1
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
2
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Smith ME, Chen CT, Gohel CA, Cisbani G, Chen DK, Rezaei K, McCutcheon A, Bazinet RP. Upregulated hepatic lipogenesis from dietary sugars in response to low palmitate feeding supplies brain palmitate. Nat Commun 2024; 15:490. [PMID: 38233416 PMCID: PMC10794264 DOI: 10.1038/s41467-023-44388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Palmitic acid (PAM) can be provided in the diet or synthesized via de novo lipogenesis (DNL), primarily, from glucose. Preclinical work on the origin of brain PAM during development is scarce and contrasts results in adults. In this work, we use naturally occurring carbon isotope ratios (13C/12C; δ13C) to uncover the origin of brain PAM at postnatal days 0, 10, 21 and 35, and RNA sequencing to identify the pathways involved in maintaining brain PAM, at day 35, in mice fed diets with low, medium, and high PAM from birth. Here we show that DNL from dietary sugars maintains the majority of brain PAM during development and is augmented in mice fed low PAM. Importantly, the upregulation of hepatic DNL genes, in response to low PAM at day 35, demonstrates the presence of a compensatory mechanism to maintain total brain PAM pools compared to the liver; suggesting the importance of brain PAM regulation.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chiraag A Gohel
- Department of Biostatistics and Bioinformatics, George Washington University, 950 New Hampshire Ave, NW, Washington, DC, 20052, USA
| | - Giulia Cisbani
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Daniel K Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Kimia Rezaei
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Andrew McCutcheon
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
4
|
Lacombe RJS, Smith ME, Perlman K, Turecki G, Mechawar N, Bazinet RP. Quantitative and carbon isotope ratio analysis of fatty acids isolated from human brain hemispheres. J Neurochem 2023; 164:44-56. [PMID: 36196762 DOI: 10.1111/jnc.15702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023]
Abstract
Our knowledge surrounding the overall fatty acid profile of the adult human brain has been largely limited to extrapolations from brain regions in which the distribution of fatty acids varies. This is especially problematic when modeling brain fatty acid metabolism, therefore, an updated estimate of whole-brain fatty acid concentration is necessitated. Here, we sought to conduct a comprehensive quantitative analysis of fatty acids from entire well-characterized human brain hemispheres (n = 6) provided by the Douglas-Bell Canada Brain Bank. Additionally, exploratory natural abundance carbon isotope ratio (CIR; δ13 C, 13 C/12 C) analysis was performed to assess the origin of brain fatty acids. Brain fatty acid methyl esters (FAMEs) were quantified by gas chromatography (GC)-flame ionization detection and minor n-6 and n-3 polyunsaturated fatty acid pentafluorobenzyl esters by GC-mass spectrometry. Carbon isotope ratio values of identifiable FAMEs were measured by GC-combustion-isotope ratio mass spectrometry. Overall, the most abundant fatty acid in the human brain was oleic acid, followed by stearic acid (STA), palmitic acid (PAM), docosahexaenoic acid (DHA), and arachidonic acid (ARA). Interestingly, cholesterol as well as saturates including PAM and STA were most enriched in 13 C, while PUFAs including DHA and ARA were most depleted in 13 C. These findings suggest a contribution of endogenous synthesis utilizing dietary sugar substrates rich in 13 C, and a combination of marine, animal, and terrestrial PUFA sources more depleted in 13 C, respectively. These results provide novel insights on cerebral fatty acid origin and concentration, the latter serving as a valuable resource for future modeling of fatty acid metabolism in the human brain.
Collapse
Affiliation(s)
- R J Scott Lacombe
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Smith ME, Cisbani G, Metherel AH, Bazinet RP. The Majority of Brain Palmitic Acid is Maintained by Lipogenesis from Dietary Sugars and is Augmented in Mice fed Low Palmitic Acid Levels from Birth. J Neurochem 2021; 161:112-128. [PMID: 34780089 DOI: 10.1111/jnc.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or lipogenesis de novo (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, total brain metabolomic profile, and behaviour. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted in the offspring, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in offspring fed the LP diet, as well as female offspring, brain PAM was not affected by diet or sex. Across offspring of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in offspring fed the LP diet, and the ability to upregulate DNL in the liver or the brain depended on sex. Anxiety-like behaviours were decreased in offspring fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to a LP diet.
