1
|
Djambazova K, Gibson-Corley KN, Freiberg JA, Caprioli RM, Skaar EP, Spraggins JM. MALDI TIMS IMS Reveals Ganglioside Molecular Diversity within Murine S. aureus Kidney Tissue Abscesses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1692-1701. [PMID: 39052897 PMCID: PMC11311236 DOI: 10.1021/jasms.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.
Collapse
Affiliation(s)
- Katerina
V. Djambazova
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jeffrey A. Freiberg
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Division
of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Jeffrey M. Spraggins
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
3
|
Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021; 12:mBio.00129-21. [PMID: 33824211 PMCID: PMC8092208 DOI: 10.1128/mbio.00129-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.
Collapse
|
4
|
Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592:3835-3864. [PMID: 29802621 DOI: 10.1002/1873-3468.13114] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Gangliosides (GGs) are sialic acid-containing glycosphingolipids (GSLs) and major membrane components enriched on cellular surfaces. Biosynthesis of mammalian GGs starts at the cytosolic leaflet of endoplasmic reticulum (ER) membranes with the formation of their hydrophobic ceramide anchors. After intracellular ceramide transfer to Golgi and trans-Golgi network (TGN) membranes, anabolism of GGs, as well as of other GSLs, is catalyzed by membrane-spanning glycosyltransferases (GTs) along the secretory pathway. Combined activity of only a few promiscuous GTs allows for the formation of cell-type-specific glycolipid patterns. Following an exocytotic vesicle flow to the cellular plasma membranes, GGs can be modified by metabolic reactions at or near the cellular surface. For degradation, GGs are endocytosed to reach late endosomes and lysosomes. Whereas membrane-spanning enzymes of the secretory pathway catalyze GSL and GG formation, a cooperation of soluble glycosidases, lipases and lipid-binding cofactors, namely the sphingolipid activator proteins (SAPs), act as the main players of GG and GSL catabolism at intralysosomal luminal vesicles (ILVs).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
5
|
Shimura Y, Suzuki J, Muraoka M, Kasuya MCZ, Matsuoka K, Hatanaka K. Large scale biosynthesis of ganglioside analogues by RERF-LC-AI cells cultured in HYPERFlask. Prep Biochem Biotechnol 2012; 42:378-92. [PMID: 22708814 DOI: 10.1080/10826068.2011.627971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The efficient production of ganglioside analogues was accomplished using RERF-LC-AI cells cultured in HYPERFlask (High Yield PERformance Flask). Eight kinds of ganglioside analogues (GM3, GM2, sialylparagloboside, GD3, di-sialylated lacto-N-tetraose, and another three kinds of analogues with intricate structures) were synthesized by the saccharide primer method using lung squamous-cell carcinoma line RERF-LC-AI and 12-azidododecyl β-lactoside primer. The yield for each analogue obtained using HYPERFlask was higher than yields obtained from 100-mm dishes.
Collapse
Affiliation(s)
- Yumiko Shimura
- Japan Chemical Innovation and Inspection Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Shimura Y, Suzuki J, Kasuya MCZ, Matsuoka K, Hatanaka K. A Novel Method for the Production of Glycosphingolipids. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Shevchuk NA, Hathout Y, Epifano O, Su Y, Liu Y, Sutherland M, Ladisch S. Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1226-34. [PMID: 17604219 DOI: 10.1016/j.bbalip.2007.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 11/23/2022]
Abstract
To probe the functions of membrane gangliosides, the availability of ganglioside-depleted cells would be a valuable resource. To attempt to identify a useful genetic model of ganglioside depletion, we assessed ganglioside metabolism in murine GM3 synthase (GM3S)-/- knockout primary embryonic fibroblasts (MEF), because normal fibroblast gangliosides (GM3, GM2, GM1, and GD1a), all downstream products of GM3S, should be absent. We found that heterozygote MEF (GM3S+/-) did have a 36% reduced content of qualitatively normal gangliosides (7.0+/-0.8 nmol LBSA/mg cell protein; control: 11+/-1.6 nmol). However, two unexpected findings characterized the homozygous (GM3-/-) MEF. Despite complete knockout of GM3S, (i) GM3-/- MEF retained substantial ganglioside content (21% of normal or 2.3+/-1.1 nmol) and (ii) these gangliosides were entirely different from those of wild type MEF by HPTLC. Mass spectrometry identified them as GM1b, GalNAc-GM1b, and GD1alpha, containing both N-acetyl and N-glycolylneuraminic acid and diverse ceramide structures. All are products of the 0 pathway of ganglioside synthesis, not normally expressed in fibroblasts. The results suggest that complete, but not partial, inhibition of GM3 synthesis results in robust activation of an alternate pathway that may compensate for the complete absence of the products of GM3S.
