1
|
Antimisiaris SG, Ioannou PV. Arsonoliposomes: preparation and physicochemical characterization. Methods Mol Biol 2010; 605:147-62. [PMID: 20072879 DOI: 10.1007/978-1-60327-360-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Arsonoliposomes (ARSL) which are liposomes that contain arsonolipids in their membranes have shown interesting anticancer and antiparasitic activity in vitro. Their lipid composition (the specific arsonolipids and/or phospholipids used for their preparation, and the relative amounts of each lipid type) highly influences their physicochemical properties as well as their in vivo kinetics and antiparasitic activity; however, their cytotoxicity towards cancer cells is minimally--if at all--modified. ARSL are prepared by a modification of the "one step" method followed or not by sonication (for formation of sonicated or non-sonicated ARSL, respectively). Arsonoliposomes may be composed only of arsonolipids (containing or not cholesterol) [plain ARSL], or they may contain mixtures of arsonolipids with phospholipids (with or without Chol) [mixed ARSL]. Herein, we describe in detail the preparation and physicochemical characterization of ARSL.
Collapse
Affiliation(s)
- Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, and FORTH-Institute of Chemical Engineering, Patras, Greece
| | | |
Collapse
|
2
|
|
3
|
Piperoudi S, Fatouros D, Ioannou PV, Frederik P, Antimisiaris SG. Incorporation of PEG-lipids in arsonoliposomes results in formation of highly stable arsenic-containing vesicles. Chem Phys Lipids 2006; 139:96-106. [PMID: 16405880 DOI: 10.1016/j.chemphyslip.2005.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 10/18/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
We investigated the effect of pegylation on the physical stability, morphology and membrane integrity of arsonoliposomes. Arsonoliposomes composed of distearoylglycerophosphocholine (DSPC), cholesterol (Chol) and the palmitoyl side chain arsonolipid (with concentrations ranging from 0 mol% [DSPC/Chol vesicles] to 53 mol% of total lipid) containing either 4 or 8 mol% DPPE-PEG2000 or DSPE-PEG2000, were prepared by sonication. Arsonoliposome membrane integrity was evaluated by measuring the retention of encapsulated calcein in vesicles (during incubation in buffer or fetal calf serum [FCS]) while physical stability was evaluated by measuring vesicle dispersion turbidity (during incubation in water or CaCl(2)). Vesicle morphology was studied by cryo-electron microscopy. Experimental results show that: (i) PEG-lipids are incorporated in arsonoliposomes (as confirmed by the vesicle zeta potential modulation), (ii) pegylation of arsonoliposomes prevents their aggregation and fusion in the presence of calcium ions and (iii) when 8 mol% of PEG-DSPE is incorporated in arsonoliposomes based on their arsonolipid content, two groups of pegylated vesicles are formed: low content arsonoliposomes (<20 mol% arsonolipid) which are highly leaky and high content arsonoliposomes (>27 mol% arsonolipid) which are highly stable (70% calcein retention after 24h incubation in fetal calf serum [FCS]). In addition to high membrane integrity, the high content pegylated arsonoliposomes are morphologically perfect round-shaped vesicles without the sharp edges typically observed with non-pegylated DSPC-containing arsonoliposomes.
Collapse
Affiliation(s)
- Sophia Piperoudi
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Rio 26500, Patras, Greece
| | | | | | | | | |
Collapse
|
4
|
Kim YA, Han HD, Hyun JH, Sin BC. Stability of Liposomal Nano-Powder with the Addition of Cryoprotectant. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2005. [DOI: 10.5012/jkcs.2005.49.2.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Fatouros DG, Piperoudi S, Gortzi O, Ioannou PV, Frederik P, Antimisiaris SG. Physical Stability of Sonicated Arsonoliposomes: Effect of Calcium Ions. J Pharm Sci 2005; 94:46-55. [PMID: 15761929 DOI: 10.1002/jps.20221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The physical stability of sonicated arsonoliposomes in the absence and presence of Ca(2+) ions is evaluated. Cholesterol-containing arsonoliposomes composed of arsonolipids [having different acyl chains (C(12)-C(18))], or mixtures of arsonolipids with phospholipids (phosphatidylcholine or distearoyl-phosphatidylcholine) were prepared, and physical stability was evaluated in the absence and presence of CaCl(2), by vesicle dispersions turbidity measurements and cryo-electron microscopy morphological assessment. In some cases, vesicle zeta-potential was measured, under identical conditions. Results demonstrate that self-aggregation of the vesicles studied is low and influenced by the acyl chain length of the arsonolipid used, whereas calcium-induced aggregation is higher, correlating well with the decreased values of vesicle zeta-potential in the presence of Ca(2+) ions (weaker electrostatic repulsion). Acyl chain length of arsonolipids used has a significant quantitative effect on Ca(2+)-induced vesicle aggregation mainly for arsonoliposomes that contain phospholipids (mixed), compared with the vesicles that consist of plain arsonolipids (significant effect only for initial aggregation at time 0). Another difference between plain and mixed arsonoliposomes is that for mixed arsonoliposomes Ca(2+)-induced increases in turbidity are irreversible by ethylenediaminotetraacetic acid, suggesting that vesicle fusion is taking place. This was confirmed by cryo-electron microscopy observations. Finally, when phosphatidylcholine is replaced by distearoyl-phosphatidylcholine, arsonoliposomes are more stable in terms of self-aggregation, but in the presence of calcium, the turbidity and morphology results are similar.
