation to strengthen the symphysis so as to counter increased wishboning stress during forceful unilateral mastication. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- W L Hylander
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
34
|
Anapol F, Herring SW. Ontogeny of histochemical fiber types and muscle function in the masseter muscle of miniature swine. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:595-613. [PMID: 10918131 DOI: 10.1002/1096-8644(200008)112:4<595::aid-ajpa11>3.0.co;2-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study of masticatory maturation, the ontogeny of the histochemical fiber type composition of musculus masseter is examined in the omnivorous miniature swine (Sus scrofa). Fiber type characteristics are interpreted by comparison with electromyography (EMG) recorded during feeding behavior. Similar to locomotion studies, the results suggest a correspondence between the composition and arrangement of motor units and their recruitment pattern. Serial sections of masseter muscles from 10 minipigs, ranging from 2 weeks to slightly over 1 year of age, were stained for myosin adenosine triphosphatase (mATPase) activity to distinguish slow-twitch from fast-twitch fibers, and for nicotinamide adenosine dehydrogenase-tetrazolium reductase to assess the aerobic capacity of the same fibers. Although maintaining a uniformly high aerobic capacity throughout ontogeny and in adult animals, a transition is observed in the relative proportions of fast- and slow-twitch fibers. The primarily fast-twitch neonatal pig masseter eventually comprises approximately 25-30% slow-twitch fibers in adults, with a higher predominance of slow fibers in the deep (vs. superficial) and anterior (vs. posterior) regions of the muscle. Furthermore, while individual fibers of adult masseters generally stain for either alkaline- or acid-stable mATPase activity, a substantial proportion of cells in developing animals exhibits the presence of both isozymes. EMG results indicate functional heterogeneity within the masseter of adult pigs. During chewing, when pig chow is replaced by cracked corn, EMG activity in the deep portion of the muscle either decreases or increases slightly. In the superficial portion, however, muscle amplitudes become dramatically higher for corn, surpassing levels generated for chewing the less obdurate chow. These results are consistent with a behavioral transition from neonatal suckling to sustained mastication of foods of more complex textures eaten by adult pigs. The relationship between these fiber type and EMG results for pig masseter corresponds to those pertaining to motor unit recruitment in the extensor muscles of locomotion. Implications of this work for the evolutionary morphology of mastication also are discussed.
Collapse
Affiliation(s)
- F Anapol
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
| | | |
Collapse
|
35
|
Lieberman DE, Crompton AW. Why fuse the mandibular symphysis? A comparative analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 112:517-40. [PMID: 10918127 DOI: 10.1002/1096-8644(200008)112:4<517::aid-ajpa7>3.0.co;2-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fused symphyses, which evolved independently in several mammalian taxa, including anthropoids, are stiffer and stronger than unfused symphyses. This paper tests the hypothesis that orientations of tooth movements during occlusion are the primary basis for variations in symphyseal fusion. Mammals whose teeth have primarily dorsally oriented occlusal trajectories and/or rotate their mandibles during occlusion will not benefit from symphyseal fusion because it prevents independent mandibular movements and because unfused symphyses transfer dorsally oriented forces with equal efficiency; mammals with predominantly transverse power strokes are predicted to benefit from symphyseal fusion or greatly restricted mediolateral movement at the symphysis in order to increase force transfer efficiency across the symphysis in the transverse plane. These hypotheses are tested with comparative data on symphyseal and occlusal morphology in several mammals, and with kinematic and EMG analyses of mastication in opossums (Didelphis virginiana) and goats (Capra hircus) that are compared with published data on chewing in primates. Among mammals, symphyseal fusion or a morphology that greatly restricts movement correlates significantly with occlusal orientation: species with more transversely oriented occlusal planes tend to have fused symphyses. The ratio of working- to balancing-side adductor muscle force in goats and opossums is close to 1:1, as in macaques, but goats and opossums have mandibles that rotate independently during occlusion, and have predominantly vertically oriented tooth movements during the power stroke. Symphyseal fusion is therefore most likely an adaptation for increasing the efficiency of transfer of transversely oriented occlusal forces in mammals whose mandibles do not rotate independently during the power stroke.