Collapse
Affiliation(s)
- Nikolai A Shevchuk
- Center for Cancer and Immunology Research, Children's Research Institute, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Pessina A, Croera C, Savalli N, Bonomi A, Cavicchini L, Turlizzi E, Guizzardi F, Guido L, Daprai L, Neri MG. Bcl-2 down modulation in WEHI-3B/CTRES cells resistant to Cholera Toxin (CT)-induced apoptosis. Cell Res 2006; 16:306-12. [PMID: 16541129 DOI: 10.1038/sj.cr.7310038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The very different effects of Cholera Toxin (CT) on cell growth and proliferation may depend on the type of ganglioside receptors in cell membranes and different signal transduction mechanisms triggered, but other functions related to the drug resistance mechanisms can not be excluded. The effect of CT treatment on the "in vitro" clonogenicity, the Population Doubling Time (PDT), apoptosis, PKA activation and Bax and Bcl-2 expression was evaluated in WEHI-3B cell line and its CT-resistant subclone (WEHI-3B/CTRES). In WEHI-3B parental cells the dramatic accumulation of cAMP induced by CT correlated well with PKA activation, increased PDT value, inhibition of clonogenicity and apoptosis. H-89 treatment inhibited PKA activation by CT but did not protect the cells from apoptosis and growth inhibition. In WEHI-3B/CTRES no significant CT-dependent accumulation of cAMP occurred with any increase of PKA activity and PDT. In CT resistant cells (WEHI-3B/CTRES), Bcl-2 expression was down regulated by both CT or drug treatment (eg., ciprofloxacin, CPX) although these cells were protected from CT-dependent apoptosis but not from drug-induced apoptosis. Differently from other cell models described, down regulation of Bcl-2 is proved to be independent on cAMP accumulation and PKA activation. Our observations support the implication of cAMP dependent kinase (PKA) in the inhibition of WEHI-3B cells growth and suggest that, in WEHI-3B/CTRES, Bcl-2 expression could be modulated by CT in the absence of cAMP accumulation. Also in consideration of many contradictory data reported in literature, our cell models (of one sensitive parental cell strain and two clones with different uncrossed specific resistance to CT and CPX) provides a new and interesting tool for better investigating the relationship between the CT signal transduction mechanisms and Bcl-2 expression and function.
