1
|
Ueno Y, Li OY, Shen JR, Tomo T, Akimoto S, Nagao R. Aggregation-Induced Excitation-Energy Quenching in Fucoxanthin Chlorophyll a/ c-Binding Proteins from the Diatom Phaeodactylum tricornutum. J Phys Chem B 2025; 129:3553-3558. [PMID: 40156563 DOI: 10.1021/acs.jpcb.4c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Light-harvesting complexes (LHCs) are vital for photosynthesis, capturing light energy and transferring it to photosystems I and II. In diatoms, fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as unique LHCs. In this study, we examined the spectral properties of untreated and aggregated FCP complexes (Untreated-FCP and Aggregated-FCP, respectively) from the diatom Phaeodactylum tricornutum. Fluorescence quantum yields and excitation-energy transfer pathways were evaluated using absolute fluorescence spectroscopy and fluorescence decay-associated (FDA) spectra. Aggregation of FCPs significantly enhanced excitation-energy quenching, with a marked decrease in fluorescence quantum yield from 37.6% in Untreated-FCP to 4.8% in Aggregated-FCP. The FDA spectra of Aggregated-FCP showed prominent fluorescence decays with relatively high amplitudes with time constants of 310 ps and 1.6 ns, reflecting distinct alterations in excitation-energy transfer among Chls upon aggregation. These changes were accompanied by long-wavelength shifts and broadening of the fluorescence-emission spectra, characteristics typically observed in aggregated LHCs in land plants. Our results suggest that the structural rearrangement of pigment molecules, driven by changes in Chl-Chl and Chl-Car interactions, underlies the observed excitation-energy quenching upon aggregation. This study provides key insights into the quenching mechanisms of diatom FCPs, offering broader implications for understanding energy regulation in photosynthetic systems.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Institute of Arts and Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Ou-Yang Li
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tatsuya Tomo
- Institute of Arts and Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Chagas JCV, F Dos Santos LG, Nieman R, Aquino AJA, do Monte SA, Plasser F, Szalay PG, Lischka H, Machado FBC. Low-lying excited states of linear all- trans polyenes: the σ-π electron correlation and the description of ionic states. Phys Chem Chem Phys 2025; 27:7916-7928. [PMID: 40165494 DOI: 10.1039/d5cp00339c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In this work, the electronic spectra of all-trans polyenes, from hexatriene to dodecahexaene are investigated. Special attention is given to the challenging description of the ionic 11B+u state. A comprehensive wavefunction analysis of both singlet (21A-g, 11B+u, and 21B-u) and triplet excited states (13A-g and 13B-u) is performed using a range of multireference correlated methods, including multireference configuration interaction with singles and doubles (MR-CISD) including a posteriori size-extensivity Pople correction (+P), and the multireference averaged quadratic coupled-cluster (MR-AQCC) method. While covalent states are well described by multi-configurational self-consistent field (MCSCF) theory, accurately describing the ionic state requires addressing size-extensivity errors, basis set effects, and, most importantly, σ-π electron correlation. Taking these factors into account, MR-CISD+P and MR-AQCC results mutually corroborate that the ionic 11B+u state is the first vertically excited state in hexatriene and octatetraene. In decapentaene, extrapolated MR-CISD+P results indicate that the 21A-g and 11B+u states are nearly degenerate, while MR-AQCC suggests that the ionic state lies approximately 0.2 eV below the covalent state. From a wavefunction perspective, the ionic state is consistently well-represented by a single HOMO-LUMO excitation, whereas the contribution of doubly excited configurations increases with chain length for both covalent states.
Collapse
Affiliation(s)
- Julio C V Chagas
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil.
- Advanced Scientific Computing and Modeling Laboratory, Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil
| | - Luan G F Dos Santos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Silmar A do Monte
- Department of Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Péter G Szalay
- Institute of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Francisco B C Machado
- Department of Chemistry, Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil.
- Advanced Scientific Computing and Modeling Laboratory, Aeronautics Institute of Technology, São José dos Campos 12228-900, Brazil
| |
Collapse
|
3
|
Terashima I, Oguchi R, Atsuzawa K, Kaneko Y, Kono M. Excitation spillover from PSII to PSI measured in leaves at 77 K. PLANT & CELL PHYSIOLOGY 2025; 66:358-373. [PMID: 40163694 PMCID: PMC11957249 DOI: 10.1093/pcp/pcaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 04/02/2025]
Abstract
Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77 K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus, and shade-tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ). When FI and FII parameters between State 1 and State 2, induced by weak far-red and blue light, were compared, PSII maximum fluorescence (FIIm) and FIβ were greater, and FIα was smaller in State 1; thereby, the spillover ratio, FIβ/(FIα + FIβ), was greater in State 1. When nonphotochemical quenching (NPQ) was induced, the spillover ratio decreased. Since analyses of Fv/Fmspectra tentatively suggested that ∼15% of Fm at 760 nm was from PSII, all data were corrected accordingly. Even after the correction, the spillover ratio in FIm in State 1 ranged from 16% to 28%. The spillover ratios did not greatly differ between the species or growth light levels. Although extensive grana in low-light-grown plants would suggest that PSII and PSI are too separate for spillover, the ratios of nonappressed thylakoid membranes/total thylakoid membranes in A. odora chloroplasts were little affected by growth light and >40%. Spillover would occur efficiently in abundant nonappressed thylakoids and in the margins of appressed thylakoids.