Collapse
Affiliation(s)
- D G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Effects of Maltose on the Stability of Freeze-Dried Liposomes. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2004. [DOI: 10.5012/jkcs.2004.48.6.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wolkers WF, Oldenhof H, Tablin F, Crowe JH. Preservation of dried liposomes in the presence of sugar and phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:125-34. [PMID: 15003875 DOI: 10.1016/j.bbamem.2003.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 10/26/2022]
Abstract
It has been well established that sugars can be used to stabilize liposomes during drying by a mechanism that involves the formation of a glassy state by the sugars as well as by a direct interaction between the sugar and the phospholipid head groups. We have investigated the protective effect of phosphate on solute retention and storage stability of egg phosphatidylcholine (egg PC) liposomes that were dried (air-dried and freeze-dried) in the presence of sugars and phosphate. The protective effect of phosphate was tested using both glucose (low T(g)) and sucrose (high T(g)) by measuring leakage of carboxyfluorescein (CF), which was incorporated inside the vesicles. Liposomes that were dried with glucose or phosphate alone showed complete leakage after rehydration. However, approximately 30% CF-retention was obtained using mixtures of phosphate and glucose. Approximately 75% CF-retention was observed with liposomes that were dried with sucrose. The solute retention further increased to 85% using mixtures of phosphate and sucrose. The pH of the phosphate buffer prior to drying was found to have a strong effect on the solute retention. Fourier transform infrared spectroscopy studies showed that phosphate and sugars form a strong hydrogen bonding network, which dramatically increased the T(g). The HPO(4)(2-) form of phosphate was found to interact stronger with sugars than the H(2)PO(4)(-) form. The increased solute retention of liposomes dried in the sugar phosphate mixtures did not coincide with improved storage stability. At temperatures below 60 degrees C the rate of solute-leakage was found to be strikingly higher in the presence of phosphate, indicating that phosphate impairs storage stability of dried liposomes.
Collapse
Affiliation(s)
- Willem F Wolkers
- Center for Biostabilization, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Nejat Düzgüneş
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, California 94115, USA
| |
Collapse
|
9
|
Ferro Y, Krafft MP. Incorporation of semi-fluorinated alkanes in the bilayer of small unilamellar vesicles of phosphatidylserine: impact on fusion kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1581:11-20. [PMID: 11960747 DOI: 10.1016/s1388-1981(02)00116-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Semi-fluorinated alkanes C(n)F(2n+1)C(m)H(2m+1) (FnHm) can be co-dispersed with standard phospholipids to form 'fluorinated' vesicles, i.e. vesicles with an internal fluorinated film within their bilayer membrane. This paper reports the effect of the presence of such FnHm diblocks in phosphatidylserine (PS)-based small unilamellar vesicles (SUVs) on their kinetics of fusion. Fusion was induced by calcium ions and monitored by the terbium/dipicolinic acid assay. The diblocks were composed of a 10-carbon long linear hydrocarbon segment and of a linear fluorocarbon segment of four, six or eight carbon atoms. We found that the incorporation of FnHm in the PS membrane considerably modifies the kinetics of the process of fusion, with Ca(2+) concentration having a much more limited effect on the fluorinated vesicles. Both the rates of fusion and the rates of release of the internal content, as evaluated by the release of 5,6-carboxyfluorescein, were much lower for the fluorinated SUVs than for those based on phosphatidylserine alone, the highest effect being obtained for F6H10 with a 10 times slower rate of fusion and a 40-fold reduction in the release of content. FnHm molecules are proposed to have a dual action: by hindering fusion and release by creating an inert, hydrophobic and lipophobic fluorinated film in the core of the membrane, and by stabilizing the membrane by increasing van der Waals interactions in the hydrocarbon region.
Collapse
Affiliation(s)
- Yves Ferro
- Unité de Chimie Moléculaire, Université de Nice-Sophia Antipolis, Faculté des Sciences, Parc Valrose, Nice, France
| | | |
Collapse
|
10
|
Ravoo BJ, Stuart MC, Brisson AD, Weringa WD, Engberts JB. Electron microscopic investigation of the morphology and calcium-induced fusion of lipid vesicles with an oligomerised inner leaflet. Chem Phys Lipids 2001; 109:63-74. [PMID: 11163345 DOI: 10.1016/s0009-3084(00)00203-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lipid head groups in the inner leaflet of unilamellar bilayer vesicles of the synthetic lipids DHPBNS and DDPBNS can be selectively oligomerised. Earlier studies have established that these vesicles fuse much slower and less extensively upon oligomerisation of the lipid head groups. The morphology and calcium-induced fusion of vesicles of DHPBNS and DDPBNS were investigated using cryo-electron microscopy. DHPBNS vesicles are not spherical but flattened, ellipsoidal structures. Upon addition of CaCl(2), DHPBNS vesicles with an oligomerised inner leaflet were occasionally observed in an arrested hemifused state. However, the evidence for hemifusion is not equivocal due to potential artefacts of sample preparation. DDPBNS vesicles show the expected spherical morphology. Upon addition of excess CaCl(2), DDPBNS vesicles fuse into dense aggregates that show a regular spacing corresponding to the bilayer width. Upon addition of EDTA, the aggregates readily disperse into large unilamellar vesicles. At low concentration of calcium ion, DDPBNS vesicles with an oligomerised inner leaflet form small multilamellar aggregates, in which a spacing corresponding to the bilayer width appears. Addition of excess EDTA results in slow dispersal of the Ca2+-lipid aggregates into a heterogeneous mixture of bilamellar, spherical vesicles and networks of thread-like vesicles. These lipid bilayer rearrangements are discussed within the context of shape transformations and fusion of lipid membranes.