Collapse
Affiliation(s)
- D E Lieberman
- Department of Anthropology, George Washington University, Washington, DC 20052, and Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | | |
Collapse
|
36
|
Byrd KE, Yang L, Yancey KW, Teomim D, Domb AJ. Increased in vivo levels of neurotransmitters to trigeminal motoneurons: effects on craniofacial bone and TMJ. THE ANATOMICAL RECORD 2000; 258:369-83. [PMID: 10737855 DOI: 10.1002/(sici)1097-0185(20000401)258:4<369::aid-ar5>3.0.co;2-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of chronic, in vivo delivery of excitatory and inhibitory neurotransmitter substances upon the craniofacial skeleton are of ongoing interest to clinician and basic scientist alike. Our purpose was to document and compare the effects of biodegradable glycine, glutamate, and thyrotropin-releasing hormone (TRH) microspheres upon the craniofacial skeleton and TMJ of actively growing rats. Glycine, glutamate, TRH, and blank microspheres were stereotactically implanted in proximity to motoneurons within the trigeminal motor nucleus in order to test the following null hypotheses: (1) neurotransmitter microspheres implanted near trigeminal motoneurons of growing rats have no significant effect on the craniofacial skeleton and temporomandibular joints of implanted animals, and (2) there are no significant differences between the relative effects of glutamate, TRH (excitatory to trigeminal motoneurons), and glycine (inhibitory to trigeminal motoneurons) implants upon the craniofacial skeleton and temporomandibular joint. Fifty male Sprague-Dawley rats underwent stereotactic neurosurgery at 35 days; five rats each were killed at 14 and 21 days postoperative for data collection and comparison between glycine-, glutamate-, TRH-, blank-microsphere, and sham-surgery rats. Glycine rats had significantly (P < or = 0.05, 0. 01) smaller implant-side cranial dimensions and mandibular condyles, all glycine rats showed increased gracility of implant-side bones, and deviation of their facial skeleton away from the implant-side; this was in contrast to the generally larger implant-side bony structures in both glutamate and TRH rats. The two null hypotheses were both rejected. Due to their inhibitory and excitatory effects upon trigeminal motoneurons, masticatory muscles, and their neuromuscular generation of biomechanical forces that affect bone, the neurotransmitter substances glycine, glutamate, and TRH appear to play an important role in the growth and development of the mammalian craniofacial skeleton and TMJ.
Collapse
Affiliation(s)
- K E Byrd
- Department of Anatomy, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | | | |
Collapse
|
37
|
Hylander WL, Ravosa MJ, Ross CF, Johnson KR. Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1998; 107:257-71. [PMID: 9821491 DOI: 10.1002/(sici)1096-8644(199811)107:3<257::aid-ajpa3>3.0.co;2-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work indicates that compared to adult thick-tailed galagos, adult long-tailed macaques have much more bone strain on the balancing-side mandibular corpus during unilateral isometric molar biting (Hylander [1979a] J. Morphol. 159:253-296). Recently we have confirmed in these same two species the presence of similar differences in bone-strain patterns during forceful mastication. Moreover, we have also recorded mandibular bone strain patterns in adult owl monkeys, which are slightly smaller than the galago subjects. The owl monkey data indicate the presence of a strain pattern very similar to that recorded for macaques, and quite unlike that recorded for galagos. We interpret these bone-strain pattern differences to be importantly related to differences in balancing-side jaw-adductor muscle force recruitment patterns. That is, compared to galagos, macaques and owl monkeys recruit relatively more balancing-side jaw-adductor muscle force during forceful mastication. Unlike an earlier study (Hylander [1979b] J. Morphol. 160:223-240), we are unable to estimate the actual amount of working-side muscle force relative to balancing-side muscle force (i.e., the W/B muscle force ratio) in these species because we have no reliable estimate of magnitude, direction, and precise location of the bite force during mastication. A comparison of the mastication data with the earlier data recorded during isometric molar biting, however, supports the hypothesis that the two anthropoids have a small W/B jaw-adductor muscle force ratio in comparison to thick-tailed galagos. These data also support the hypothesis that increased recruitment of balancing-side jaw-adductor muscle force in anthropoids is functionally linked to the evolution of symphyseal fusion or strengthening. Moreover, these data refute the hypothesis that the recruitment pattern differences between macaques and thick-tailed galagos are due to allometric factors. Finally, although the evolution of symphyseal fusion in primates may be linked to increased stress associated with increased balancing-side muscle force, it is currently unclear as to whether the increased force is predominately vertically directed, transversely directed, or is a near equal combination of these two force components (cf. Ravosa and Hylander [1994] In Fleagle and Kay [eds.]: Anthropoid Origins. New York: Plenum, pp. 447-468).