Collapse
Affiliation(s)
- Ichiro Terashima
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, 145 Xingda Rd., Sourth Dist., Taichung City 40227, Taiwan
- Institute of Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midoricho, Nishitokyo 188-0002, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,Tokyo 113-0033, Japan
| | - Riichi Oguchi
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,Tokyo 113-0033, Japan
- Botanical Gardens, Osaka Metropolitan University, 2000 Kisaichi, Katano 576-0004, Japan
| | - Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yasuko Kaneko
- Department of Natural Science, Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaru Kono
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,Tokyo 113-0033, Japan
- Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka 181-8588, Japan
| |
Collapse
|
4
|
Sohail SH, Sohoni S, Ting PC, Fantz LR, Abdulhadi SM, MacGregor-Chatwin C, Hitchcock A, Hunter CN, Engel GS, Massey SC. Functional Connectivity of Red Chlorophylls in Cyanobacterial Photosystem I Revealed by Fluence-Dependent Transient Absorption. J Phys Chem B 2025; 129:3191-3197. [PMID: 40100810 PMCID: PMC11956136 DOI: 10.1021/acs.jpcb.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
External stressors modulate the oligomerization state of photosystem I (PSI) in cyanobacteria. The number of red chlorophylls (Chls), pigments lower in energy than the P700 reaction center, depends on the oligomerization state of PSI. Here, we use ultrafast transient absorption spectroscopy to interrogate the effective connectivity of the red Chls in excitonic energy pathways in trimeric PSI in native thylakoid membranes of the model cyanobacterium Synechocystis sp. PCC 6803, including emergent dynamics, as red Chls increase in number and proximity. Fluence-dependent dynamics indicate singlet-singlet annihilation within energetically connected red Chl sites in the PSI antenna but not within bulk Chl sites on the picosecond time scale. These data support picosecond energy transfer between energetically connected red Chl sites as the physical basis of singlet-singlet annihilation. The time scale of this energy transfer is faster than predicted by Förster resonance energy transfer calculations, raising questions about the physical mechanism of the process. Our results indicate distinct strategies to steer excitations through the PSI antenna; the red Chls present a shallow reservoir that direct excitations away from P700, extending the time to trapping by the reaction center.
Collapse
Affiliation(s)
- Sara H. Sohail
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Laboratory
of Chemical Physics, National Institute
of Diabetes, and Digestive, and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| | - Siddhartha Sohoni
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lexi R. Fantz
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| | - Sami M. Abdulhadi
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | | | - Andrew Hitchcock
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Gregory S. Engel
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sara C. Massey
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| |
Collapse
|
5
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
6
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
7
|
Pal S, Brevik I, Boström M. Dispersion interaction between thin conducting cylinders. Phys Chem Chem Phys 2024; 26:17969-17978. [PMID: 38895835 DOI: 10.1039/d4cp01664e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ground state and excited state resonance dipole-dipole interaction energy between two elongated conducting molecules is explored in this study. We review the current status for ground state interactions. This interaction is found to be of a much longer range than in the case when the molecules are pointlike and nonconducting. These are well known results found earlier by Davies, Ninham, and Richmond, and later, using a different formalism, by Rubio and co-workers. We show how the theory can be extended to excited state interactions. A characteristic property observed from our calculation is that the interaction energy dependence on separation (R) follows f(R)/R2 for both resonance and van der Waals cases in the long-range limit. Under some limits, f(R) has a logarithmic dependency, while under others, it has constant values. We predict an unusual slow decay rate for the energy transfer between conducting molecules.
Collapse
Affiliation(s)
- Subhojit Pal
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland.
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Mathias Boström
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland.
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Ara AM, D'Haene S, van Grondelle R, Wahadoszamen M. Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study. PHOTOSYNTHESIS RESEARCH 2024; 160:77-86. [PMID: 38619701 DOI: 10.1007/s11120-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.
Collapse
Affiliation(s)
- Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sandrine D'Haene
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
9
|
van Stokkum IHM, Müller MG, Holzwarth AR. Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll a Pigments. Int J Mol Sci 2024; 25:4125. [PMID: 38612934 PMCID: PMC11012434 DOI: 10.3390/ijms25074125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Marc G. Müller
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| |
Collapse
|
10
|
Cui E, Liu H, Wang Z, Chen H, Weng YX. Femtosecond fluorescence conical optical parametric amplification spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033008. [PMID: 38517256 DOI: 10.1063/5.0197254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.
Collapse
Affiliation(s)
- Ennan Cui
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Heyuan Liu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
11
|
Wei Y, Song Y, Khan MA, Liang C, Meng Z, Wang Y, Guo S, Zhang R. GhTPPA_2 enhancement of tobacco sugar accumulation and drought tolerance. Gene 2024; 894:147969. [PMID: 37931857 DOI: 10.1016/j.gene.2023.147969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Trehalose metabolism plays an important role in plant growth and response to abiotic stress. Trehalose-6-phosphate (Tre6P) can help regulate sugar homeostasis and act as an indication signal for intracellular sugar levels. Crop productivity can be greatly increased by altering the metabolic level of endogenous trehalose in plants, which can optimize the source-sink connection. In this study, the upland cotton GhTPP protein family was first homologously compared and 24 GhTPP genes were found. Transcriptome analysis revealed that GhTPP members had obvious tissue expression specificity. Among them, GhTPPA_2 (Gh_A12G223300.1) was predominantly expressed in leaves and bolls. The results of subcellular localization showed that GhTPPA_2 is localized in the chloroplast. Via PlantCare, we analyzed the promoters and found that the expression of GhTPPA_2 may be induced by light, abiotic stress, and hormones such as abscisic acid, ethylene, salicylic acid and jasmonic acid. In addition, GhTPPA_2 was overexpressed (TPPAoe) in tobacco, and we found that the TPPase activity of TPPAoe tobacco increased by 66 %. Soluble sugar content increased by 39 % and starch content increased by 27 %. Whereas, the transgenic tobacco had obvious growth advantages under 100 mM mannitol stress. Transcriptome sequencing results showed that the differential genes between TPPAoe and control were considerably enriched in functions related to photosynthesis, phosphate group metabolism, and carbohydrate metabolism. This study shows that GhTPPA_2 is involved in regulating sugar metabolism, improving soluble sugar accumulation and drought stress tolerance of tobacco, which provides theoretical basis for research on high yield and drought tolerance of crops.