Collapse
Affiliation(s)
- B J Ravoo
- Department of Organic and Molecular Inorganic Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Ortiz A, Killian JA, Verkleij AJ, Wilschut J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys J 1999; 77:2003-14. [PMID: 10512820 PMCID: PMC1300481 DOI: 10.1016/s0006-3495(99)77041-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The polymorphic phase behavior of bovine heart cardiolipin (CL) in the presence of different divalent cations and the kinetics of CL vesicle fusion induced by these cations have been investigated. (31)P-NMR measurements of equilibrium cation-CL complexes showed the lamellar-to-hexagonal (L(alpha)-H(II)) transition temperature (T(H)) to be 20-25 degrees C for the Sr(2+) and Ba(2+) complexes, whereas in the presence of Ca(2+) or Mg(2+) the T(H) was below 0 degrees C. In the presence of Sr(2+) or Ba(2+), CL large unilamellar vesicles (LUVs) (0.1 microm diameter) showed kinetics of destabilization, as assessed by determination of the release of an aqueous fluorescent dye, which strongly correlated with the L(alpha)-H(II) transition of the final complex: at temperatures above the T(H), fast and extensive leakage, mediated by vesicle-vesicle contact, was observed. On the other hand, mixing of vesicle contents was limited and of a highly transient nature. A different behavior was observed with Ca(2+) or Mg(2+): in the temperature range of 0-50 degrees C, where the H(II) configuration is the thermodynamically favored phase, relatively nonleaky fusion of the vesicles occurred. Furthermore, with increasing temperature the rate and extent of leakage decreased, with a concomitant increase in fusion. Fluorescence measurements, involving incorporation of N-NBD-phosphatidylethanolamine in the vesicle bilayer, demonstrated a relative delay in the L(alpha)-H(II) phase transition of the CL vesicle system in the presence of Ca(2+). Freeze-fracture electron microscopy of CL LUV interaction products revealed the exclusive formation of H(II) tubes in the case of Sr(2+), whereas with Ca(2+) large fused vesicles next to H(II) tubes were seen. The extent of binding of Ca(2+) to CL in the lamellar phase, saturating at a binding ratio of 0.35 Ca(2+) per CL, was close to that observed for Sr(2+) and Ba(2+). It is concluded that CL LUVs in the presence of Ca(2+) undergo a transition that favors nonleaky fusion of the vesicles over rapid collapse into H(II) structures, despite the fact that the equilibrium Ca(2+)-CL complex is in the H(II) phase. On the other hand, in the presence of Sr(2+) or Ba(2+) at temperatures above the T(H) of the respective cation-CL complexes, CL LUVs rapidly convert to H(II) structures with a concomitant loss of vesicular integrity. This suggests that the nature of the final cation-lipid complex does not primarily determine whether CL vesicles exposed to the cation will initially undergo a nonleaky fusion event or collapse into nonvesicular structures.
Collapse
Affiliation(s)
- A Ortiz
- Department of Physiological Chemistry, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Abstract
Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.
Collapse
Affiliation(s)
- B J Ravoo
- Department of Organic and Molecular Inorganic Chemistry and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
13
|
Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 1996; 386:243-6. [PMID: 8647291 DOI: 10.1016/0014-5793(96)00452-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transfer of MPEG(1900)-DSPE from micellar phase to pre-formed liposomes imparts long in vivo circulation half-life to an otherwise rapidly cleared lipid composition. MPEG(1900)-DSPE transfers efficiently and quickly in a time and temperature dependent manner. There is negligible content leakage and a strong correlation between assayed mol% MPEG(1900)-DSPE, liposome diameter increase, and pharmacokinetic parameters such as distribution phase half-life. Since a biological attribute (liposome clearance rate) can be modified by the insertion process, it suggests a simple and economical way to impart site-specific targeting to a variety of liposome delivery systems. This method is also a convenient way to measure the 'brush' thickness of such conjugates directly.
Collapse
Affiliation(s)
- P S Uster
- SEQUUS Pharmaceuticals, Inc., Menlo Park, CA 94025, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- N Düzgüneş
- Department of Microbiology, University of Pacific School of Dentistry, San Francisco, California 94115
| | | |
Collapse
|
15
|
Isothermal volume variations in lipid vesicle suspensions. A new evidence of intervesicle fusion kinetics. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf02457289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Papahadjopoulos D, Nir S, Düzgünes N. Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 1990; 22:157-79. [PMID: 2139437 DOI: 10.1007/bf00762944] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reviewed studies on calcium-induced fusion of lipid bilayer membranes and the role of synexin and other calcium-binding proteins (annexins) in membrane fusion. We have also discussed the roles of other cations, lipid phase transitions, long chain fatty acids and other fusogenic molecules. Finally, we have presented a simple molecular model for the mechanism of lipid membrane fusion, consistent with the experimental evidence and incorporating various elements proposed previously.
Collapse
Affiliation(s)
- D Papahadjopoulos
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | |
Collapse
|
17
|
Chattopadhyay A. Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids 1990; 53:1-15. [PMID: 2191793 DOI: 10.1016/0009-3084(90)90128-e] [Citation(s) in RCA: 250] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipids that are covalently labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group are widely used as fluorescent analogues of native lipids in model and biological membranes to study a variety of processes. The fluorescent NBD group may be attached either to the polar or the apolar regions of a wide variety of lipid molecules. Synthetic routes for preparing the lipids, and spectroscopic and ionization properties of these probes are reviewed in this report. The orientation of various NBD-labeled lipids in membranes, as indicated by the location of the NBD group, is also discussed. The NBD group is uncharged at neutral pH in membranes, but loops up to the surface if attached to acyl chains of phospholipids. These lipids find applications in a variety of membrane-related studies which include membrane fusion, lipid motion and dynamics, organization of lipids and proteins in membranes, intracellular lipid transfer, and bilayer to hexagonal phase transition in liposomes. Use of NBD-labeled lipids as analogues of natural lipids is critically evaluated.
