1
|
Roman-Ramos H, Prieto-da-Silva ÁRB, Dellê H, Floriano RS, Dias L, Hyslop S, Schezaro-Ramos R, Servent D, Mourier G, de Oliveira JL, Lemes DE, Costa-Lotufo LV, Oliveira JS, Menezes MC, Markus RP, Ho PL. The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake Micrurus corallinus That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors. Toxins (Basel) 2024; 16:164. [PMID: 38668589 PMCID: PMC11054780 DOI: 10.3390/toxins16040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | | | - Humberto Dellê
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Rafael S. Floriano
- Laboratório de Toxinologia e Estudos Cardiovasculares, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19067-175, SP, Brazil;
| | - Lourdes Dias
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Raphael Schezaro-Ramos
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Denis Servent
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Gilles Mourier
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Jéssica Lopes de Oliveira
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Douglas Edgard Lemes
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Letícia V. Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Jane S. Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | | | - Regina P. Markus
- Laboratório de Cronofarmacologia, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| |
Collapse
|
2
|
Pruksaphon K, Yuvaniyama J, Ratanabanangkoon K. Immunogenicity of snake α-neurotoxins and the CD4 T cell epitopes. Toxicon 2022; 214:136-144. [DOI: 10.1016/j.toxicon.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
|
3
|
Wong KY, Tan KY, Tan NH, Tan CH. A Neurotoxic Snake Venom without Phospholipase A 2: Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins (Basel) 2021; 13:toxins13010060. [PMID: 33466660 PMCID: PMC7828783 DOI: 10.3390/toxins13010060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
Collapse
Affiliation(s)
- Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: ; Tel.: +60-3-7967-6685
| |
Collapse
|
4
|
Modahl CM, Mackessy SP. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. J Proteomics 2017; 150:98-108. [DOI: 10.1016/j.jprot.2016.08.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
|
6
|
Nasiripourdori A, Taly V, Grutter T, Taly A. From toxins targeting ligand gated ion channels to therapeutic molecules. Toxins (Basel) 2011; 3:260-93. [PMID: 22069709 PMCID: PMC3202823 DOI: 10.3390/toxins3030260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022] Open
Abstract
Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.
Collapse
Affiliation(s)
| | - Valérie Taly
- Laboratory of Chemical Biology, Institut de Science et d'Ingénierie Supramoléculaires; ISIS/Université de Strasbourg, CNRS-UMR 7006, 8, allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France;
| | - Thomas Grutter
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 “Conception et Application de Molécules Bioactives” CNRS-Université de Strasbourg, 74 Route du Rhin-BP 60024, 67401 Illkirch Cedex, France;
| | - Antoine Taly
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 “Conception et Application de Molécules Bioactives” CNRS-Université de Strasbourg, 74 Route du Rhin-BP 60024, 67401 Illkirch Cedex, France;
| |
Collapse
|
7
|
Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 2010; 56:855-67. [PMID: 20670641 DOI: 10.1016/j.toxicon.2010.07.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three beta-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure-function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these 'sibling' toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure-function relationships and evolution of this group of snake venom toxins.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|
8
|
Starkov VG, Poliak IL, Vul'fius EA, Kriukova EV, Tsetlin VI, Utkin IN. [New weak toxins from the cobra venom]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:15-24. [PMID: 19377518 DOI: 10.1134/s1068162009010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A protein with M 7485 Da containing five disulfide bonds was isolated from the venom of cobra Naja oxiana using various types of liquid chromatography. The complete amino acid sequence of the protein was determined by protein chemistry methods, which permitted us to assign it to the group of weak toxins. This is the first weak toxin isolated from the venom of N. oxiana. In a similar way, two new toxins with M 7628 and 7559 Da, which fall into the range of weak toxin masses, were isolated from the venom of the cobra N. kaouthia. The characterization of these proteins using Edman degradation and MALDI mass spectrometry has shown that one of these proteins is a novel weak toxin and the other is the known weak toxin WTX with an oxidized methionine residue in position 9. Such a modification was detected in weak toxins for the first time. A study of the biological activity of the toxin from N. oxiana showed that, like other weak toxins, it can be bound by muscle nicotinic cholinoreceptors and alpha7 nicotinic cholinoreceptors.