Collapse
Affiliation(s)
- Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yuhan Song
- Agricultural Genomics Instute at Shenzhen, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Muhammad Aamir Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
12
|
Migliore A, Corni S, Agostini A, Carbonera D. Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys Chem Chem Phys 2023; 25:28998-29016. [PMID: 37859550 DOI: 10.1039/d3cp03836j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The influence of carotenoid triplet states on the Qy electronic transitions of chlorophylls has been observed in experiments on light-harvesting complexes over the past three decades, but the interpretation of the resulting spectral feature in the triplet minus singlet (T-S) absorption spectra of photosystems is still debated, as the physical-chemical explanation of this feature has been elusive. Here, we resolve this debate, by explaining the T-S spectra of pigment complexes over the Qy-band spectral region through a comparative study of chlorophyll-carotenoid model dyads and larger pigment complexes from the main light harvesting complex of higher plants (LHCII). This goal is achieved by combining state-of-the-art time-dependent density functional theory with analysis of the relationship between electronic properties and nuclear structure, and by comparison to the experiment. We find that the special signature in the T-S spectra of both model and natural photosystems is determined by singlet-like triplet excitations that can be described as effective singlet excitations on chlorophylls influenced by a stable electronic triplet on the carotenoid. The comparison with earlier experiments on different light-harvesting complexes confirms our theoretical interpretation of the T-S spectra in the Qy spectral region. Our results indicate an important role for the chlorophyll-carotenoid electronic coupling, which is also responsible for the fast triplet-triplet energy transfer, suggesting a fast trapping of the triplet into the relaxed carotenoid structure. The gained understanding of the interplay between the electronic and nuclear structures is potentially informative for future studies of the mechanism of photoprotection by carotenoids.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR Institute of Nanoscience, 41125 Modena, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
13
|
van Stokkum IH, Müller MG, Weißenborn J, Weigand S, Snellenburg JJ, Holzwarth AR. Energy transfer and trapping in photosystem I with and without chlorophyll- f. iScience 2023; 26:107650. [PMID: 37680463 PMCID: PMC10480676 DOI: 10.1016/j.isci.2023.107650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.
Collapse
Affiliation(s)
- Ivo H.M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Marc G. Müller
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Sebastian Weigand
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Joris J. Snellenburg
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
14
|
Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, Tomo T, Shen JR. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. PHOTOSYNTHESIS RESEARCH 2023; 157:55-63. [PMID: 37199910 DOI: 10.1007/s11120-023-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Reona Toyofuku
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
15
|
Harris D, Toporik H, Schlau-Cohen GS, Mazor Y. Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex. Nat Commun 2023; 14:4650. [PMID: 37532717 PMCID: PMC10397321 DOI: 10.1038/s41467-023-40146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Photosynthetic organisms transport and convert solar energy with near-unity quantum efficiency using large protein supercomplexes held in flexible membranes. The individual proteins position chlorophylls to tight tolerances considered critical for fast and efficient energy transfer. The variability in protein organization within the supercomplexes, and how efficiency is maintained despite variability, had been unresolved. Here, we report on structural heterogeneity in the 2-MDa cyanobacterial PSI-IsiA photosynthetic supercomplex observed using Cryo-EM, revealing large-scale variances in the positions of IsiA relative to PSI. Single-molecule measurements found efficient IsiA-to-PSI energy transfer across all conformations, along with signatures of transiently decoupled IsiA. Structure based calculations showed that rapid IsiA-to-PSI energy transfer is always maintained, and even increases by three-fold in rare conformations via IsiA-specific chls. We postulate that antennae design mitigates structural fluctuations, providing a mechanism for robust energy transfer in the flexible membrane.
Collapse
Affiliation(s)
- Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hila Toporik
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Yuval Mazor
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
16
|
Wang D, Fiebig OC, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong AL, Ogren JI, Hart SM, Cao J, Sturgis JN, Mazor Y, Schlau-Cohen GS. Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Proc Natl Acad Sci U S A 2023; 120:e2220477120. [PMID: 37399405 PMCID: PMC10334754 DOI: 10.1073/pnas.2220477120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 07/05/2023] Open
Abstract
In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Å and resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Å resulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.
Collapse
Affiliation(s)
- Dihao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Olivia C. Fiebig
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Hila Toporik
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | - Yi Ji
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chern Chuang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ashley L. Tong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - John I. Ogren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - James N. Sturgis
- LISM UMR 7255, CNRS and Aix-Marseille University, Marseille Cedex 913402, France
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | | |
Collapse
|
17
|
Somayaji H, Scholes GD. Waveguided energy transfer in pseudo-two-dimensional systems. J Chem Phys 2023; 158:2895247. [PMID: 37290084 DOI: 10.1063/5.0145540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Resonance energy transfer (RET) is an important and ubiquitous process whereby energy is transferred from a donor chromophore to an acceptor chromophore without contact via Coulombic coupling. There have been a number of recent advances exploiting the quantum electrodynamics (QED) framework for RET. Here, we extend the QED RET theory to investigate whether real photon exchange can allow for excitation transfer over very long distances if the exchanged photon is waveguided. To study this problem, we consider RET in two spatial dimensions. We derive the RET matrix element using QED in two dimensions, consider an even greater confinement by deriving the RET matrix element for a two-dimensional waveguide using ray theory, and compare the resulting RET elements in 3D and 2D and for the 2D waveguide. We see greatly enhanced RET rates over long distances for both the 2D and 2D waveguide systems and see a great preference for transverse photon mediated transfer in the 2D waveguide system.
Collapse
Affiliation(s)
- Hrishikesh Somayaji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
18
|
Peng S, Shao G, Wang K, Chen X, Xu J, Wang H, Wu D, Xia J. Efficient Energy Transfer in a Rylene Imide-Based Heterodimer: The Role of Intramolecular Electronic Coupling. J Phys Chem Lett 2023; 14:3249-3257. [PMID: 36975134 DOI: 10.1021/acs.jpclett.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of antenna molecules with simplified structures can effectively avoid the complex exciton dynamics resulting from conformational mobility. Two distinct heterodimers TP and TBP comprising a perylenediimide (PDI) donor and terrylenediimide (TDI) acting as an energy sink were investigated. Tuned by varying functionalization positions, the bay-to-bay-linked TP offers a strong chromophore coupling, while the bay-to-N-linked TBP exhibits a weak chromophore coupling. Using transient absorption spectroscopy, we found that TP underwent ultrafast vibrational relaxation (τVR < 400 fs) from upper vibrational energy levels of the singlet states after pumping at 490 nm, and followed by electron transfer (ET, τET = 2.5 ps) from TDI to PDI. TBP exhibited ultrafast excitation energy transfer (EET, τEET = 0.48 ± 0.1 ps) from the excited PDI donor to TDI acceptor, and the subsequent charge transfer (CT) process was almost quenched. This result provides insight into designing novel small molecules capable of efficient energy transfer.