Collapse
Affiliation(s)
- A Chattopadhyay
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| |
Collapse
|
18
|
Mckersie BD, Crowe JH, Crowe LM. Free fatty acid effects on leakage, phase properties and fusion of fully hydrated model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1989. [DOI: 10.1016/0005-2736(89)90186-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Wilschut J, Scholma J, Stegmann T. Molecular mechanisms of membrane fusion and applications of membrane fusion techniques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 238:105-26. [PMID: 3074633 DOI: 10.1007/978-1-4684-7908-9_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Wilschut
- Laboratory of Physiological Chemistry, University of Groningen, The Netherlands
| | | | | |
Collapse
|
20
|
Düzgüneş N, Allen TM, Fedor J, Papahadjopoulos D. Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 1987; 26:8435-42. [PMID: 3442666 DOI: 10.1021/bi00399a061] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kinetics of lipid mixing during membrane aggregation and fusion was monitored by two assays employing resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and N-(lissamine Rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE). For the "probe mixing" assay, NBD-PE and Rh-PE were incorporated into separate populations of phospholipid vesicles. For the "probe dilution" assay, both probes were incorporated into one population of vesicles, and the assay monitored the dilution of the molecules into the membrane of unlabeled vesicles. The former assay was found to be very sensitive to aggregation, even when the internal aqueous contents of the vesicles did not intermix. Examples of this case were large unilamellar vesicles (LUV) composed of phosphatidylserine (PS) in the presence of Mg2+ and small unilamellar vesicles (SUV) composed of phosphatidylserine in the presence of high concentrations of Na+. No lipid mixing was detected in these cases by the probe dilution assay. Under conditions where membrane fusion (defined as the intermixing of aqueous contents with concomitant membrane mixing) was observed, such as LUV (PS) in the presence of Ca2+, the rate of probe mixing was faster than that of probe dilution, which in turn was faster than the rate of contents mixing. Two assays monitoring the intermixing of aqueous contents were also compared. The Tb/dipicolinic acid assay reported slower fusion rates than the 1-aminonaphthalene-3,6,8-trisulfonic acid/N,N'-p-xylylene-bis(pyridinium bromide) assay for PS LUV undergoing fusion in the presence of Ca2+. These observations point to the importance of utilizing contents mixing assays in conjunction with lipid mixing assays to obtain the rates of membrane destabilization and fusion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Düzgüneş
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | | | |
Collapse
|
21
|
Au S, Weiner ND, Schacht J. Aminoglycoside antibiotics preferentially increase permeability in phosphoinositide-containing membranes: a study with carboxyfluorescein in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 902:80-6. [PMID: 3038190 DOI: 10.1016/0005-2736(87)90137-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rate of release from multilamellar liposomes of the fluorescent probe carboxyfluorescein was determined as a measure of membrane permeability. Liposomes of phosphatidylcholine and different anionic phospholipids were incubated with low (1 microM) and high (3 mM) concentrations of calcium in the absence or presence of aminoglycoside antibiotics. The leakage of carboxyfluorescein into the medium was not caused by liposomal fusion as no vesicle fusion was observed in experiments with terbium and dipicolinic acid-loaded liposomes. The basal rate of carboxyfluorescein release (in the absence or presence of 1 microM calcium) from all types of liposomes ranged from 0.1 to 0.3% of trapped carboxyfluorescein per hour. The presence of 3 mM calcium caused the greatest increase in the rate of carboxyfluorescein release (about 9-fold) in liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP2) whereas liposomes containing the other anionic phospholipids (phosphatidylserine, phosphatidylinositol and phosphatidylinositol 4-phosphate) showed an approximate 5-fold increase. In the presence of 1 microM calcium, the aminoglycosides neomycin and gentamicin also increased the rate of carboxyfluorescein release, with PIP2-containing liposomes showing a 3-5-times greater response than the other liposomes, releasing up to 4.6% of trapped carboxyfluorescein per hour. This drug-induced release was dose-dependent and antagonized by calcium. In the presence of 3 mM calcium, 0.1 mM gentamicin or neomycin were ineffective while the drug at 1 mM affected carboxyfluorescein release from PIP2-liposomes only. The aminoglycoside antibiotics, neomycin, gentamicin, tobramycin, kanamycin, amikacin, netilmicin, as well as neamine and spectinomycin (all at 0.1 mM) showed a graded effect on the rate of carboxyfluorescein release from PIP2-containing vesicles in the presence of 0.1 mM calcium. The magnitude of the effect correlated well with the ototoxicity of the drugs previously determined directly in cochlear perfusions in the guinea pig. The study demonstrates that aminoglycoside antibiotics are capable of altering membrane permeabilities and that this effect is most pronounced if PIP2 is present in the bilayers. The excellent correlation between this membrane action and the in-situ toxicity of the drugs further establishes the specific role of PIP2 in the molecular mechanism of aminoglycoside-induced hearing loss. Moreover, it confirms the usefulness of such physicochemical models for the screening and prediction of aminoglycoside toxicity.