Collapse
Affiliation(s)
- Augusto Pessina
- Institute of Microbiology, University of Milan, Via Pascal 36, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Iwamori M, Iwamori Y. Establishment of cells exhibiting mutated glycolipid synthesis from mouse thymus by immortalization with SV-40 virus. Glycoconj J 2005; 22:417-25. [PMID: 16311886 DOI: 10.1007/s10719-005-4086-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/03/2005] [Accepted: 08/08/2005] [Indexed: 11/25/2022]
Abstract
Immortalization with simian virus-40 and cloning of immortalized cells from mouse thymus were performed to establish cell lines for characterization of the mode of glycolipid expression in the thymic cells. Among the 25 cell lines obtained, three lines with different morphologies were established, that is, epithelial (IMTH-E), fibroblastic (IMTH-F), and asterisk-like (IMTH-I) cells, and their glycolipids, together with those in the thymus, were determined systematically. The major glycolipids in mouse thymus were the globo- and ganglio-series, both of which, were co-expressed in the three cell lines established. However, the mode of modification of the globo- and ganglio-series was distinct for each cell line. As to the globo-series, the structures with the longest carbohydrate chain for IMTH-E, -F, and -I cells were Gb3Cer, Gb4Cer, and Forssman antigen, respectively, having stepwise shorter carbohydrates at the nonreducing termini. Although the acidic glycolipids in IMTH-E cells comprised GM3 and GM2, and their sulfated isomers, IMTH-F and -I cells expressed GMlb and GDlc for the alpha-pathway, and up to GDI a for the a-pathway of ganglio-series glycolipids. GMlb-GalNAc present in the thymus was not detected in IMTH-F and -I cells, probably due to the lower synthetic activity for the metabolic intermediate Gg4Cer. The results indicate that the immortalization technique is useful for obtaining individual cells having unique glycolipid profiles for analysis of the functional significance and metabolism of glycolipids in the thymus.
Collapse
Affiliation(s)
- Masao Iwamori
- Department of Biochemistry, Faculty of Science and Technology, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | | |
Collapse
|
10
|
Marusić A, Markotić A, Kovacić N, Müthing J. Expression of glycosphingolipids in lymph nodes of mice lacking TNF receptor 1: biochemical and flow cytometry analysis. Carbohydr Res 2004; 339:77-86. [PMID: 14659673 DOI: 10.1016/j.carres.2003.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of gangliosides and neutral glycosphingolipids (GSLs) in the lymph nodes of mice lacking the gene for the tumour necrosis factor-alpha receptor p55 (TNFR1) has been investigated. GSL expression in the tissues of mice homozygous (TNFR1-/-) or heterozygous (TNFR1+/-) for the gene deletion was analysed by flow cytometry and high-performance thin-layer chromatography (HPTLC) followed by immunostaining with specific antibodies. HPTLC immunostaining revealed that lymph nodes from TNFR1-/- mice had reduced expression of ganglioside GM1b and GalNAc-GM1b, neolacto-series gangliosides, as well as the globo- (Gb3, Gb4 and Gb5) and ganglio-series (Gg3 and Gg4) neutral GSLs. Flow cytometry of freshly isolated lymph node cells showed no significant differences in GSL expression, except for the GalNAc-GM1b ganglioside, which was less abundant on T lymphocytes from TNFR1-/- lymph nodes. In TNFR1-/- mice, GalNAc-GM1b+/CD4+ T cells were twofold less abundant (3.8% vs 7.6% in the control mice), whereas GalNAc-GM1b+/CD8+ T cells were fourfold less abundant (5.0% vs 20.2% in the control mice). This study provides in vivo evidence that TNF signalling via the TNFR1 is important for the activation of GM1b-type ganglioside biosynthetic pathway in CD8 T lymphocytes, suggesting its possible role in the effector T lymphocyte function.