Collapse
|
9
|
Tsai HY, Wang YM, Tsai IH. Cloning, characterization and phylogenetic analyses of members of three major venom families from a single specimen of Walterinnesia aegyptia. Toxicon 2008; 51:1245-54. [PMID: 18405934 DOI: 10.1016/j.toxicon.2008.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 11/18/2022]
Abstract
Walterinnesia aegyptia is a monotypic elapid snake inhabiting in Africa and Mideast. Although its envenoming is known to cause rapid deaths and paralysis, structural data of its venom proteins are rather limited. Using gel filtration and reverse-phase HPLC, phospholipases A(2) (PLAs), three-fingered toxins (3FTxs), and Kunitz-type protease inhibitors (KIns) were purified from the venom of a single specimen of this species caught in northern Egypt. In addition, specific primers were designed and PCR was carried out to amplify the cDNAs encoding members of the three venom families, respectively, using total cDNA prepared from its venom glands. Complete amino acid sequences of two acidic PLAs, three short chain 3FTxs, and four KIns of this venom species were thus deduced after their cDNAs were cloned and sequenced. They are all novel sequences and match the mass data of purified proteins. For members of each toxin family, protein sequences were aligned and subjected to molecular phylogenetic analyses. The results indicated that the PLAs and a Kunitz inhibitor of W. aegyptia are most similar to those of king cobra venom, and its 3FTxs belongs to either Type I alpha-neurotoxins or weak toxins of orphan-II subtype. It is remarkable that both king cobra and W. aegyptia cause rapid deaths of the victims, and a close evolutionary relationship between them is speculated.
Collapse
Affiliation(s)
- Hsin-Yu Tsai
- Institute of Biological Chemistry, Academia Sinica, P.O. Box 23-106, Taipei, Taiwan
| | | | | |
Collapse
|
10
|
Mordvintsev DY, Rodionov DI, Makarova MV, Kamensky AA, Levitskaya NG, Ogay AY, Rzhevsky DI, Murashev AN, Tsetlin VI, Utkin YN. Behavioural Effects in Mice and Intoxication Symptomatology of Weak Neurotoxin from Cobra Naja kaouthia. Basic Clin Pharmacol Toxicol 2007; 100:273-8. [PMID: 17371532 DOI: 10.1111/j.1742-7843.2007.00045.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Weak neurotoxins belong to the superfamily of three-finger toxins from snake venoms. In general, weak toxins have a low toxicity and, contrary to other three-finger toxins, their molecular targets are not well characterized: in vitro tests indicate that these may be nicotinic acetylcholine receptors. Here, we report the influence of intraperitoneal and intravenous injections of weak neurotoxin from Naja kaouthia venom on mouse behaviour. Dose-dependent suppression of orientation-exploration and locomotion activities as well as relatively weak neurotropic effects of weak neurotoxin were observed. The myorelaxation effect suggests a weak antagonistic activity against muscle-type nicotinic acetylcholine receptors. Neurotoxic effects of weak neurotoxin were related to its influence on peripheral nervous system. The symptomatology of the intoxication was shown to resemble that of muscarinic agonists. Our data suggest that, in addition to interaction with nicotinic acetylcholine receptors observed earlier in vitro, weak neurotoxin interacts in vivo with some other molecular targets. The results of behavioural experiments are in accord with the pharmacological profile of weak neurotoxin effects on haemodynamics in mice and rat indicating the involvement of both nicotinic and muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Dmitry Y Mordvintsev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ogay AY, Rzhevsky DI, Murashev AN, Tsetlin VI, Utkin YN. Weak neurotoxin from Naja kaouthia cobra venom affects haemodynamic regulation by acting on acetylcholine receptors. Toxicon 2005; 45:93-9. [PMID: 15581687 DOI: 10.1016/j.toxicon.2004.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 09/21/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
Recent in vitro studies of weak neurotoxins from snake venoms have demonstrated their ability to interact with both muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChR). However, the biological activity in vivo of weak neurotoxins remains largely unknown. We have studied the influence of weak neurotoxin (WTX) from the venom of cobra Naja kaouthia on arterial blood pressure (BP) and heart rate (HR) in rats and mice. It was found that intravenous injection of WTX induced a dose-dependent decrease in BP and an increase in HR in both species, the rats being more sensitive to WTX. Application of WTX following blockade of nAChRs or muscarinic acetylcholine receptors (mAChR) by hexamethonium or atropine, respectively, showed that both nAChRs and mAChRs are involved in the haemodynamic effects of WTX. Blockade of either nAChRs or mAChRs affected WTX action differently in rats and mice, thus reflecting interspecies differences in haemodynamic regulation.