Collapse
Affiliation(s)
- W L Hylander
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
38
|
Hamrick MW, Churchill SE, Schmitt D, Hylander WL. EMG of the human flexor pollicis longus muscle: implications for the evolution of hominid tool use. J Hum Evol 1998; 34:123-36. [PMID: 9503091 DOI: 10.1006/jhev.1997.0177] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern humans possess a distinct and well-developed flexor pollicis longus muscle, an extrinsic thumb flexor which is "either rudimentary or absent" in great apes (Straus, 1942, p. 228). Previous workers (e.g., Napier, 1962; Susman, 1988) have related the origin of a well-developed flexor pollicis longus muscle to the acquisition of precision grasping and stone tool making capabilities in early hominids. The proposed functional association between flexor pollicis longus activity, precision grasping, and stone tool manufacture has, however, never been tested experimentally. This study uses electromyographic techniques (EMG) to investigate the role of flexor pollicis longus during a variety of tool making, tool using, and manipulatory behaviors in order to determine the functional and evolutionary significance of the human flexor pollicis longus muscle. Our results indicate that flexor pollicis longus is recruited during forceful tool using and stone tool making behaviors, regardless of the power or precision grip used to hold the tool. In particular, both stone tool use and stone tool making employing three- and four-jaw chuck precision grips elicit consistently high levels of FPL activity. Flexor pollicis longus activity increases most when resistance is increased to the thumb's volar pad during these hammering, cutting, and knapping behaviors. In contrast, we observed relatively low levels of flexor pollicis longus activity during the fine manipulation of food items, the making of slender wooden probes, and the use of these probes as tools. The paleontological, archaeological, and experimental data suggest that a well-developed flexor pollicis longus muscle functioned initially in the hominid lineage to stabilize the terminal pollical phalanx against loads applied to the thumb's apical pad during the frequent and forceful use of unmodified stones as tools.
Collapse
Affiliation(s)
- M W Hamrick
- Department of Anthropology, Kent State University, Ohio 44242, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND The transmission of force through the skull is complicated by the irregular form of the bones, the interposed sutures, and the multiplicity of loads from the teeth, muscles, and environment. The in vivo relationship between bone strain and muscle function in the mammalian skull is best investigated empirically. METHODS We studied the zygomatic arch of pigs (Sus scrofa) by simultaneous strain gauge recording and electromyography. Seventeen juvenile animals were used, employing multiple strain gauges arranged either in rosettes or strips. Strain was recorded during mastication and muscle stimulations. Bony architecture was examined on sectioned specimens. RESULTS Strain patterns were complex even in this beamlike structure. During masseteric contraction, the more anterior zygomatic bone showed in-plane bending such that its lower border became more convex, and the major principal strain axis (tension) was parallel to the masseter muscle. The posterior squamosal bone was slightly bent in the opposite direction, and the major principal strain was rotated 45-60 degrees from the masseteric line of action. Strain magnitudes in the squamosal were larger than those in the zygomatic. Woven bone composing the surface of the arch appeared denser in the zygomatic bone, where its predominant orientation corresponded with compressive strain. In the squamosal bone trabeculae were more regularly arranged, but their orientation did not correspond with strain axes. CONCLUSIONS The magnitude differences are probably related to the different architecture of the zygomatic and squamosal bones, whereas the different strain patterns primarily reflect the influence of the sutures in selectively damping or transmitting loads. In particular, the zygomatic bone may be loaded by three-point, distributed-load bending, whereas the squamosal, loaded at only two points, may be sheared. We conclude that each cranial bone functions in a unique strain environment, with the sutures serving to redirect loading.