Collapse
Affiliation(s)
- Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
19
|
Dodson EJ, Werren N, Paltiel Y, Gauger EM, Keren N. Large-scale FRET simulations reveal the control parameters of phycobilisome light-harvesting complexes. J R Soc Interface 2022; 19:20220580. [PMID: 36448289 PMCID: PMC9709516 DOI: 10.1098/rsif.2022.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Phycobilisomes (PBS) are massive structures that absorb and transfer light energy to photochemical reaction centres. Among the range of light harvesting systems, PBS are considered to be excellent solutions for absorption cross-sections but relatively inefficient energy transferring systems. This is due to the combination of a large number of chromophores with intermediate coupling distances. Nevertheless, PBS systems persisted from the origin of oxygenic photosynthesis to present-day cyanobacteria and red algae, organisms that account for approximately half of the primary productivity in the ocean. In this study, we modelled energy transfer through subsets of PBS structures, using a comprehensive dynamic Hamiltonian model. Our approach was applied, initially, to pairs of phycobilin hexamers and then extended to short rods. By manipulating the distances and angles between the structures, we could probe the dynamics of exciton transfer. These simulations suggest that the PBS chromophore network enhances energy distribution over the entire PBS structure-both horizontally and vertically to the rod axis. Furthermore, energy transfer was found to be relatively immune to the effects of distances or rotations, within the range of intermediate coupling distances. Therefore, we suggest that the PBS provides unique advantages and flexibility to aquatic photosynthesis.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Nicholas Werren
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Erik M. Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Štroch M, Karlický V, Ilík P, Ilíková I, Opatíková M, Nosek L, Pospíšil P, Svrčková M, Rác M, Roudnický P, Zdráhal Z, Špunda V, Kouřil R. Spruce versus Arabidopsis: different strategies of photosynthetic acclimation to light intensity change. PHOTOSYNTHESIS RESEARCH 2022; 154:21-40. [PMID: 35980499 DOI: 10.1007/s11120-022-00949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The acclimation of higher plants to different light intensities is associated with a reorganization of the photosynthetic apparatus. These modifications, namely, changes in the amount of peripheral antenna (LHCII) of photosystem (PS) II and changes in PSII/PSI stoichiometry, typically lead to an altered chlorophyll (Chl) a/b ratio. However, our previous studies show that in spruce, this ratio is not affected by changes in growth light intensity. The evolutionary loss of PSII antenna proteins LHCB3 and LHCB6 in the Pinaceae family is another indication that the light acclimation strategy in spruce could be different. Here we show that, unlike Arabidopsis, spruce does not modify its PSII/PSI ratio and PSII antenna size to maximize its photosynthetic performance during light acclimation. Its large PSII antenna consists of many weakly bound LHCIIs, which form effective quenching centers, even at relatively low light. This, together with sensitive photosynthetic control on the level of cytochrome b6f complex (protecting PSI), is the crucial photoprotective mechanism in spruce. High-light acclimation of spruce involves the disruption of PSII macro-organization, reduction of the amount of both PSII and PSI core complexes, synthesis of stress proteins that bind released Chls, and formation of "locked-in" quenching centers from uncoupled LHCIIs. Such response has been previously observed in the evergreen angiosperm Monstera deliciosa exposed to high light. We suggest that, in contrast to annuals, shade-tolerant evergreen land plants have their own strategy to cope with light intensity changes and the hallmark of this strategy is a stable Chl a/b ratio.
Collapse
Affiliation(s)
- Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic.
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Iva Ilíková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Monika Opatíková
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Marika Svrčková
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| | - Pavel Roudnický
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00, Brno, Czech Republic
| | - Roman Kouřil
- Department of Biophysics, Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
| |
Collapse
|
21
|
Cesana PT, Page CG, Harris D, Emmanuel MA, Hyster TK, Schlau-Cohen GS. Photoenzymatic Catalysis in a New Light: Gluconobacter “Ene”-Reductase Conjugates Possessing High-Energy Reactivity with Tunable Low-Energy Excitation. J Am Chem Soc 2022; 144:17516-17521. [DOI: 10.1021/jacs.2c06344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Claire G. Page
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan A. Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Kundu S, Dani R, Makri N. B800-to-B850 relaxation of excitation energy in bacterial light harvesting: All-state, all-mode path integral simulations. J Chem Phys 2022; 157:015101. [DOI: 10.1063/5.0093828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton–vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang–Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton–vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/ e time of 0.5 ps, which is in good agreement with experimental results.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II. Nat Commun 2022; 13:3562. [PMID: 35729108 PMCID: PMC9213480 DOI: 10.1038/s41467-022-31099-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria carry out photosynthetic light-energy conversion using phycobiliproteins for light harvesting and the chlorophyll-rich photosystems for photochemistry. While most cyanobacteria only absorb visible photons, some of them can acclimate to harvest far-red light (FRL, 700-800 nm) by integrating chlorophyll f and d in their photosystems and producing red-shifted allophycocyanin. Chlorophyll f insertion enables the photosystems to use FRL but slows down charge separation, reducing photosynthetic efficiency. Here we demonstrate with time-resolved fluorescence spectroscopy that on average charge separation in chlorophyll-f-containing Photosystem II becomes faster in the presence of red-shifted allophycocyanin antennas. This is different from all known photosynthetic systems, where additional light-harvesting complexes increase the overall absorption cross section but slow down charge separation. This remarkable property can be explained with the available structural and spectroscopic information. The unique design is probably important for these cyanobacteria to efficiently switch between visible and far-red light.
Collapse
|
24
|
Estergreen L, Mencke AR, Cotton DE, Korovina NV, Michl J, Roberts ST, Thompson ME, Bradforth SE. Controlling Symmetry Breaking Charge Transfer in BODIPY Pairs. Acc Chem Res 2022; 55:1561-1572. [PMID: 35604637 DOI: 10.1021/acs.accounts.2c00044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSymmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.