Collapse
Affiliation(s)
- Ana Marusić
- Institute for Brain Research and Department of Anatomy, Zagreb University School of Medicine, Salata 3, HR-10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
11
|
Pessina A, Giuliani A, Croera C, Foti P, Mascolo L, Gagliardi G, Neri MG. Selection of a WEHI-3B leukemia cell subclone resistant to inhibition by cholera toxin. Mol Cell Biochem 2002; 233:19-26. [PMID: 12083375 DOI: 10.1023/a:1015593226414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The studies on the inhibitory effect exerted by Cholera Toxin (CT) on cell growth and proliferation indicate a remarkable heterogeneity of cell response suggesting that the inhibition represents the final event of many different ways or mechanisms. After CT binding, cAMP accumulation may not occur (as in L1210 leukemia cells) or, when occurring (as in SR-4987 stromal cells), may not be coupled with the antiproliferative effect of CT. In WEHI-3B cells CT binds a Gal-GalNac-GM1b receptor and the anticlonogenic effect of CT seems correlated with cAMP accumulation. To demonstrate the central role of cAMP in WEHI-3B cells, starting from the sensitive cell strain we selected and established a clone of WEHI-3B resistant to CT. This revertant clone (WEHI-3B/CT/REV) is currently cultured in the absence of CT and in the proliferation assay shows a dramatic resistance (>46,000 than the parental cells). Stimulation ofWEHI-3B/CT/REV cells by cholera toxin failed to enhance cAMP and the ganglioside-CT binding studied on Thin Layer Chromatography (TLC) blots showed that the resistant cells lost the spot correspondent to the migration of Gal-GalNac-GM1b ganglioside. Both the lines respond at the same level to the adenylate cyclase stimulation by forskolin and the incorporation of GM1a did not decrease the resistance of WEHl-3B/CT/REV. These data confirm that Gal-GalNac-GM1b is the most important functional receptor for CT in WEHI-3B cells able to transduce the signal by enhancing cAMP which in turn inhibits cell proliferation (probably by cAMP dependent protein kinase activation). Our study describes the first cell line resistant to CT originated from a susceptible parental strain and provides a new interesting cell model for studying the cAMP dependent mechanisms involved in cell growth regulation.
Collapse
|
12
|
|
13
|
Yohe HC, Wallace PK, Berenson CS, Ye S, Reinhold BB, Reinhold VN. The major gangliosides of human peripheral blood monocytes/macrophages: absence of ganglio series structures. Glycobiology 2001; 11:831-41. [PMID: 11588159 DOI: 10.1093/glycob/11.10.831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sialoglycosphingolipids (gangliosides) are membrane components of eukaryotic cells that modulate cell signal transduction events. Discrepancies exist in the published descriptions of the gangliosides present in the human peripheral monocyte/macrophage. Macrophages were isolated from healthy human volunteers by two different methods. Their ganglioside fractions were isolated and examined by 2D thin-layer mobility, enzymatic susceptibility, and mass spectral-collision induced dissociation-mass spectral analyses. Thin-layer ganglioside chromatographic patterns displayed four major doublets and were similar for monocytes/macrophages isolated by either apheresis/elutriation or density gradient centrifugation. All gangliosides were resistant to beta-galactosidase but sensitive to Clostridium perfringens sialidase, indicating the absence of terminal galactose residues and sialidase-resistant sialic acid moieties. Mass spectra indicated only three major sets of glycolipid components with mass heterogeneity in the ceramide portion of each set. In all the gangliosides, the ceramide moiety contained only C18 sphingosine with the heterogeneity produced by the presence of C16 or C24 fatty acid. One doublet was resistant to Newcastle disease virus sialidase, indicating the presence of an alpha(2-6)-linked sialic acid residue with the same mass as another doublet. All data was consistent with the following structures as the major gangliosides of human peripheral monocyte/macrophages: II(3)NeuAcLacCer (sialolactosyl ceramide, GM3), IV(3)- and IV(6)NeuAcnLcOse(4)Cer (sialoparagloboside, nLM1), and IV(3)NeuAcnLcOse(6)Cer (a sialohexosylceramide).
Collapse
Affiliation(s)
- H C Yohe
- Research Service, Veterans Administration Medical and Regional Office Center, 215 North Main Street, White River Junction, VT 05009, USA
| | | | | | | | | | | |
Collapse
|
14
|
Seyfried TN, el-Abbadi M, Ecsedy JA, Griffin ME, Yohe HC. Ganglioside composition of a mouse brain tumor grown in the severe combined immunodeficiency (SCID) mouse. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 33:27-37. [PMID: 9493174 DOI: 10.1007/bf02815857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The content and composition of gangliosides were examined in an experimental mouse brain tumor, EPEN, that was grown subcutaneously in the flank of the syngeneic C57BL/6J (B6) host and in the B6 severe combined immunodeficiency (SCID) host. SCID mice lack functional T- and B-lymphocytes, but have a normal complement of macrophages. The content and distribution of the brain tumor gangliosides were similar whether the tumor was grown in the immunocompetent B6 host or in the B6-SCID host. N-acetylneuraminic acid- (NeuAc) containing GM3 was the major ganglioside in the subcutaneous tumors and in the cultured EPEN cells. Significant amounts of N-glycolylneuraminic acid- (NeuGc) containing gangliosides were found in the tumor grown in both mouse hosts. NeuGc-containing gangliosides are not expressed in normal mouse brain, but are present in macrophages and serum. An extremely complex pattern of minor gangliosides was found in the subcutaneous tumors on two-dimensional, high-performance thin-layer chromatograms. Most of the minor gangliosides comigrated with those found in mouse macrophages. The results show that the absence of functional T- and B-lymphocytes does not markedly affect brain tumor ganglioside composition and suggest that NeuGc-containing gangliosides in the EPEN can be derived from tumor infiltrating host cells (mostly macrophages) and from the extracellular milieu (serum).