Collapse
Affiliation(s)
- Alexey Ya Ogay
- Branch of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Moscow region, Russia
| | | | | | | | | |
Collapse
|
12
|
Phui Yee JS, Nanling G, Afifiyan F, Donghui M, Siew Lay P, Armugam A, Jeyaseelan K. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochimie 2004; 86:137-49. [PMID: 15016453 DOI: 10.1016/j.biochi.2003.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2003] [Accepted: 11/28/2003] [Indexed: 11/15/2022]
Abstract
Snake venoms are complex mixtures of biologically active polypeptides that target a variety of vital physiological functions in mammals. alpha-Neurotoxins, toxins that cause paralysis by binding to the nicotinic receptors at the postsynaptic region of the neuromuscular junction have been widely studied in terms of their structure-function relationships as well as gene structure, organization and expression. In this review, we describe the structure of alpha-neurotoxin genes and discuss their evolutionary relationships. Almost all members of neurotoxins have been found to exhibit a common evolutionary origin. The importance of alpha-neurotoxins in therapy and research has also been discussed to highlight their potential applications especially in the area of drug discovery.
Collapse
Affiliation(s)
- Joyce Siew Phui Yee
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Non-conventional toxins constitute a poorly characterized class of three-finger toxins isolated exclusively from Elapidae venoms. These toxins are monomers of 62-68 amino acid residues and contain five disulfide bridges. However, unlike alpha/kappa-neurotoxins and kappa-neurotoxins which have the fifth disulfide bridge in their middle loop (loop II), the fifth disulfide bridge in non-conventional toxins is located in loop I (N-terminus loop). Overall, non-conventional toxins share approximately 28-42% identity with other three-finger toxins including alpha-neurotoxins, alpha/kappa-neurotoxins and kappa-neurotoxins. Recent structural studies have revealed that non-conventional toxins also display the typical three-finger motif. Non-conventional toxins are typically characterized by a lower order of toxicity (LD(50) approximately 5-80 mg/kg) in contrast to prototype alpha-neurotoxins (LD(50) approximately 0.04-0.3 mg/kg) and hence they are also referred to as 'weak toxins'. Further, it is generally assumed that non-conventional toxins target muscle (alpha(2)beta gamma delta) receptors with low affinities several orders of magnitude lower than alpha-neurotoxins and alpha/kappa-neurotoxins. However, it is now known that some non-conventional toxins also antagonize neuronal alpha 7 nicotinic acetylcholine receptors. Hence, non-conventional toxins are not a functionally homogeneous group and other, yet unknown, molecular targets for this class of snake venom toxins may exist. Non-conventional toxins may therefore be a useful source of ligands with novel biological activity targeting the plethora of neuronal nicotinic receptors as well as other physiological processes.