Collapse
Affiliation(s)
- Laura Estergreen
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Austin R. Mencke
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Daniel E. Cotton
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Nadia V. Korovina
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Josef Michl
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean T. Roberts
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Mark E. Thompson
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
25
|
Nagao R, Kato K, Kumazawa M, Ifuku K, Yokono M, Suzuki T, Dohmae N, Akita F, Akimoto S, Miyazaki N, Shen JR. Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nat Commun 2022; 13:1764. [PMID: 35365610 PMCID: PMC8976053 DOI: 10.1038/s41467-022-29294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 Å resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes. Fucoxanthin chlorophyll a/c-binding proteins (FCPs) harvest light energy in diatoms. The authors analyzed a structure of PSII-FCPII supercomplex at high resolution by cryo-EM, which identified each FCP subunit and pigment network in the supercomplex.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
26
|
Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa. Nat Commun 2022; 13:1679. [PMID: 35354806 PMCID: PMC8967866 DOI: 10.1038/s41467-022-29303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Photosystem I (PSI) is one of the two photosystems functioning in light-energy harvesting, transfer, and electron transfer in photosynthesis. However, the oligomerization state of PSI is variable among photosynthetic organisms. We present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from the glaucophyte alga Cyanophora paradoxa, which reveals differences with PSI from other organisms in subunit composition and organization. The PSI tetramer is organized in a dimer of dimers with a C2 symmetry. Unlike cyanobacterial PSI tetramers, two of the four monomers are rotated around 90°, resulting in a completely different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and excitation-energy transfer in the Cyanophora PSI tetramer, suggesting that the Cyanophora PSI could represent a turning point in the evolution of PSI from prokaryotes to eukaryotes.
Collapse
|
27
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
28
|
Nagao R, Yokono M, Ueno Y, Nakajima Y, Suzuki T, Kato KH, Tsuboshita N, Dohmae N, Shen JR, Ehira S, Akimoto S. Excitation-energy transfer in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120 as studied by time-resolved fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148509. [PMID: 34793768 DOI: 10.1016/j.bbabio.2021.148509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Heterocysts are formed in filamentous heterocystous cyanobacteria under nitrogen-starvation conditions, and possess a very low amount of photosystem II (PSII) complexes than vegetative cells. Molecular, morphological, and biochemical characterizations of heterocysts have been investigated; however, excitation-energy dynamics in heterocysts are still unknown. In this study, we examined excitation-energy-relaxation processes of pigment-protein complexes in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120. Thylakoid membranes from the heterocysts showed no oxygen-evolving activity under our experimental conditions and no thermoluminescence-glow curve originating from charge recombination of S2QA-. Two dimensional blue-native/SDS-PAGE analysis exhibits tetrameric, dimeric, and monomeric photosystem I (PSI) complexes but almost no dimeric and monomeric PSII complexes in the heterocyst thylakoids. The steady-state fluorescence spectrum of the heterocyst thylakoids at 77 K displays both characteristic PSI fluorescence and unusual PSII fluorescence different from the fluorescence of PSII dimer and monomer complexes. Time-resolved fluorescence spectra at 77 K, followed by fluorescence decay-associated spectra, showed different PSII and PSI fluorescence bands between heterocysts and vegetative thylakoids. Based on these findings, we discuss excitation-energy-transfer mechanisms in the heterocysts.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan.
| |
Collapse
|
29
|
Akhtar P, Caspy I, Nowakowski PJ, Malavath T, Nelson N, Tan HS, Lambrev PH. Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation. J Am Chem Soc 2021; 143:14601-14612. [PMID: 34472838 DOI: 10.1021/jacs.1c05010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI), found in all oxygenic photosynthetic organisms, uses solar energy to drive electron transport with nearly 100% quantum efficiency, thanks to fast energy transfer among antenna chlorophylls and charge separation in the reaction center. There is no complete consensus regarding the kinetics of the elementary steps involved in the overall trapping, especially the rate of primary charge separation. In this work, we employed two-dimensional coherent electronic spectroscopy to follow the dynamics of energy and electron transfer in a monomeric PSI complex from Synechocystis PCC 6803, containing only subunits A-E, K, and M, at 77 K. We also determined the structure of the complex to 4.3 Å resolution by cryoelectron microscopy with refinements to 2.5 Å. We applied structure-based modeling using a combined Redfield-Förster theory to compute the excitation dynamics. The absorptive 2D electronic spectra revealed fast excitonic/vibronic relaxation on time scales of 50-100 fs from the high-energy side of the absorption spectrum. Antenna excitations were funneled within 1 ps to a small pool of chlorophylls absorbing around 687 nm, thereafter decaying with 4-20 ps lifetimes, independently of excitation wavelength. Redfield-Förster energy transfer computations showed that the kinetics is limited by transfer from these red-shifted pigments. The rate of primary charge separation, upon direct excitation of the reaction center, was determined to be 1.2-1.5 ps-1. This result implies activationless electron transfer in PSI.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore.,Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.,ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
30
|
Nagao R, Yokono M, Kato KH, Ueno Y, Shen JR, Akimoto S. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. PHOTOSYNTHESIS RESEARCH 2021; 149:303-311. [PMID: 34037905 DOI: 10.1007/s11120-021-00849-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| |
Collapse
|
31
|
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. PHOTOSYNTHESIS RESEARCH 2021; 149:233-252. [PMID: 33948813 PMCID: PMC8382614 DOI: 10.1007/s11120-021-00827-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Collapse
Affiliation(s)
- Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Zuzana Kmecová Materová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Irena Kurasová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Győző Garab
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Biological Research Center, Institute of Plant Biology, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
32
|
Kobayashi K, Suetsugu K, Wada H. The Leafless Orchid Cymbidium macrorhizon Performs Photosynthesis in the Pericarp during the Fruiting Season. PLANT & CELL PHYSIOLOGY 2021; 62:472-481. [PMID: 33493314 DOI: 10.1093/pcp/pcab006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Photosynthesis with highly photoreactive chlorophyll (Chl) provides energy for plant growth but with simultaneous risk of photooxidative damage and photoprotection costs. Although the leafless orchid Cymbidium macrorhizon mostly depends on mycorrhizal fungi for carbon, it accumulates Chl particularly during fruiting and may not be fully mycoheterotrophic. In fact, stable isotopic analysis suggested that the fruiting C. macrorhizon specimens obtain a significant proportion of its carbon demands through photosynthesis. However, actual photosynthetic characteristics of this leafless orchid are unknown. To reveal the functionality of photosynthetic electron transport in C. macrorhizon, we compared its photosynthetic properties with those of its relative mixotrophic orchid Cymbidium goeringii and the model plant Arabidopsis thaliana. Compared with C. goeringii and A. thaliana, maximum photochemical efficiency of PSII was substantially low in C. macrorhizon. Chl fluorescence induction kinetics revealed that the electron transport capacity of PSII was limited in C. macrorhizon. Chl fluorescence analysis at 77 K suggested partial energetic disconnection of the light-harvesting antenna from the PSII reaction center in C. macrorhizon. Despite its low PSII photochemical efficiency, C. macrorhizon showed photosynthetic electron transport activity both in the field and under laboratory conditions. Cymbidium macrorhizon developed strong nonphotochemical quenching in response to increased light intensity as did C. goeringii, suggesting the functionality of photoprotective systems in this orchid. Moreover, C. macrorhizon fruit developed stomata on the pericarp and showed net O2-evolving activity. Our data demonstrate that C. macrorhizon can perform photosynthetic electron transport in the pericarp, although its contribution to net carbon acquisition may be limited.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
33
|
Pudlák M, Pinčák R. Exciton transfer between LH1 antenna complex and photosynthetic reaction center dimer. J Biol Phys 2021; 47:271-286. [PMID: 34215962 DOI: 10.1007/s10867-021-09576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
The exciton transfer between light-harvesting complex 1(LH1) and photosynthetic reaction center dimer is investigated theoretically. We assume a ring shape structure of the LH1 complex with dimer in the ring centre. The kinetic equations which describe the energy transfer between the antenna complex and reaction center dimer were derived. It was shown that the dimer does not act as a photon trap. There is a weak localization of the exciton on the dimer and there is relatively rapid back exciton transfer from dimer to antenna complex which depends on the number of the pigment molecules in the antenna ring. The relation between the rates of the exciton transfer from the antenna complex to dimer and back transfer from dimer to antenna complex has been derived.