Collapse
|
22
|
Bental M, Wilschut J, Scholma J, Nir S. Ca2+-induced fusion of large unilamellar phosphatidylserine/cholesterol vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 898:239-47. [PMID: 3828344 DOI: 10.1016/0005-2736(87)90043-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of cholesterol on the Ca2+-induced aggregation and fusion of large unilamellar phosphatidylserine (PS) vesicles has been investigated. Mixing of aqueous vesicle contents was followed continuously with the Tb/dipicolinate assay, while the dissociation of pre-encapsulated Tb/dipicolinate complex was taken as a measure of the release of vesicle contents. Vesicles consisting of pure PS or PS/cholesterol mixtures at molar ratios of 4:1, 2:1 and 1:1 were employed at three different lipid concentrations, each at four different Ca2+ concentrations. The results could be well simulated in terms of a mass-action kinetic model, providing separately the rate constants of vesicle aggregation, c11, and of the fusion reaction itself, f11. In the analyses the possibility of deaggregation of aggregated vesicles was considered explicitly. Values of both c11 and f11 increase steeply with the Ca2+ concentration increasing from 2 to 5 mM. With increasing cholesterol content of the vesicles the value of c11 decreases, while the rate of the actual fusion reaction, f11, increases. Remarkably, the effect of cholesterol on both aggregation and fusion is quite moderate. The presence of cholesterol in the vesicle bilayer does not affect the leakage of vesicle contents during fusion.
Collapse
|
23
|
Paiement J, Rindress D, Smith CE, Poliquin L, Bergeron JJ. Properties of a GTP sensitive microdomain in rough microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 898:6-22. [PMID: 3828332 DOI: 10.1016/0005-2736(87)90105-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stripped rough microsomes (SRM) fuse when incubated with physiological concentrations of GTP and MgCl2. In order to examine further to what extent such fusions are associated with other membrane functions of rough endoplasmic reticulum, we have evaluated the role of cytosolically exposed peptide constituents of SRM in fusion, and the possible relationship of GTP/MgCl2-induced fusion in protein transport across endoplasmic reticulum (ER) membranes, and in ER-Golgi interactions. Controlled proteolytic digestion of SRM led to the loss of fusion capability at 15 micrograms/ml trypsin--a concentration which maintained the latency of intraluminal mannose-6-phosphatase. Hence, a cytosolically exposed protein(s) regulated fusion. Based on ribonuclease-induced ribosome capping experiments, it was further concluded that the cytosolic oriented protein(s) was sequestered beneath the ribosome. As co-translational cell free translocation of placental lactogen across SRM was similar in control membranes compared to those rendered incapable of fusing, it was concluded that the fusion phenomenon may not be related to translocation. Under conditions promoting homologous fusion of SRM or Golgi membranes, mixtures of the two membranes showed no heterologous membrane fusion as assessed morphologically or by the transport of newly synthesized membrane glycoprotein. These experiments attest to the specificity of cytosolically exposed protein(s) in regulating nucleotide/divalent cation-induced membrane fusion.
Collapse
|
24
|
Leventis R, Gagné J, Fuller N, Rand RP, Silvius JR. Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles. Biochemistry 1986; 25:6978-87. [PMID: 3801406 DOI: 10.1021/bi00370a600] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interactions of unilamellar vesicles containing phosphatidylcholine (PC) and phosphatidic acid (PA) in the presence of calcium and magnesium were examined by fluorometric assays of vesicle lipid mixing, contents mixing, and contents leakage and by spray-freezing freeze-fracture electron microscopy. These results were correlated with calorimetric and fluorometric measurements of divalent cation induced lateral segregation of lipids in these vesicles under comparable conditions. PA-PC vesicles in the presence of calcium show a rapid but limited intermixing of vesicle lipids and contents, the extent of which increases as the vesicle size decreases or the PA content increases. Calcium produces massive aggregation and efficient mixing of the contents of vesicles containing high proportions of dioleoyl-PA or egg PA, but vesicle coalescence in the latter case is followed rapidly by vesicle collapse and massive leakage of contents. The effects of magnesium are similar for vesicles of very high PA content. However, in the presence of magnesium, vesicles containing lower amounts of PA exhibit "hemifusion", a mode of interaction in which vesicles aggregate and mix approximately 50% of their lipids, apparently representing the lipids of the outer monolayer of each vesicle, without significant mixing of vesicle contents or collapse of the vesicles. Fluorometric measurements of lipid lateral segregation demonstrate that lateral redistribution of lipids in PA-PC vesicles begins at submillimolar concentrations of divalent cations and shows no abrupt change at the "threshold" divalent cation concentration, above which coalescence of vesicles is observed. By correlating calorimetric and fluorometric measurements of lipid lateral segregation and mixing of vesicle components, we can demonstrate that lipid segregation is at least strongly correlated with calcium-promoted coalescence of PA-PC vesicles and is essential to the magnesium-promoted interactions of vesicles of low PA contents.