Collapse
Affiliation(s)
- S Nirthanan
- Venom and Toxin Research Programme, Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
14
|
Abstract
1. Snake venoms are complex mixtures of pharmacologically active peptides and proteins. 2. These protein toxins belong to a small number of superfamilies of proteins. The present review describes structure-function relationships of three-finger toxins. 3. All toxins share a common structure of three beta-stranded loops extending from a central core. However, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. 4. Thus, the structure-function relationships of this group of toxins are complicated and challenging. 5. Studies have shown that the functional sites in these "sibling" toxins are located on various segments of the molecular surface.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
15
|
Poh SL, Mourier G, Thai R, Armugam A, Molgó J, Servent D, Jeyaseelan K, Ménez A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4247-56. [PMID: 12199703 DOI: 10.1046/j.1432-1033.2002.03113.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weak neurotoxins from snake venom are small proteins with five disulfide bonds, which have been shown to be poor binders of nicotinic acetylcholine receptors. We report on the cloning and sequencing of four cDNAs encoding weak neurotoxins from Naja sputatrix venom glands. The protein encoded by one of them, Wntx-5, has been synthesized by solid-phase synthesis and characterized. The physicochemical properties of the synthetic toxin (sWntx-5) agree with those anticipated for the natural toxin. We show that this toxin interacts with relatively low affinity (K(d) = 180 nm) with the muscular-type acetylcholine receptor of the electric organ of T. marmorata, and with an even weaker affinity (90 microm) with the neuronal alpha7 receptor of chicken. Electrophysiological recordings using isolated mouse hemidiaphragm and frog cutaneous pectoris nerve-muscle preparations revealed no blocking activity of sWntx-5 at microm concentrations. Our data confirm previous observations that natural weak neurotoxins from cobras have poor affinity for nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Siew Lay Poh
- Département d'Ingénierie et d'Etudes des Protéines, CEA, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MCE, Khoo HE, Cheah LS, Bertrand D, Kini RM. Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (alphabetagammadelta ) but a poorly reversible antagonist of neuronal alpha 7 nicotinic acetylcholine receptors. J Biol Chem 2002; 277:17811-20. [PMID: 11884390 DOI: 10.1074/jbc.m111152200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to most short and long chain curaremimetic neurotoxins that produce virtually irreversible neuromuscular blockade in isolated nerve-muscle preparations, candoxin, a novel three-finger toxin from the Malayan krait Bungarus candidus, produced postjunctional neuromuscular blockade that was readily and completely reversible. Nanomolar concentrations of candoxin (IC(50) = approximately 10 nm) also blocked acetylcholine-evoked currents in oocyte-expressed rat muscle (alphabetagammadelta) nicotinic acetylcholine receptors in a reversible manner. In contrast, it produced a poorly reversible block (IC(50) = approximately 50 nm) of rat neuronal alpha7 receptors, clearly showing diverse functional profiles for the two nicotinic receptor subsets. Interestingly, candoxin lacks the helix-like segment cyclized by the fifth disulfide bridge at the tip of the middle loop of long chain neurotoxins, reported to be critical for binding to alpha7 receptors. However, its solution NMR structure showed the presence of some functionally invariant residues involved in the interaction of both short and long chain neurotoxins to muscle (alphabetagammadelta) and long chain neurotoxins to alpha7 receptors. Candoxin is therefore a novel toxin that shares a common scaffold with long chain alpha-neurotoxins but possibly utilizes additional functional determinants that assist in recognizing neuronal alpha7 receptors.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- Venom and Toxin Research Programme, Faculty of Medicine, National University of Singapore, Singapore 119260, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Utkin YN, Kukhtina VV, Maslennikov IV, Eletsky AV, Starkov VG, Weise C, Franke P, Hucho F, Tsetlin VI. First tryptophan-containing weak neurotoxin from cobra venom. Toxicon 2001; 39:921-7. [PMID: 11223079 DOI: 10.1016/s0041-0101(00)00223-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the purpose of studying structure-function relationships among weak neurotoxins (called so because of their low toxicity), we have isolated a toxin (WTX) from the venom of cobra Naja kaouthia using a combination of gel-filtration and ion-exchange chromatography. The amino acid sequence of the isolated toxin was determined by means of Edman degradation and MALDI mass spectrometry, the primary structure obtained being confirmed by 1H-NMR in the course of spatial structure analysis. The WTX sequence differs slightly from that of the toxin CM-9a isolated earlier from the same venom (Joubert and Taljaard, Hoppe-Seyler's Z. Physiol. Chem., 361 (1980) 425). The differences include an extra residue (Trp36) between Ser35 and Arg37 as well as interchanging of two residues (Tyr52 and Lys50) in the C-terminal part of the toxin molecule. These changes improve the alignment that can be made with other weak neurotoxin sequences. An extended sequence comparison reveals that WTX is the first case of a tryptophan-containing weak neurotoxin isolated from cobra venom. WTX was found to compete with radioiodinated alpha-bungarotoxin for binding to the membrane-bound nicotinic acetylcholine receptor from Torpedo californica.