Collapse
Affiliation(s)
- Michal Pudlák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic
| | - Richard Pinčák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic.
| |
Collapse
|
34
|
Abstract
Metamaterials are the major type of artificially engineered materials which exhibit naturally unobtainable properties according to how their microarchitectures are engineered. Owing to their unique and controllable effective properties, including electric permittivity and magnetic permeability, the metamaterials play a vital role in the development of meta-devices. Therefore, the recent research has mainly focused on shifting towards achieving tunable, switchable, nonlinear, and sensing functionalities. In this review, we summarize the recent progress in terahertz, microwave electromagnetic, and photonic metamaterials, and their applications. The review also encompasses the role of metamaterials in the advancement of microwave sensors, photonic devices, antennas, energy harvesting, and superconducting quantum interference devices (SQUIDs).
Collapse
|
35
|
Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem J 2021; 478:1333-1346. [PMID: 33687054 DOI: 10.1042/bcj20210021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
Collapse
|
36
|
Ara AM, Ahmed MK, D'Haene S, van Roon H, Ilioaia C, van Grondelle R, Wahadoszamen M. Absence of far-red emission band in aggregated core antenna complexes. Biophys J 2021; 120:1680-1691. [PMID: 33675767 DOI: 10.1016/j.bpj.2021.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.
Collapse
Affiliation(s)
- Anjue Mane Ara
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, Jagannath University, Dhaka, Bangladesh
| | | | - Sandrine D'Haene
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Henny van Roon
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Cristian Ilioaia
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
37
|
Pfündel EE. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. PHOTOSYNTHESIS RESEARCH 2021; 147:345-358. [PMID: 33528756 DOI: 10.1007/s11120-021-00821-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
PAM fluorescence of leaves of cherry laurel (Prunus laurocerasus L.) was measured simultaneously in the spectral range below 700 nm (sw) and above 700 nm (lw). A high-sensitivity photodiode was employed to measure the low intensities of sw fluorescence. Photosystem II (PSII) performance was analyzed by the saturation pulse method during a light response curve with subsequent dark phase. The sw fluorescence was more variable, resulting in higher PSII photochemical yields compared to lw fluorescence. The variations between sw and lw data were explained by different levels of photosystem I (PSI) fluorescence: the contribution of PSI fluorescence to minimum fluorescence (F0) was calculated to be 14% at sw wavelengths and 45% at lw wavelengths. With the results obtained, the validity of an earlier method for the quantification of PSI fluorescence (Genty et al. in Photosynth Res 26:133-139, 1990, https://doi.org/10.1007/BF00047085 ) was reconsidered. After subtracting PSI fluorescence from all fluorescence levels, the maximum PSII photochemical yield (FV/FM) in the sw range was 0.862 and it was 0.883 in the lw range. The lower FV/FM at sw wavelengths was suggested to arise from inactive PSII reaction centers in the outermost leaf layers. Polyphasic fluorescence transients (OJIP or OI1I2P kinetics) were recorded simultaneously at sw and lw wavelengths: the slowest phase of the kinetics (IP or I2P) corresponded to 11% and 13% of total variable sw and lw fluorescence, respectively. The idea that this difference is due to variable PSI fluorescence is critically discussed. Potential future applications of simultaneously recording fluorescence in two spectral windows include studies of PSI non-photochemical quenching and state I-state II transitions, as well as measuring the fluorescence from pH-sensitive dyes simultaneously with chlorophyll fluorescence.
Collapse
|
38
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Nagao R, Yokono M, Ueno Y, Suzuki T, Kumazawa M, Kato KH, Tsuboshita N, Dohmae N, Ifuku K, Shen JR, Akimoto S. Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148350. [PMID: 33285102 DOI: 10.1016/j.bbabio.2020.148350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Photosynthetic organisms regulate pigment composition and molecular oligomerization of light-harvesting complexes in response to solar light intensities, in order to improve light-harvesting efficiency. Here we report excitation-energy dynamics and relaxation of fucoxanthin chlorophyll a/c-binding protein (FCP) complexes isolated from a diatom Phaeodactylum tricornutum grown under high-light (HL) illumination. Two types of FCP complexes were prepared from this diatom under the HL condition, whereas one FCP complex was isolated from the cells grown under a low-light (LL) condition. The subunit composition and oligomeric states of FCP complexes under the HL condition are different from those under the LL condition. Absorption and fluorescence spectra at 77 K of the FCP complexes also vary between the two conditions, indicating modifications of the pigment composition and arrangement upon the HL illumination. Time-resolved fluorescence curves at 77 K of the FCP complexes under the HL condition showed shorter lifetime components compared with the LL condition. Fluorescence decay-associated spectra at 77 K showed distinct excitation-energy-quenching components and alterations of energy-transfer pathways in the FCP complexes under the HL condition. These findings provide insights into molecular and functional mechanisms of the dynamic regulation of FCPs in this diatom under excess-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan.