Collapse
Affiliation(s)
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto
| | - Adam H Metherel
- University of Toronto, Department of Nutritional Sciences, Toronto
| | | |
Collapse
|
6
|
Flores-León M, Pérez-Domínguez M, González-Barrios R, Arias C. Palmitic Acid-Induced NAD + Depletion is Associated with the Reduced Function of SIRT1 and Increased Expression of BACE1 in Hippocampal Neurons. Neurochem Res 2019; 44:1745-1754. [PMID: 31073968 DOI: 10.1007/s11064-019-02810-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Increased levels of circulating fatty acids, such as palmitic acid (PA), are associated with the development of obesity, insulin resistance, type-2 diabetes and metabolic syndrome. Furthermore, these diseases are linked to an increased risk of cancer, cardiovascular diseases, mild cognitive impairment and even Alzheimer's disease (AD). However, the precise actions of elevated PA levels on neurons and their association with neuronal metabolic disruption that leads to the expression of pathological markers of AD, such as the overproduction and accumulation of the amyloid-β peptide, represent an area of intense investigation. A possible molecular mechanism involved in the effects of PA may be through dysfunction of the NAD+ sensor enzyme, SIRT1. Therefore, the aim of the present study was to analyze the relationship between the effects of PA metabolism on the function of SIRT1 and the upregulation of BACE1 in cultured hippocampal neurons. PA reduced the total amount of NAD+ in neurons that caused an increase in p65 K310 acetylation due to inhibition of SIRT1 activity and low protein content. Furthermore, BACE1 protein and its activity were increased, and BACE1 was relocated in neurites after PA exposure.
Collapse
Affiliation(s)
- Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Martha Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), 14080, México, DF, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico.
| |
Collapse
|
7
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
8
|
Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism. PLoS One 2012; 7:e41503. [PMID: 22911803 PMCID: PMC3404019 DOI: 10.1371/journal.pone.0041503] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023] Open
Abstract
Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. Conclusions: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.
Collapse
|
9
|
Mitchell RW, Hatch GM. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fatty Acids 2011; 85:293-302. [PMID: 21816594 DOI: 10.1016/j.plefa.2011.04.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the central nervous system. Brain capillaries are a continuous layer of endothelial cells with highly developed tight junctional complexes and a lack of fenestrations. The presence of these tight junctions in the cerebral microvessel endothelial cells aids in the restriction of movement of molecules and solutes into the brain. Fatty acids are important components of biological membranes, are precursors for the biosynthesis of phospholipids and sphingolipids and are utilized for mitochondrial β-oxidation. The brain is capable of synthesizing only a few fatty acids. Hence, most fatty acids must enter into the brain from the blood. Here we review current mechanisms of transport of free fatty acids into cells and describe how free fatty acids move from the blood into the brain. We discuss both diffusional as well as protein-mediated movement of fatty acids across biological membranes.
Collapse
Affiliation(s)
- Ryan W Mitchell
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A307 Chown Building, 753 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | | |
Collapse
|
10
|
|
11
|
|
12
|
Mead JF, Dhopeshwarkar GA. Types of fatty acids in brain lipids, their derivation and function. In: lipids, malnutrition & the developing brain. CIBA FOUNDATION SYMPOSIUM 2008:59-72. [PMID: 4949880 DOI: 10.1002/9780470719862.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Purdon D, Arai T, Rapoport S. No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37260-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Rigo B, Kolokouris A, Kolokouris N. Studies on pyrrolidinones. Synthesis of someN-fatty acylpyroglutamic acids. J Heterocycl Chem 1995. [DOI: 10.1002/jhet.5570320513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Affiliation(s)
- S M Innis
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: subcellular localization. Neurochem Res 1988; 13:21-9. [PMID: 3368026 DOI: 10.1007/bf00971850] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Following intravenous injection of [U-14C]palmitate in awake adult rats, whole brain radioactivity reached a broad maximum between 15-60 min, then declined rapidly to reach a relatively stable level between 4 hr and 20 hr. At 44 hr total radioactivity was 57% of the 4 hr value (p less than 0.05). About 50% of palmitate which entered the brain from the blood was oxidized rapidly, producing 14C-labeled water-soluble components which later left the cytosol. Radioactivity in the cytosolic fraction peaked at 45 min and then declined, coincident with the decline in total brain radioactivity. Membrane fractions were rapidly labeled to levels which remained relatively stable from 1 to 44 hr. Increases in the relative distributions of radioactivity were seen between 1 and 4 hr for the microsomal and mitochondrial fractions, and beyond 4 hr for the synaptic and myelin membrane fractions (p less than 0.05). Radioactivity in membrane fractions was 80-90% lipid, 5-13% water-soluble components and 3-17% protein. The proportion of label in membrane-associated protein increased with time. Proportions of radioactivity in the combined membrane fractions increased from 65% to 76% to 80% at 4, 20 and 44 hr, respectively. The results show that plasma-derived palmitate enters oxidative and synthetic pathways to an equal extent, immediately after entry into the brain. At and after 4 hr, the radiolabel resides predominantly in stable membrane lipids and protein. Brain radioactivity at 4 hr can be used therefore, to examine incorporation of palmitate into lipids in vivo, in different experimental conditions.