Collapse
Affiliation(s)
- Y N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7 V-437, 11781, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Utkin YN, Kukhtina VV, Kryukova EV, Chiodini F, Bertrand D, Methfessel C, Tsetlin VI. "Weak toxin" from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors. J Biol Chem 2001; 276:15810-5. [PMID: 11279130 DOI: 10.1074/jbc.m100788200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel "weak toxin" (WTX) from Naja kaouthia snake venom competes with [(125)I]alpha-bungarotoxin for binding to the membrane-bound Torpedo californica acetylcholine receptor (AChR), with an IC(50) of approximately 2.2 microm. In this respect, it is approximately 300 times less potent than neurotoxin II from Naja oxiana and alpha-cobratoxin from N. kaouthia, representing short-type and long-type alpha-neurotoxins, respectively. WTX and alpha-cobratoxin displaced [(125)I]alpha-bungarotoxin from the Escherichia coli-expressed fusion protein containing the rat alpha7 AChR N-terminal domain 1-208 preceded by glutathione S-transferase with IC(50) values of 4.3 and 9.1 microm, respectively, whereas for neurotoxin II the IC(50) value was >100 microm. Micromolar concentrations of WTX inhibited acetylcholine-activated currents in Xenopus oocyte-expressed rat muscle AChR and human and rat alpha7 AChRs, inhibiting the latter most efficiently (IC(50) of approximately 8.3 microm). Thus, a virtually nontoxic "three-fingered" protein WTX, although differing from alpha-neurotoxins by an additional disulfide in the N-terminal loop, can be classified as a weak alpha-neurotoxin. It differs from the short chain alpha-neurotoxins, which potently block the muscle-type but not the alpha7 AChRs, and is closer to the long alpha-neurotoxins, which have comparable potency against the above-mentioned AChR types.
Collapse
Affiliation(s)
- Y N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., V-437 Moscow GSP-7, 117997 Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Chang L, Lin S, Wang J, Hu WP, Wu B, Huang H. Structure-function studies on Taiwan cobra long neurotoxin homolog. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:293-301. [PMID: 11004569 DOI: 10.1016/s0167-4838(00)00082-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel long neurotoxin homolog was purified from Naja naja atra (Taiwan cobra) venom using the combination of ion exchange chromatography and reverse phase high performance liquid chromatography. The determined protein sequence was essentially the same as that deduced from the cDNA amplified by reverse transcriptase-polymerase chain reaction. The long neurotoxin homolog exhibited an activity that inhibited acetylcholine-induced muscle contractions, as with N. naja atra cobrotoxin. The degree of inhibition caused by the addition of long neurotoxin homolog was approximately 70% of that observed with the addition of cobrotoxin. Unlike the well-known short and long neurotoxins, this neurotoxin homolog contained two additional cysteine residues forming a disulfide linkage in the N-terminal region. Circular dichroism measurement and computer models of the neurotoxin reveal that its secondary structure was not abundant in beta-sheet as noted with short and long neurotoxins. This less ordered structure may be associated with the lower activity noted with the long neurotoxin homolog. Together with the finding that the known long neurotoxin homologs exclusively appear in the venoms of the Naja and Bungarus genera, the long neurotoxin homologs should represent an evolutionary branch from the long and short neurotoxins in the Elapidae family.
Collapse
Affiliation(s)
- L Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
20
|
Aird SD, Womble GC, Yates JR, Griffin PR. Primary structure of gamma-bungarotoxin, a new postsynaptic neurotoxin from venom of Bungarus multicinctus. Toxicon 1999; 37:609-25. [PMID: 10082161 DOI: 10.1016/s0041-0101(98)00199-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The primary structure of gamma-bungarotoxin, a new toxin from Bungarus multicinctus venom, was determined using mass spectrometry and Edman degradation. The toxin has a mass of 7524.7 D and consists of 68 residues having the following sequence: MQCKTCSFYT CPNSETCPDG KNICVKRSWT AVRGDGPKRE IRRECAATCP PSKLGLTVFC CTTDNCNH. Gamma-bungarotoxin is structurally similar to both kappa-bungarotoxin and elapid long postsynaptic neurotoxins. Its C-terminal nine residues are identical to those of the kappa-toxins. Its disulfide bond locations appear identical to those of several elapid toxins of unknown pharmacology and its hydrophobicity profile is also strikingly similar. However, with an LD50 of 0.15 microg/g i.v. in mice, gamma-bungarotoxin is 30-150-fold more toxic than other members of this latter class. Its toxicity is comparable to those of alpha-nicotinic acetylcholine receptor antagonists.