| |
Collapse
|
40
|
Reimers JR, Rätsep M, Freiberg A. Asymmetry in the Q y Fluorescence and Absorption Spectra of Chlorophyll a Pertaining to Exciton Dynamics. Front Chem 2020; 8:588289. [PMID: 33344415 PMCID: PMC7738624 DOI: 10.3389/fchem.2020.588289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Significant asymmetry found between the high-resolution Qy emission and absorption spectra of chlorophyll-a is herein explained, providing basic information needed to understand photosynthetic exciton transport and photochemical reactions. The Qy spectral asymmetry in chlorophyll has previously been masked by interference in absorption from the nearby Qx transition, but this effect has recently been removed using extensive quantum spectral simulations or else by analytical inversion of absorption and magnetic circular dichroism data, allowing high-resolution absorption information to be accurately determined from fluorescence-excitation spectra. To compliment this, here, we measure and thoroughly analyze the high-resolution differential fluorescence line narrowing spectra of chlorophyll-a in trimethylamine and in 1-propanol. The results show that vibrational frequencies often change little between absorption and emission, yet large changes in line intensities are found, this effect also being strongly solvent dependent. Among other effects, the analysis in terms of four basic patterns of Duschinsky-rotation matrix elements, obtained using CAM-B3LYP calculations, predicts that a chlorophyll-a molecule excited into a specific vibrational level, may, without phase loss or energy relaxation, reemit the light over a spectral bandwidth exceeding 1,000 cm−1 (0.13 eV) to influence exciton-transport dynamics.
Collapse
Affiliation(s)
- Jeffrey R Reimers
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Margus Rätsep
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
van Stokkum IHM, Jumper CC, Lee TS, Myahkostupov M, Castellano FN, Scholes GD. Vibronic and excitonic dynamics in perylenediimide dimers and tetramer. J Chem Phys 2020; 153:224101. [PMID: 33317279 DOI: 10.1063/5.0024530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Broad-band pump-probe spectroscopy combined with global and target analysis is employed to study the vibronic and excitonic dynamics of two dimers and a tetramer of perylenediimides. A simultaneous analysis is developed for two systems that have been measured in the same conditions. This enhances the resolvability of the vibronic and excitonic dynamics of the systems, and the solvent contributions that are common in the experiments. We resolve two oscillations of 1399 cm-1 or 311 cm-1 damped with ≈30/ps involved in vibrational relaxation and two more oscillations of 537 cm-1 or 136 cm-1 damped with ≈3/ps. A relaxation process with a rate of 2.1/ps-3.2/ps that is positively correlated with the excitonic coupling was discovered in all three model systems, attributed to annihilation of the one but lowest exciton state.
Collapse
Affiliation(s)
- Ivo H M van Stokkum
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Chanelle C Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Tia S Lee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Mykhaylo Myahkostupov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
42
|
Razjivin AP, Kozlovsky VS. Unique features of the 'photo-energetics' of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930-2019). PHOTOSYNTHESIS RESEARCH 2020; 146:17-24. [PMID: 31655967 DOI: 10.1007/s11120-019-00683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
We provide here an edited version of the "Farewell discussion" by the late Aleksandr (Alex) Yuryevich (Yu) Borisov (1930-2019) on several aspects related to the excitation energy transfer in photosynthetic bacteria. It is preceded by a prolog giving the events that led to our decision to publish it. Further, we include here a few photographs to give a personal glimpse of this unique biophysicist of our time. In addition, we provide here a reminiscence, by Andrei B. Rubin, on the scientific beginnings of Borisov. This article follows a Tribute to Borisov by Semenov et al. (2019, Photosynthesis Research, this issue).
Collapse
Affiliation(s)
- Andrei P Razjivin
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir S Kozlovsky
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
43
|
Molecular organizations and function of iron-stress-induced-A protein family in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148327. [PMID: 33069682 DOI: 10.1016/j.bbabio.2020.148327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions, and surround photosystem I (PSI) trimer with a ring formation. A cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, it is unknown how the IsiAs are associated with PSI. Here we report on molecular organizations and function of the IsiAs in this cyanobacterium. A deletion mutant of the isiA1 gene was constructed, and the four types of thylakoids were prepared from the wild-type (WT) and ΔisiA1 cells under iron-replete (+Fe) and iron-deficient (-Fe) conditions. Immunoblotting analysis exhibits a clear expression of the IsiA1 in the WT-Fe. The PSI-IsiA1 supercomplex is found in the WT-Fe, and excitation-energy transfer from IsiA1 to PSI is verified by time-resolved fluorescence analyses. Instead of the IsiA1, both IsiA2 and IsiA3 are bound to PSI monomer in the ΔisiA1-Fe. These findings provide insights into multiple-expression system of the IsiA family in this cyanobacterium.
Collapse
|
44
|
Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. ISME JOURNAL 2020; 15:520-533. [PMID: 33033374 DOI: 10.1038/s41396-020-00793-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.
Collapse
|
45
|
Basic pH-induced modification of excitation-energy dynamics in fucoxanthin chlorophyll a/c-binding proteins isolated from a pinguiophyte, Glossomastix chrysoplasta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148306. [PMID: 32926861 DOI: 10.1016/j.bbabio.2020.148306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
Photosynthetic organisms have diversified light-harvesting complexes (LHCs) to collect solar energy efficiently, leading to an acquisition of their ecological niches. Herein we report on biochemical and spectroscopic characterizations of fucoxanthin chlorophyll a/c-binding protein (FCP) complexes isolated from a marine pinguiophyte Glossomastix chrysoplasta. The pinguiophyte FCP showed one subunit band in SDS-PAGE and one protein-complex band with a molecular weight at around 66 kDa in clear-native PAGE. By HPLC analysis, the FCP possesses chlorophylls a and c, fucoxanthin, and violaxanthin. To clarify excitation-energy-relaxation processes in the FCP, we measured time-resolved fluorescence spectra at 77 K of the FCP adapted to pH 5.0, 6.5, and 8.0. Fluorescence curves measured at pH 5.0 and 8.0 showed shorter lifetime components compared with those at pH 6.5. The rapid decay components at pH 5.0 and 8.0 are unveiled by fluorescence decay-associated (FDA) spectra; fluorescence decays occur in the 270 and 160-ps FDA spectra only at pH 5.0 and 8.0, respectively. In addition, energy-transfer pathways with time constants of tens of picoseconds are altered under the basic pH condition but not the acidic pH condition. These findings provide novel insights into pH-dependent energy-transfer and energy-quenching machinery in not only FCP family but also photosynthetic LHCs.