Collapse
|
25
|
Ellens H, Bentz J, Szoka FC. Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition. Biochemistry 1986; 25:4141-7. [PMID: 3741846 DOI: 10.1021/bi00362a023] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The initial kinetics of fusion and leakage of liposomes composed of N-methylated dioleoylphosphatidylethanolamine (DOPE-Me) have been correlated with the phase behavior of this lipid. Gagné et al. [Gagné, J., Stamatatos, L., Diacovo, T., Hui, S. W., Yeagle, P., & Silvius, J. (1985) Biochemistry 24, 4400-4408] have shown that this lipid is lamellar (L alpha) below 20 degrees C, is hexagonal (HII) above 70 degrees C, and shows isotropic 31P NMR resonances at intermediate temperatures. This isotropic state is also characterized by complex morphological structures. We have prepared DOPE-Me liposomes at pH 9.5 and monitored the temperature dependence of the mixing of aqueous contents, leakage, and changes in light scattering upon reduction of the pH to 4.5. At and below 20 degrees C, where the lipid is in the L alpha phase, there is very little aggregation or destabilization of the liposomes. Between 30 and 60 degrees C, i.e., where the lipid is in the isotropic state, the initial rates of liposome fusion (mixing of aqueous contents) and leakage increase. At temperatures approaching that where the hexagonal HII phase transition occurs, the initial rates and extents of fusion decrease, whereas leakage is enhanced. Similar results were found for dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine (2:1) liposomes. These results clearly establish a common mechanism between the appearance of the isotropic state (between the L alpha and HII phases) and the promotion of liposome fusion. We propose a simple model to explain both the observed behavior of phosphatidylethanolamine-containing membranes with respect to liposome fusion and/or lysis and the beginning of the L alpha-HII phase transition.
Collapse
|
26
|
Abstract
In many cellular functions the process of membrane fusion is of vital importance. It occurs in a highly specific and strictly controlled fashion. Proteins are likely to play a key role in the induction and modulation of membrane fusion reactions. Aimed at providing insight into the molecular mechanisms of membrane fusion, numerous studies have been carried out on model membrane systems. For example, the divalent-cation induced aggregation and fusion of vesicles consisting of negatively charged phospholipids, such as phosphatidylserine (PS) or cardiolipin (CL), have been characterized in detail. It is important to note that these systems largely lack specificity and control. Therefore conclusions derived from their investigation can not be extrapolated directly to a seemingly comparable counterpart in biology. Yet, the study of model membrane systems does reveal the general requirements of lipid bilayer fusion. The most prominent barrier to molecular contact between two apposing bilayers appears to be due to the hydration of the polar groups of the lipid molecules. Thus, dehydration of the bilayer surface and fluctuations in lipid packing, allowing direct hydrophobic interactions, are critical to the induction of membrane fusion. These membrane alterations are likely to occur only locally, at the site of intermembrane contact. Current views on the way membrane proteins may induce fusion under physiological conditions also emphasize the notion of local surface dehydration and perturbation of lipid packing, possibly through penetration of apolar amino acid segments into the hydrophobic membrane interior.
Collapse
|
27
|
Ohki K, Nagaoka S, Sogami M, Nozawa Y. Ca2+-translocation activities of phosphatidylinositol, diacylglycerol and phosphatidic acid inferred by quin-2 in artificial membrane systems. Chem Phys Lipids 1986; 39:237-49. [PMID: 3009039 DOI: 10.1016/0009-3084(86)90013-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ca2+-translocating activities of phosphatidylinositol, diacylglycerol and phosphatidic acid were investigated in phosphatidylcholine liposomes. Using a fluorescent indicator of Ca2+ concentration, quin-2, release of encapsulated Ca2+ from egg yolk phosphatidylcholine liposomes containing 2 mol% of one of these lipids was measured at 37 degrees C. The rate of Ca2+ translocation across the liposomal membrane mediated by phosphatidic acid was about 3-fold larger than those mediated by phosphatidylinositol and diacylglycerol. The result implies that phosphatidic acid has Ca2+-ionophore activity in the agonist dependent metabolism of inositol phospholipids. The ionophoretic activity depended on the degree of unsaturation of the fatty acyl chains. The Ca2+ translocation rate was smallest in dipalmitoylphosphatidic acid, and it increased in the order of dioleoyl-, dilinoleoyl- and dilinolenoyl-phosphatidic acid. Ca2+ mobilization of a stimulated cell is discussed in the light of Ca2+-ionophore activity of phosphatidic acid converted from inositol phospholipids.
Collapse
|
28
|
Wilschut J, Scholma J, Bental M, Hoekstra D, Nir S. Ca2+-induced fusion of phosphatidylserine vesicles: mass action kinetic analysis of membrane lipid mixing and aqueous contents mixing. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 821:45-55. [PMID: 4063361 DOI: 10.1016/0005-2736(85)90151-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the initial kinetics of Ca2+-induced aggregation and fusion of phosphatidylserine large unilamellar vesicles at 3, 5 and 10 mM Ca2+ and 15, 25 and 35 degrees C, utilizing the Tb/dipicolinate (Tb/DPA) assay for mixing of aqueous vesicle contents and a resonance energy transfer (RET) assay for mixing of bilayer lipids. Separate rate constants for vesicle aggregation as well as deaggregation and for the fusion reaction itself were determined by analysis of the data in terms of a mass action kinetic model. At 15 degrees C the aggregation rate constants for either assay are the same, indicating that at this temperature all vesicle aggregation events that result in lipid mixing lead to mixing of aqueous contents as well. By contrast, at 35 degrees C the RET aggregation rate constants are higher than the Tb/DPA aggregation rate constants, indicating a significant frequency of reversible vesicle aggregation events that do result in mixing of bilayer lipids, but not in mixing of aqueous vesicle contents. In any conditions, the RET fusion rate constants are considerably higher than the Tb/DPA fusion rate constants, demonstrating the higher tendency of the vesicles, once aggregated, to mix lipids than to mix aqueous contents. This possibly reflects the formation of an intermediate fusion structure. With increasing Ca2+ concentrations the RET and the Tb/DPA fusion rate constants increase in parallel with the respective aggregation rate constants. This suggests that fusion susceptibility is conferred on the vesicles during the process of vesicle aggregation and not solely as a result of the interaction of Ca2+ with isolated vesicles. Aggregation of the vesicles in the presence of Mg2+ produces neither mixing of aqueous vesicle contents nor mixing of bilayer lipids.