Collapse
Affiliation(s)
- J M Gnaedinger
- Laboratory of Neurosciences, National Institute on Aging, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
17
|
Abstract
As indicated in the Introduction, the many significant developments in the recent past in our knowledge of the lipids of the nervous system have been collated in this article. That there is a sustained interest in this field is evident from the rather long bibliography which is itself selective. Obviously, it is not possible to summarize a review in which the chemistry, distribution and metabolism of a great variety of lipids have been discussed. However, from the progress of research, some general conclusions may be drawn. The period of discovery of new lipids in the nervous system appears to be over. All the major lipid components have been discovered and a great deal is now known about their structure and metabolism. Analytical data on the lipid composition of the CNS are available for a number of species and such data on the major areas of the brain are also at hand but information on the various subregions is meagre. Such investigations may yet provide clues to the role of lipids in brain function. Compared to CNS, information on PNS is less adequate. Further research on PNS would be worthwhile as it is amenable for experimental manipulation and complex mechanisms such as myelination can be investigated in this tissue. There are reports correlating lipid constituents with the increased complexity in the organization of the nervous system during evolution. This line of investigation may prove useful. The basic aim of research on the lipids of the nervous tissue is to unravel their functional significance. Most of the hydrophobic moieties of the nervous tissue lipids are comprised of very long chain, highly unsaturated and in some cases hydroxylated residues, and recent studies have shown that each lipid class contains characteristic molecular species. Their contribution to the properties of neural membranes such as excitability remains to be elucidated. Similarly, a large proportion of the phospholipid molecules in the myelin membrane are ethanolamine plasmalogens and their importance in this membrane is not known. It is firmly established that phosphatidylinositol and possibly polyphosphoinositides are involved with events at the synapse during impulse propagation, but their precise role in molecular terms is not clear. Gangliosides, with their structural complexity and amphipathic nature, have been implicated in a number of biological events which include cellular recognition and acting as adjuncts at receptor sites. More recently, growth promoting and neuritogenic functions have been ascribed to gangliosides. These interesting properties of gangliosides wIll undoubtedly attract greater attention in the future.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
18
|
Kang ES, Olson G, Jabbour JT, Solomon SS, Heimberg M, Sabesin S, Griffith JF. Development of encephalopathic features similar to Reye syndrome in rabbits. Proc Natl Acad Sci U S A 1984; 81:6169-73. [PMID: 6592608 PMCID: PMC391881 DOI: 10.1073/pnas.81.19.6169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The progression of neurological abnormalities through four or five clinically distinguishable levels of deepening coma and the development of a fatty liver are the hallmarks of Reye syndrome. A number of animal models have been described that result in fatty liver formation with minimal, static, or catastrophic neurological changes. In this study, we attempted to produce neurological features in rabbits that reflected a rostral-caudal progression of abnormalities that could be categorized into clinically distinguishable levels reminiscent of Reye syndrome. This was accomplished by the intracisternal administration of 0.5-25 mg of 11,14-icosadienoic acid (20:2 omega 6) suspended in a mixture of rabbit serum and isotonic saline solution. A reproducible, dose-titratable spectrum of at least four levels of deepening coma could be produced at will. Increases in serum glutamate-oxaloacetate transaminase and creatine kinase and changes in serum glucose resulted 1-2 hr after the neurological abnormalities were evoked. Other unsaturated fatty acids produced similar responses. Those tested included 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:3 omega 6, 20:4 omega 6, and 22:4 omega 6 fatty acids. Saturated fatty acids, including 6:0, 8:0, 16:0, 18:0, and 20:0, failed to elicit these effects. The abnormalities were sustained for 30-120 min after a single dose. Full recovery was observed in some animals that had not reached the fourth level of our grading system for coma. Pretreatment of the rabbits with aspirin modulated the neurological abnormalities. Twenty micrograms of bee venom melittin, which activates endogenous phospholipase A2, administered intracisternally into rabbits also produced signs of level 3 (our grading system) coma for several hours. These findings suggest a possible role for polyunsaturated fatty acids in the development of Reye syndrome and offer a means of producing the neurological components of that syndrome in a laboratory animal.