Collapse
Affiliation(s)
- S W Herring
- Department of Orthodontics, University of Washington, Seattle 98195-7446, USA
| | | | | | | | | |
Collapse
|
40
|
Hylander WL, Johnson KR. Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1994; 94:523-47. [PMID: 7977678 DOI: 10.1002/ajpa.1330940407] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An analysis of in vivo bone strain indicates that the mandibular symphysis of macaques experiences lateral transverse bending or "wishboning" during the power stroke of mastication, and this loading regime results in relatively intense concentrations of stress along the lingual aspect of the symphysis (Hylander 1984, 1985). It has been hypothesized that peak wishboning of the macaque mandible, which probably occurs at the very end of the power stroke, that is, after the initial occurrence of maximum intercuspation, is associated with the late peak activity of the balancing-side deep masseter muscle coupled with the rapid decline in the activity of the balancing-side medial pterygoid and superficial masseter muscles (Hylander et al., 1987). The main purpose of this study is to do a detailed analysis of the electromyographic (EMG) activity of the deep and superficial masseter and medial pterygoid muscles so as to provide a better understanding of the external forces associated with wishboning. This was done by recording and analyzing EMG activity from the superficial masseter, deep masseter, and medial pterygoid muscles in macaques and baboons. EMG activity was recorded from bipolar fine-wire electrodes, and the data were quantified and analyzed using digital techniques. The EMG data clearly support our original observation that the balancing-side posterior deep masseter exhibits peak EMG activity relatively late in the power stroke at a time when activity is rapidly decreasing in the balancing-side medial pterygoid and superficial masseter muscles. Moreover, peak activity of the balancing-side deep masseter occurs at a time when the activity of the working-side deep and superficial masseter and medial pterygoid muscles are also decreasing. Thus, these data are consistent with the hypothesis that wishboning of the mandible is influenced significantly by the late occurrence of force from the balancing-side deep masseter. The EMG data also indicate that residual force from the relaxing superficial masseter may contribute significantly to wishboning. Finally, patterns of wishboning are not fully accounted for by our EMG analysis of the deep and superficial masseter and medial pterygoid muscles. This is probably because the lateral ptergyoids, which can either counter increased wishboning or actually cause reverse wishboning, were not included in our EMG analysis. The EMG data demonstrate that jaw-closing muscle recruitment patterns for macaques and baboons differ from those of humans. Nevertheless, in spite of these differences, it appears, based on previously published EMG data, that the human symphysis may also experience wishboning.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W L Hylander
- Duke University Medical Center, Department of Biological Anthropology and Anatomy, Durham, North Carolina 27710
| | | |
Collapse
|
41
|
Wall CE, Larson SG, Stern JT. EMG of the digastric muscle in gibbon and orangutan: functional consequences of the loss of the anterior digastric in orangutans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1994; 94:549-67. [PMID: 7977679 DOI: 10.1002/ajpa.1330940408] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unlike all other primates, the digastric muscle of the orangutan lacks an anterior belly; the posterior belly, while present, inserts directly onto the mandible. To understand the functional consequences of this morphologic novelty, the EMG activity patterns of the digastric muscle and other potential mandibular depressors were studied in a gibbon and an orangutan. The results suggest a significant degree of functional differentiation between the two digastric bellies. In the gibbon, the recruitment pattern of the posterior digastric during mastication is typically biphasic. It is an important mandibular depressor, active in this role during mastication and wide opening. It also acts with the anterior suprahyoid muscles to move the hyoid prior to jaw opening during mastication. The recruitment patterns of the anterior digastric suggest that it is functionally allied to the geniohyoid and mylohyoid. For example, although it transmits the force of the posterior digastric during mandibular depression, it functions independent of the posterior digastric during swallowing. Of the muscles studied, the posterior digastric was the only muscle to exhibit major differences in recruitment pattern between the two species. The posterior digastric retains its function as a mandibular depressor in orangutans, but is never recruited biphasically, and is not active prior to opening. The unique anatomy of the digastric muscle in orangutans results in decoupling of the mechanisms for hyoid movement and mandibular depression, and during unilateral activity it potentially contributes to substantial transverse movements of the mandible. Hypotheses to explain the loss of the anterior digastric should incorporate these functional conclusions.
Collapse
Affiliation(s)
- C E Wall
- Doctoral Program in Anthropological Sciences, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
42
|
|