Collapse
Affiliation(s)
- T N Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA 02167-3811, USA
| | | | | | | | | |
Collapse
|
15
|
Fakih MG, Murphy TF, Pattoli MA, Berenson CS. Specific binding of Haemophilus influenzae to minor gangliosides of human respiratory epithelial cells. Infect Immun 1997; 65:1695-700. [PMID: 9125549 PMCID: PMC175200 DOI: 10.1128/iai.65.5.1695-1700.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gangliosides are sialylated glycosphingolipids that serve as receptors for various bacteria. To investigate endogenous gangliosides of human respiratory epithelial cells as potential receptors for Haemophilus influenzae, three strains, including nontypeable H. influenzae (NTHI) 1479, and isogenic fimbriated (f+) and nonfimbriated (f0) H. influenzae type b 770235, were 3H labeled and overlaid on two-dimensional thin-layer chromatography (TLC) plates containing either purified HEp-2 gangliosides or murine brain gangliosides. NTHI 1479 bound exclusively to two distinct minor ganglioside doublets, with mobilities near that of GM1. These minor gangliosides comprised only 14.2 and 9.4% of the total, respectively. NTHI 1479 also bound to a distinct ganglioside of human macrophages whose chromatographic mobilities closely resemble those of one of the NTHI-binding gangliosides of HEp-2 cells. H. influenzae type b 770235 f+ and f0 each bound to a different minor HEp-2 ganglioside doublet, with proportionately weaker affinity for a major ganglioside doublet. Remarkably, none of the three strains bound to any murine brain gangliosides. Moreover, when 80 to 90% of sialic acid residues were enzymatically removed from HEp-2 gangliosides, NTHI 1479 binding was proportionately impaired, compared with untreated controls. Our findings support a role for specific gangliosides of specific cells as receptors for H. influenzae strains. Our findings further demonstrate that individual minor gangliosides possess unique biological properties.
Collapse
Affiliation(s)
- M G Fakih
- Department of Veterans Affairs Western New York Healthcare System, and School of Medicine, State University of New York at Buffalo, 14215, USA
| | | | | | | |
Collapse
|
16
|
Müthing J, Ziehr H. Enhanced thin-layer chromatographic separation of GM1b-type gangliosides by automated multiple development. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 687:357-62. [PMID: 9017458 DOI: 10.1016/s0378-4347(96)00258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enhancement in separation of gangliosides on silica gel precoated high-performance TLC plates has been obtained by automated multiple development chromatography. A less polar mixture of the standard solvent chloroform-methanol-20 mM aqueous CaCl2 (120:85:20, v/v) was used. Lowering the water content achieved separation of two complex monosialoganglioside fractions, isolated from murine YAC 1 T lymphoma and MDAY-D2 lymphoreticular cells. Three-fold chromatography in the solvent chloroform-methanol-20 mM aqueous CaCl2 (120:85:14, v/v) resulted in TLC separation of GM1b-type gangliosides, substituted with C24 and C16 fatty acids and with Neu5Ac and Neu5Gc as well, which could not be achieved by unidirectional standard chromatography. Compared to conventional single chromatography, the technique described allows high-resolution separation of extremely heterogenous ganglioside mixtures and offers a convenient tool for both analytical and preparative TLC.