Collapse
|
19
|
Uptake of14C-labeled phospholipids injected into rats in the last stage of pregnancy by fetal tissues. Bull Exp Biol Med 1984. [DOI: 10.1007/bf00806324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Mizobuchi M, Morisaki N, Matsuoka N, Saito Y, Kumagai A. Incorporation of [1-14C[palmitic acid into neutral lipids and phospholipids of rat cerebral cortex in vitro. J Neurochem 1982; 38:1365-71. [PMID: 6801210 DOI: 10.1111/j.1471-4159.1982.tb07914.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Incorporation of [1-14C]palmitic acid into neutral lipids and phospholipids of rat cerebral cortex was examined in vitro in normal Krebs--Ringer bicarbonate buffer containing 3% (wt/vol) albumin and 0.75 mM palmitic acid. Under standard assay conditions, radioactivity in the triacylglycerol fraction increased rapidly during the first 30 min, and then decreased after 60 min, with corresponding increase in radioactivity in phosphatidyl choline, phosphatidyl ethanolamine, and a fraction of phosphatidyl inositol plus phosphatidyl serine. Diacylglycerol was shown to be an intermediate metabolite. Radioactivity increased in triacylglycerol, and decreased in phosphatidyl choline and phosphatidyl ethanolamine throughout incubation under N2 gas. In the fraction of phosphatidyl inositol plus phosphatidyl serine, radioactivity decreased after 30 min during incubation under N2 gas. A possible acylation--deacylation cycle, in which triacylglycerol could be a source of free fatty acids for phospholipids, is discussed.
Collapse
|
21
|
Smith A, Lough AK, Earl CR. The influence of dietary branched-chain fatty acids on the fatty acid composition of tissue- lipids of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 1982; 33:421-430. [PMID: 7087402 DOI: 10.1002/jsfa.2740330506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
22
|
Alberghina M, Viola M, Moro F, Giuffrida AM. Axonal transport of phospholipids in rabbit optic pathway. Neurochem Res 1981; 6:633-47. [PMID: 7279114 DOI: 10.1007/bf00963880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The uptake of different labeled precursors, their incorporation into lipids, and transport along the rabbit optic pathway [ipsilateral retina and optic nerve (ON), and contralateral optic tract (OT), lateral geniculate body (LGB), and superior colliculus (SC)] were investigated. Albino rabbits were used. The following radioactive precursors ,either combined or separately, dissolved in 50 microliter of saline containing 15% BSA, were injected into vitreous body: [2-3H]glycerol (50 microCi), [1-14C]palmitate (15 microCi), and [1-14C]linoleate (7.5 microCi). Animals were killed at different time intervals from 1 hr up to 24 days. The radioactivity of total lipids and of different phospholipid classes from total tissue was measured. One hour after administration of precursors, the radioactivity into the retina was high and the incorporation of [3H]glycerol and [14C]palmitate increased until 12 hr and 24 hr, respectively. The incorporation of [14C]linoleate reached a maximum on the second day. The phospholipids of LGB and SC were intensively labeled after 4-8 hr, and their radioactivity increased up to the 10th day after injection, independent of the precursor employed. The results obtained indicate that the labeled hydrophilic and hydrophobic precursors used were actively incorporated into the retina, The phospholipids were later transported at a rapid rate along the optic pathway.
Collapse
|
23
|
Fisher SK, Rowe CE. The acylation of lysophosphatidylcholine by subcellular fractions of guinea-pig cerebral cortex. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 618:231-41. [PMID: 7378436 DOI: 10.1016/0005-2760(80)90029-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The acylation of lysophosphatidylcholine by isolated subcellular fractions of guinea-pig cerebral cortex has been determined. The microsomal fraction contained the highest acylation activity, in terms of both specific and total activity. In all particulate fractions, including synaptic plasma membrane and mitochondria, there was a high correlation (correlation coefficient r = 0.90; P less than 0.001) between acylation and the activity of the microsomal enzyme, NADPH-cytochrome c reductase. No correlation existed between acylation and the activities of (Na+ + K+)-ATPase, acetylcholinesterase or succinate dehydrogenase. Acyl-CoA synthetase and lysophosphatidylcholine/acyltransferase, the individual enzymes responsible for acylation were enriched in the microsomal fraction. The activities of both enzymes in subcellular fractions correlated well with those of NADPH-cytochrome c reductase, with the exception that acyl-CoA synthetase activity in the mitochondrial fraction was largely independent of endoplasmic reticulum. Neither synaptic plasma membranes nor mitochondria appeared to possess significant amounts of acyltransferase activity. The results indicate that the acylation of lysophosphatidylcholine is confined to the endoplasmic reticulum, and that activity present in the synaptic plasma membrane or mitochondrial fraction is attributable to microsomal contamination.