Collapse
|
46
|
Tamang A, Parsons R, Lertchaiwarakul C, Palanchoke U, Kojima H, Salleo A, Nakamura M, Knipp D. Combining Photosynthesis and Photovoltaics: A Hybrid Energy-Harvesting System Using Optical Antennas. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40261-40268. [PMID: 32805798 DOI: 10.1021/acsami.0c09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hybrid energy-harvesting system is proposed that combines photosynthesis and photovoltaics. First, the light passes through a spectrally selective solar cell, which absorbs almost all green light but absorbs almost no blue and red light. The blue and red light are absorbed by a photosynthesis executing plant. The solar cell is tailored in such a way that the photosynthetic process is almost unaffected by the generation of electrical energy. The spectrally selective solar cell consists of an array of inorganic optical antennas. By combining a spectrally selective solar cell and a photosynthetic executing plant, a hybrid energy system is formed, which absorbs almost 100% of the visible light, while the energy conversion efficiency of the solar cell reaches up to 50% of their nonspectrally selective counterparts. Guidelines are provided on how to realize both the highly efficient spectrally selective solar cells and hybrid energy-harvesting systems. The proposed solution allows for the realization of new greenhouses or gardens covered with spectrally selective transparent solar cells that produce chemical energy in the form of fruits and vegetables and electrical energy.
Collapse
Affiliation(s)
- Asman Tamang
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Rion Parsons
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Cher Lertchaiwarakul
- Division of Materials Science, Nara Institute of Science and Technology, 630-0192 Ikoma, Nara, Japan
| | - Ujwol Palanchoke
- CEA Laboratoire d'electronique des technologies de l'information, 38054 Grenoble, France
| | - Hirotaka Kojima
- Division of Materials Science, Nara Institute of Science and Technology, 630-0192 Ikoma, Nara, Japan
| | - Alberto Salleo
- Geballe Laboratory for Advanced Materials, Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Masakazu Nakamura
- Division of Materials Science, Nara Institute of Science and Technology, 630-0192 Ikoma, Nara, Japan
| | - Dietmar Knipp
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany
- Geballe Laboratory for Advanced Materials, Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
47
|
di Nunzio MR, Caballero-Mancebo E, Cohen B, Douhal A. Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Schoffman H, Brown WM, Paltiel Y, Keren N, Gauger EM. Structure-based Hamiltonian model for IsiA uncovers a highly robust pigment-protein complex. J R Soc Interface 2020; 17:20200399. [PMID: 32842892 PMCID: PMC7482578 DOI: 10.1098/rsif.2020.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 11/12/2022] Open
Abstract
The iron stress-induced protein A (IsiA) is a source of interest and debate in biological research. The IsiA supercomplex, binding over 200 chlorophylls, assembles in multimeric rings around photosystem I (PSI). Recently, the IsiA-PSI structure from Synechocystis sp. PCC 6803 was resolved to 3.48 Å. Based on this structure, we created a model simulating a single excitation event in an IsiA monomer. This model enabled us to calculate the fluorescence and the localization of the excitation in the IsiA structure. To further examine this system, noise was introduced to the model in two forms-thermal and positional. Introducing noise highlights the functional differences in the system between cryogenic temperatures and biologically relevant temperatures. Our results show that the energetics of the IsiA pigment-protein complex are very robust at room temperature. Nevertheless, shifts in the position of specific chlorophylls lead to large changes in their optical and fluorescence properties. Based on these results, we discuss the implication of highly robust structures, with potential for serving different roles in a context-dependent manner, on our understanding of the function and evolution of photosynthetic processes.
Collapse
Affiliation(s)
- Hanan Schoffman
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William M. Brown
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Erik M. Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
49
|
Mascoli V, Bersanini L, Croce R. Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. NATURE PLANTS 2020; 6:1044-1053. [PMID: 32661277 DOI: 10.1038/s41477-020-0718-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 05/28/2023]
Abstract
Plants and cyanobacteria use the chlorophylls embedded in their photosystems to absorb photons and perform charge separation, the first step of converting solar energy to chemical energy. While oxygenic photosynthesis is primarily based on chlorophyll a photochemistry, which is powered by red light, a few cyanobacterial species can harness less energetic photons when growing in far-red light. Acclimatization to far-red light involves the incorporation of a small number of molecules of red-shifted chlorophyll f in the photosystems, whereas the most abundant pigment remains chlorophyll a. Due to its different energetics, chlorophyll f is expected to alter the excited-state dynamics of the photosynthetic units and, ultimately, their performances. Here we combined time-resolved fluorescence measurements on intact cells and isolated complexes to show that chlorophyll f insertion slows down the overall energy trapping in both photosystems. While this marginally affects the efficiency of photosystem I, it substantially decreases that of photosystem II. Nevertheless, we show that despite the lower energy output, the insertion of red-shifted chlorophylls in the photosystems remains advantageous in environments that are enriched in far-red light and therefore represents a viable strategy for extending the photosynthetically active spectrum in other organisms, including plants. However, careful design of the new photosynthetic units will be required to preserve their efficiency.
Collapse
Affiliation(s)
- Vincenzo Mascoli
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Luca Bersanini
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Miyamoto H, Nakano M. Theoretical Study on Singlet Fission Dynamics in Pentacene Ring‐Shaped Aggregate Models with Different Configurations. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hajime Miyamoto
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Spintronics Research Network (CSRN) Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB) Institute for Open and Transdisciplinary Research Initiatives Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|