Collapse
Affiliation(s)
- J Müthing
- Institut für Zellkulturtechnik, Universität Bielefeld, Germany
| | | |
Collapse
|
17
|
Abstract
In this review an updated overview of current improvements on thin-layer chromatography (TLC) of gangliosides over the past decade is provided. Basic general techniques and special advice is given for successful separation of glycosphingolipids. New approaches concerning continuous and multiple development, and several preparative TLC methods are also included. Emphasis is placed on TLC immunostaining and related techniques, i.e. practical applications of carbohydrate-specific antibodies, toxins and bacteria, viruses, lectins and eukaryotic cells. Thus, this review on ganglioside TLC summarizes its power as an analytical tool for a wide range of purposes.
Collapse
Affiliation(s)
- J Müthing
- Institute of Cell Culture Technology, Faculty of Technical Sciences, University of Bielefeld, Germany
| |
Collapse
|
18
|
Giuliani A, Calappi E, Mineo E, Neri MG, Gallina A, Pessina A. The different inhibiting effect of cholera toxin on two leukemia cell lines does not correlate with their toxin binding capacity. Mol Cell Biochem 1995; 152:103-12. [PMID: 8751156 DOI: 10.1007/bf01076072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The murine leukemia cell lines L1210 and WEHI-3B show a very different sensitivity to the cholera toxin (CT). The in vitro growth of L1210 is completely inhibited by 10(-8) M CT, while WEHI-3B growth shows the same inhibition at 10(-11) M. The analysis of membrane ganglioside pattern of the two cell lines shows that in L1210 cells the major component is the GM1a ganglioside while the monosialogangl oside fraction from WEHI-3B is entirely composed of gangliosides of the 'b' series among which GM1b is the more represented. The total cholera toxin binding capacity of the ganglioside extract from L1210 cells is more than hundred fold higher than that of WEHI-3B and this difference is also confirmed by the number of CT receptors/cell and by the binding of FITC-B subunit of CT on the cells. These surprising data are in conflict with the poor sensitivity to CT evidenced by L1210 compared to WEHI-3B cells. In order to clarify this discrepancy we investigated the cAMP accumulation, the cell viability and the clonogenicity of these two leukemia cell lines following the treatment with CT and forskolin (FRSK). The treatment of WEHI-3B cells with CT induces a dramatic increase of intracellular cAMP which highly correlates with cell death and the decrease of clonogenicity and this result is partially obtained by the treatment with FRSK. L1210 cells do not evidence significant cAMP accumulation neither with CT nor with FRSK treatment. These data suggest that the different inhibiting effect of CT on WEHI-3B and L1210 cells does not correlate with their different pattern of gangliosides and the related toxin binding capacity. Further they indicate that the growth inhibition of WEHI-3B cells is closely related with a cAMP-dependent cell killing mechanism, while the inhibition of L1210 growth (produced by high concentration of CT) is mediated by a cAMP independent mechanism.
Collapse
Affiliation(s)
- A Giuliani
- Institute of Medical Microbiology, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Müthing J, Peter-Katalinić J, Hanisch FG, Unland F, Lehmann J. The ganglioside GD1 alpha' IV3Neu5Ac, III6Neu5Ac-GgOse4Cer, is a major disialoganglioside in the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Glycoconj J 1994; 11:153-62. [PMID: 7804005 DOI: 10.1007/bf00731155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the present study was to investigate the ganglioside expression of the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Cells were propagated under controlled pH conditions and oxygen supply in bioreactors of 1 and 7.5 l volumes by repeated batch fermentation. Gangliosides were isolated from 2.7 x 10(11) cells, purified by silica gel chromatography and separated into mono- and disialoganglioside fractions by preparative DEAE anion exchange high performance liquid chromatography. Individual gangliosides were obtained by preparative thin layer chromatography. Their structural features were established by immunostaining, fast atom bombardment and gas chromatography mass spectrometry. In addition to gangliosides of the GM1a-pathway (GM2, GM1a and GD1a) and GM1b (IV3Neu5Ac-GgOse4Cer) and GalNAc-GM1b of the Gm1b-pathway, the disialoganglioside GD1 alpha (IV3Neu5Ac, III6Neu5Ac-GgOse4Cer) was found in equal amounts compared to GD1a (IV3Neu5Ac, II3Neu5Ac-GgOse4Cer). All gangliosides were substituted with C24:0, 24:1 and C16:0 fatty acids, sphingosine and N-acetylneuraminic acid as the sole sialic acid.