Collapse
|
24
|
|
25
|
Wise RW, MacQuarrie R, Sun GY. In vivo desaturation of [1-14C]stearate in the developing mouse brain. J Neurochem 1979; 33:351-4. [PMID: 458462 DOI: 10.1111/j.1471-4159.1979.tb11740.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Bräuning C, Gercken G. Differential distribution of [U-14C]glucose and [U-14C]glycerol among molecular species of phosphatidyl choline, phosphatidyl ethanolamine and 1,2-diacylglycerol in rabbit brain. J Neurochem 1976; 26:1257-61. [PMID: 932729 DOI: 10.1111/j.1471-4159.1976.tb07015.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
|
28
|
Lyles DS, Sulya LL, White HB. The effect of essential fatty acid deficiency upon fatty acid uptake by the brain. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 388:331-8. [PMID: 1137714 DOI: 10.1016/0005-2760(75)90091-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Young adult rats, either control or essential fatty acid deficient, were administered either [3-H] oleic acid or [3-H] arachidonic acid by stomach tube. In addition, a group of control rats was given [3-H] palmitic acid. The rats were killed at various times therafter, and the radioactivity of the lipids of brain and plasma was examined. In confirmation of previous work, the blood lipid label was found to rise rapidly and then fall, wheras the activity of brain lipids increased slowly and did not show a decline through the 24-h period studied. Analysis of the brain uptake data according to first-order kinetics confirmed the impressions gained from visual inspection of the data. The initial rate of uptake of arachidonic acid was about 4.5 times that of oleic acid in control animals and in deficient animals. Essential fatty acid deficiency, however, did not induce an altered rate of uptake for either oleic acid or arachidonic acid. The rate of uptake of palmitic acid by control rats was not significantly different from that of oleic acid. Even though the initial rates of incorporation of oleic and arachidonic acids were not changed during essential fatty acid deficiency, the final levels of radioactivity obtained in brain lipids were higher in deficient rats with both fatty acids. The plateau value obtained with oleic acid was 1.5 times higher in deficient animals, while the plateau value for arachidonic acid was 1.7 times higher. An experiment in which deficient animals were allowed access to a control diet for 12 or 24 h prior to the labeling experiment suggested that the higher levels of radioactivity found in brain lipids of deficient animals was not due to an isotope dilution effect. Such animals still displayed the labeling pattern of deficient animals with arachidonic acid, while the results with oleic acid varied somewhat. Our results suggest that essential fatty acid deficiency does not alter the ability of the brain to take up the fatty acids studied. However, the fatty acids, especially arachidonic, are retained in the brain to a greater extent in the deficient animals.
Collapse
|
29
|
Wolff JR, Schieweck C, Emmenegger H, Meier-Ruge W. Cerebrovascular ultrastructural alterations after intra-arterial infusions of ouabain, scilla-glycosides, heparin and histamine. Acta Neuropathol 1975; 31:45-58. [PMID: 1168396 DOI: 10.1007/bf00696886] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac glycosides which inhibit Na/K-ATPase (ouabain, scilliroside, scillirosidin) as well as heparin and histamine were infused into a cannulated branch of the middle cerebral artery or by isolated head perfusion in cats and dogs. Ouabain permeating the blood-brain barrier (BBB) caused the same selective swelling of astrocytes and of certain presynaptic elements as after direct application to the brain tissue. The other cellular elements of brain tissue and the vascular endothelium did not react, although the latter was exposed to the highest drug concentrations (about 10-3 M ouabain). By the swelling about one third of the capillaries became more or less constricted accompanied by an increase in endothelial vesiculation and in the number of osmiophilic inclusions in all cells of the vascular wall and of the pericapillary tissue. Osmiophilic material resembling plasma proteins occured in widened intercellular clefts indicating an increased BBB permeability after survival times (40 min). In contrast to the capillaries some terminal vessels are dilated which may correspond to shunt vessels causing an inhomogeneous, even increased cerebral blood flow after ouabain. Scilliroside and scillirosidin cause essentially the same changes as ouabain, but of smaller intensity and extent. In the present study, neither histamine nor heparin caused any structural change of the vessels or brain tissue.