Collapse
|
29
|
Abstract
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.
Collapse
|
30
|
Driessen AJ, Hoekstra D, Scherphof G, Kalicharan RD, Wilschut J. Low pH-induced fusion of liposomes with membrane vesicles derived from Bacillus subtilis. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)85164-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Düzgüneş N, Straubinger RM, Baldwin PA, Friend DS, Papahadjopoulos D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 1985; 24:3091-8. [PMID: 4027231 DOI: 10.1021/bi00334a004] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.
Collapse
|
32
|
Abstract
A new liposome fusion assay has been developed that monitors the mixing of aqueous contents at neutral and low pH. With this assay we have investigated the ability of H+ to induce membrane destabilization and fusion. The assay involves the fluorophore 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and its quencher N,N'-p-xylylenebis(pyridinium bromide) (DPX). ANTS is encapsulated in one population of liposomes and DPX in another, and fusion results in the quenching of ANTS fluorescence. The results obtained with the ANTS/DPX assay at neutral pH give kinetics for the Ca2+-induced fusion of phosphatidylserine large unilamellar vesicles (PS LUV) that are very similar to those obtained with the Tb3+/dipicolinic acid (DPA) assay [Wilschut, J., & Papahadjopoulos, D. (1979) Nature (London) 281, 690-692]. ANTS fluorescence is relatively insensitive to pH between 7.5 and 4.0. Below pH 4.0 the assay can be used semiquantitatively by correcting for quenching of ANTS due to protonation. For PS LUV it was found that, at pH 2.0, H+ by itself causes mixing of aqueous contents, which makes H+ unique among the monovalent cations. We have shown previously that H+ causes a contact-induced leakage from liposomes composed of phosphatidylethanolamine and the charged cholesteryl ester cholesteryl hemisuccinate (CHEMS) at pH 5.0 or below, where CHEMS becomes protonated. Here we show that H+ causes lipid mixing in this pH range but not mixing of aqueous contents. This result affirms the necessity of using both aqueous space and lipid bilayer assays to comprehend the fusion event between two liposomes.
Collapse
|
33
|
Morris SJ, Gibson CC, Smith PD, Greif PC, Stirk CW, Bradley D, Haynes DH, Blumenthal R. Rapid kinetics of Ca2+-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles. The effect of bilayer curvature on leakage. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89240-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Deleers M, Servais JP, Wülfert E. Micromolar concentrations of Al3+ induce phase separation, aggregation and dye release in phosphatidylserine-containing lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 813:195-200. [PMID: 3838251 DOI: 10.1016/0005-2736(85)90233-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of Al3+, Cd2+ and Mn2+ with phosphatidylserine-containing lipid vesicles was studied. Phase separation of vesicles was investigated by monitoring fluorescence quenching of the phospholipid analogue 1-palmitoyl-2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)] aminocaproyl)phosphatidylcholine (C6-NBD-PC). Aggregation was determined by turbidimetry and leakage of vesicles content during fusion was monitored by the fluorescence of released 6-carboxyfluorescein. Al3+ demonstrated quenching at less than 30 mumol/l with a maximum effect at 100 mumol/l. Al3+-induced aggregation and dye release from the lipid vesicles were observed in the same concentration range. The effect of Cd2+ and Mn2+ on quenching was much less pronounced and could only be demonstrated in the 0.1-1 mmol/l range. Increasing amounts of phosphatidylcholine or phosphatidylethanolamine in the vesicles decreased both Al3+-induced quenching and aggregation, whereas cholesterol only slightly increased aggregation without affecting quenching.
Collapse
|
35
|
Braun G, Lelkes PI, Nir S. Effect of cholesterol on Ca2+-induced aggregation and fusion of sonicated phosphatidylserine/cholesterol vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 812:688-94. [PMID: 3970903 DOI: 10.1016/0005-2736(85)90262-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small unilamellar vesicles composed of phosphatidylserine (PS) and cholesterol at various ratios were employed in studying the effect of cholesterol on Ca2+-induced vesicle aggregation and fusion using the Tb/dipicolinic acid assay. The leakage of preencapsulated Tb3+ was also measured. The analysis of the data provided estimates for the rate of aggregation C11, and the rate of fusion per se, f11. An increase in cholesterol contents results in a decrease in C11 values. Similarly, aggregation of PS/cholesterol vesicles is slower than that of PS vesicles in the presence of 650 mM NaCl. With 100 or 200 mM NaCl, the overall fusion rate of PS/cholesterol vesicles is slower than that of PS vesicles; the rate being reduced by an increase in cholesterol contents. With 600 mM NaCl, the overall fusion rate of PS/cholesterol 9:1 vesicles is faster than that of PS vesicles, and results are well-simulated by assuming no delay in vesicle aggregation up to dimers. Emerging f11 values are larger in PS/cholesterol than in PS vesicles. An analysis of fusion kinetics of several lipid concentrations shows that f11 values of PS/cholesterol 3:1 vesicles are 5-times larger than those of PS vesicles, when fusion occurs in a medium containing 200 mM NaCl and 1.5 mM Ca2+. The increase in Na+ concentration from 100 to 200 mM, or 600 mM results in a 50- or 150-fold reduction in f11 values of PS vesicles. It is suggested that incorporation of cholesterol in PS vesicles results in enhancement of Ca2+-induced fusogenic capacity.
Collapse
|
36
|
Bentz J, Düzgüneş N, Nir S. Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: evaluation of the kinetic rate constants. Biochemistry 1985; 24:1064-72. [PMID: 3994991 DOI: 10.1021/bi00325a039] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.