Collapse
Affiliation(s)
- J Müthing
- Institut für Zellkulturtechnik der Universität, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
21
|
el-Abbadi M, Seyfried TN. Influence of growth environment on the ganglioside composition of an experimental mouse brain tumor. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 21:273-85. [PMID: 8086038 DOI: 10.1007/bf02815355] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ganglioside composition was examined in an experimental mouse brain tumor growing as a solid tumor in vivo and as a cultured cell line in vitro. Gangliosides were also studied in the solid tumor rederived from the cultured tumor cell line. Although GM3-NeuAc was the major ganglioside in both the solid tumor and cultured tumor cells, several gangliosides expressed in the solid tumors (e.g., GM2-NeuGc, GM1, and GM1b) were not expressed in the cultured tumor cells. These gangliosides, however, are major components of mouse macrophages. Furthermore, significant amounts of gangliosides containing N-glycolylneuraminic acid (NeuGc) were found in the solid tumor growing in vivo, but only trace amounts were present in the cultured tumor cells. NeuGc is a common ganglioside sialic acid in mouse nonneural cells, whereas N-acetylneuraminic (NeuAc) is the predominant sialic acid in mouse brain. The trace amounts of NeuGc in the cultured cells are attributed to contamination from the fetal bovine serum. Radiolabeling of the cultured tumor cell gangliosides with [14C]galactose revealed that GM3-NeuAc was the only ganglioside synthesized by the tumor cells. The results suggest that nontumor-infiltrating cells, e.g., macrophages, lymphocytes, and endothelial cells, may contribute significantly to the total ganglioside composition of solid tumors growing in vivo.
Collapse
Affiliation(s)
- M el-Abbadi
- Department of Biology, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|
22
|
Li R, Gage D, Ladisch S. Biosynthesis and shedding of murine lymphoma gangliosides. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1170:283-90. [PMID: 8218347 DOI: 10.1016/0005-2760(93)90011-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ganglioside biosynthesis and subsequent shedding are a potential mechanism contributing to tumor cell escape from the host immune response. As a first step in identifying active molecular species, structural characterization and quantification of the purified individual cellular and shed gangliosides of YAC-1 murine lymphoma cells were undertaken. These studies uncovered three striking changes in ganglioside metabolism in cells passaged in vivo, compared with cells cultured in vitro. (i) Marked inhibition of GalNAcGM1b synthesis: GM1b was present in an equal proportion to its biosynthetic product GalNAcGM1b in vitro, but was present in a 6-fold higher concentration in vivo. (ii) Marked inhibition of NeuGc synthesis: NeuGc, present in vitro in an up to 7-fold higher concentration than its biosynthetic precursor NeuAc, was decreased in relative concentration in vivo (1:1). (iii) Selectivity of shedding: ganglioside shedding in vitro was generalized with respect to both carbohydrate structure and ceramide structure (mainly d18:1-C24:1 and d18:1-C16:0), while in vivo, there was selective shedding of gangliosides containing NeuGc and the shorter chain fatty acid. The reduced synthesis of NeuGc and of GalNAcGM1b in vivo, and the selective shedding of more polar ganglioside species, also in vivo, show that the extracellular environment can markedly affect cellular ganglioside metabolism.
Collapse
Affiliation(s)
- R Li
- Center for Cancer and Transplantation Biology, Children's National Medical Center, Washington, DC
| | | | | |
Collapse
|