Collapse
|
30
|
Pardridge WM, Connor JD, Crawford IL. Permeability changes in the blood-brain barrier: causes and consequences. CRC CRITICAL REVIEWS IN TOXICOLOGY 1975; 3:159-99. [PMID: 1093805 DOI: 10.3109/10408447509079857] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. Generalized changes in blood-brain barrier (BBB) permeability are accompanied by extravasation of plasma proteins; thus, they are readily studied with protein markers or protein-dye complexes. Selective changes in permeability involve alterations in BBB transport systems; they are best studied with techniques which detect the qualitative hallmarks of carrier-mediated transport, namely saturation, competition, and stereospecificity. 2. Quantitative assessments of the selective permeability of the BBB can be made from the saturation data expressed in terms of Michaelis-Menten kinetics. The advantages of the latter are twofold: (a) alterations elicited by modified barrier affinity (Km) can be distinguished from alterations in carrier capacity (Vmax); (b) the relative rates of flux of a metabolite across the BBB can be placed in the perspective of cerebral metabolism. Kinetic data on transport processes in the BBB are obtained by either constant infusion or single injection techniques. Results obtained with both methodologies have been comparable. 3. Independent transport systems for glucose, neutral amino acids, basic amino acids, and monocarboxylic acids have been identified in the BBB. The description of these transport systems in kinetic terms provides a background of information on intact mechanisms to which altered transport can be compared. 4. Experimental evidence indicates that the availability of key metabolic substrates, such as glucose or essential amino acids, may be rate-limiting in cerebral metabolism. A working hypothesis was developed that the consequences of a selective change in barrier permeability to one or more of these essential substrates are directly related to altered rates of reaction in substrate-limited pathways, e.g., cerebral protein or neuro-transmitter biosynthesis. 5. Toxicological causes of generalized changes in BBB permeability include hypertonic solutions, organic solvents, surface-active agents, enzymes, and heavy metals. Some agents, e.g., mercury or hypertonic urea, induce selective changes in BBB transport at doses much lower than those required for nonspecific barrier break-down. Subtle changes in transport of metabolic substrates may remain unrecognized unless specifically investigated, yet may have profound consequences on brain metabolism. 6. Pathological processes can also induce selective changes in BBB permeability. Such changes often temporally precede the more generalized alterations in permeability that can occur during pathogenesis. For example, in brain edema due to an ischemic infarct, glucose transport increases during the early cytotoxic phase, whereas generalized changes are not detected until the later vasogenic phase.
Collapse
|
31
|
Dhopeshwarkar GA, Subramanian C. Metabolism of 1,2-(1-14C) dipalmitoyl phosphatidylcholine in the developing brain. Lipids 1973; 8:753-8. [PMID: 4773040 DOI: 10.1007/bf02531844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Sun GY. The turnover of phosphoglycerides in the subcellular fractions of mouse brain: a study using (1-14C)oleic acid as precursor. J Neurochem 1973; 21:1083-92. [PMID: 4761697 DOI: 10.1111/j.1471-4159.1973.tb07562.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Yau TM, Sun GY. Incorporation of (1-14c)-oleic acid into neutral glycerides and phosphoglycerides of mouse brain. Lipids 1973; 8:410-4. [PMID: 4353291 DOI: 10.1007/bf02531717] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Dhopeshwarkar GA, Subramanian C, Mead JF. Metabolism of (I- 14 C)palmitic acid in the developing brain: persistence of radioactivity in the carboxyl carbon. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 296:257-64. [PMID: 4688435 DOI: 10.1016/0005-2760(73)90084-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Kabara JJ. Brain cholesterol. XVI. Incorporation of different precursors into baboon tissue sterol. Lipids 1973; 8:56-60. [PMID: 4196983 DOI: 10.1007/bf02534329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Horrocks LA. Composition and metabolism of myelin phosphoglycerides during maturation and aging. PROGRESS IN BRAIN RESEARCH 1973; 40:383-95. [PMID: 4608870 DOI: 10.1016/s0079-6123(08)60701-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Dhopeshwarkar GA, Mead JF. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. ADVANCES IN LIPID RESEARCH 1973; 11:109-42. [PMID: 4608446 DOI: 10.1016/b978-0-12-024911-4.50010-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|