Collapse
|
37
|
Wilschut J, Düzgüneş N, Hoekstra D, Papahadjopoulos D. Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 1985; 24:8-14. [PMID: 3994974 DOI: 10.1021/bi00322a002] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the temperature dependence of the fusion of phospholipid vesicles composed of pure bovine brain phosphatidylserine (PS) induced by Ca2+ or Mg2+. Aggregation of the vesicles was monitored by 90 degrees light-scattering measurements, fusion by the terbium/dipicolinic acid assay for mixing of internal aqueous volumes, and release of vesicle contents by carboxyfluorescein fluorescence. Membrane fluidity was determined by diphenylhexatriene fluorescence polarization measurements. Small unilamellar vesicles (SUV, diameter 250 A) or large unilamellar vesicles (LUV, diameter 1000 A) were used, and the measurements were done in 0.1 M NaCl at pH 7.4. The following results were obtained: (1) At temperatures (0-5 degrees C) below the phase transition temperature (Tc) of the lipid, LUV (PS) show very little fusion in the presence of Ca2+, although vesicle aggregation is rapid and extensive. With increasing temperature, the initial rate of fusion increases dramatically. Leakage of contents at the higher temperatures remains limited initially, but subsequently complete release occurs as a result of collapse of the internal aqueous space of the fusion products. (2) SUV (PS) are still in the fluid state down to 0 degree C, due to the effect of bilayer curvature, and fuse rapidly in the entire temperature range from 0 to 35 degrees C in the presence of Ca2+. The initial rate of leakage is low relative to the rate of fusion. At higher temperatures (15 degrees C and above), subsequent collapse of the vesicles' internal space causes complete release.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
38
|
|
39
|
Hoekstra D, de Boer T, Klappe K, Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 1984; 23:5675-81. [PMID: 6098295 DOI: 10.1021/bi00319a002] [Citation(s) in RCA: 527] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An assay is presented that allows continuous and sensitive monitoring of membrane fusion in both artificial and biological membrane systems. The method relies upon the relief of fluorescence self-quenching of octadecyl Rhodamine B chloride. When the probe is incorporated into a lipid bilayer at concentrations up to 9 mol% with respect to total lipid, the efficiency of self-quenching is proportional to its surface density. Upon fusion between membranes labeled with the probe and nonlabeled membranes, the decrease in surface density of the fluorophore results in a concomitant, proportional increase in fluorescence intensity, allowing kinetic and quantitative measurements of the fusion process. The kinetics of fusion between phospholipid vesicles monitored with this assay were found to be the same as those determined with a fusion assay based on resonance energy transfer [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099]. Octadecyl Rhodamine B chloride can be readily inserted into native biological membranes by addition of an ethanolic solution of the probe. Evidence is presented showing that the dilution of the fluorophore, occurring when octadecyl Rhodamine containing influenza virus is mixed with phospholipid vesicles at pH 5.0, but not pH 7.4, resulted from virus-vesicle fusion and was not related to processes other than fusion. Furthermore, by use of this method, the kinetics of fusion between Sendai virus and erythrocyte ghosts and virus-induced fusion of ghosts were readily revealed. Dilution of the probe was not observed upon prior treatment of fluorescently labeled Sendai virus with trypsin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
|
41
|
Bondeson J, Wijkander J, Sundler R. Proton-induced membrane fusion. Role of phospholipid composition and protein-mediated intermembrane contact. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 777:21-7. [PMID: 6091753 DOI: 10.1016/0005-2736(84)90492-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycolipid-phospholipid vesicles containing phosphatidate and phosphatidylethanolamine were found to undergo proton-induced fusion upon acidification of the suspending medium from pH 7.4 to pH 6.5 or lower, as determined by an assay for lipid intermixing based on fluorescence resonance energy transfer. Lectin-mediated contact between the vesicles was required for fusion. Incorporation of phosphatidylcholine in the vesicles inhibited proton-induced fusion. Vesicles in which phosphatidate was replaced by phosphatidylserine underwent fusion only when pH was reduced below 4.5, while no significant fusion occurred (pH greater than or equal to 3.5) when the anionic phospholipid was phosphatidylinositol. It is suggested that partial protonation of the polar headgroup of phosphatidate and phosphatidylserine, respectively, causes a sufficient reduction in the polarity and hydration of the vesicle surface to trigger fusion at sites of intermembrane contact.
Collapse
|
42
|
Rosenberg J, Düzgüneş N, Kayalar C. Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 735:173-80. [PMID: 6626546 DOI: 10.1016/0005-2736(83)90272-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Divalent cation-induced fusion of large unilamellar vesicles (approx. 0.1 micron diameter) made of phosphatidylserine (PS) or phosphatidylglycerol (PG) has been studied. Intermixing of aqueous contents during fusion was followed by the Tb/dipicolinic acid fluorescence assay, and intermixing of membrane components by resonance energy transfer between fluorescent lipid probes. Both assays gave identical threshold concentrations for Ca2+, which were 2 mM for PS and 15 mM for PG. The dependencies of the initial rate of fusion on the concentration of PG vesicles determined by either assay were identical, the order of this dependence being 1.2 in the concentration range of 5-200 microM lipid. For PS liposomes, this order was found to be 1.5 in the fluorescent lipid assay. No leakage of contents was detected during the fusion of PG vesicles. Mg2+ inhibited the Ca2+-induced fusion of PS vesicles, but did not cause any fusion by itself, consistent with previous results with the Tb/dipicolinic acid assay.
Collapse
|