Collapse
Affiliation(s)
- S D Aird
- NPS Pharmaceuticals, Salt Lake City, UT 84108, USA.
| | | | | | | |
Collapse
|
21
|
Qian YC, Fan CY, Gong Y, Yang SL. cDNA sequence analysis and expression of four long neurotoxin homologues from Naja naja atra. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:233-8. [PMID: 9838137 DOI: 10.1016/s0167-4781(98)00218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The novel cDNAs encoding four long neurotoxin homologues were firstly cloned from the venom gland of Naja naja atra by reverse transcriptase-polymerase chain reaction. Amino acid sequence comparison showed that they may come from two different evolutionary origins. The mature proteins were expressed as soluble fusion proteins in Escherichia coli and purified for immunoblotting. The results revealed that they displayed different immunochemical properties.
Collapse
Affiliation(s)
- Y C Qian
- Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, PR China
| | | | | | | |
Collapse
|
22
|
Fletcher CM, Harrison RA, Lachmann PJ, Neuhaus D. Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure 1994; 2:185-99. [PMID: 7520819 DOI: 10.1016/s0969-2126(00)00020-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND CD59 is a cell-surface glycoprotein that protects host cells from complement-mediated lysis by binding to and preventing the normal functioning of the complement proteins C8 and/or C9 which form part of a membrane penetrating assembly called the membrane attack complex. CD59 has no structural similarity to other complement proteins, but is an example of a plasma protein domain type found also in murine Ly-6 proteins and the urokinase-type plasminogen activator receptor. RESULTS CD59 was purified from human urine, retaining the N-glycan and at least some of the non-lipid component of the glycosylphosphatidylinositol membrane anchor. The three-dimensional structure of the protein component has been determined in the presence of the carbohydrate groups using two-dimensional NMR spectroscopy. The protein structure is well defined by the NMR data (root mean square deviation from the mean structure of 0.65 A for backbone atoms and no distance constraint violations greater than 0.4 A). Structure calculations were also carried out to model the orientation of the N-acetylglucosamine residue that is directly linked to Asn18. CONCLUSIONS The main features of the protein structure are two antiparallel beta-sheets (a central one with three strands and another with two), a short helix that packs against the three-stranded beta-sheet, and a carboxy-terminal region that, although lacking regular secondary structure, is well defined and packs against the three-stranded beta-sheet, on the opposite face to the helix. We have used the structure, in combination with existing biochemical data, to identify residues that may be involved in C8 binding.
Collapse
Affiliation(s)
- C M Fletcher
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
23
|
Shafqat J, Siddiqi AR, Zaidi ZH, Jörnvall H. Extensive multiplicity of the miscellaneous type of neurotoxins from the venom of the cobra Naja naja naja and structural characterization of major components. FEBS Lett 1991; 284:70-2. [PMID: 2060629 DOI: 10.1016/0014-5793(91)80764-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A multiplicity of miscellaneous type neurotoxins were detected in the venom of the cobra Naja naja naja by use of reverse-phase HPLC and FPLC. The primary structures of major forms were determined, giving 4 novel structures. All four contain 62-65 residues, with 10 half-cystine residues and resemble the miscellaneous type of toxins from other Naja species. Differences within the species are extensive, exchanges occur at 27 positions, giving only 58% residue identity between all forms. However, the differences are largely limited to 3 regions corresponding to structurally important loops where two functional residues participating in receptor binding are exchanged. The four miscellaneous neurotoxins now characterized, together with the minor components of the miscellaneous type, the minimally four neurotoxins reported before, and other related toxins, indicate the existence of an extensive toxin gene multiplicity.
Collapse
Affiliation(s)
- J Shafqat
- Department of Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Endo T, Tamiya N. Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol Ther 1987; 34:403-51. [PMID: 3324114 DOI: 10.1016/0163-7258(87)90002-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- T Endo
- Department of Chemistry, College of Technology, Gunma University, Kiryu, Japan
| | | |
Collapse
|
25
|
|
26
|
|
27
|
Joubert FJ, Taljaard N. Naja haje haje (Egyptian cobra) venom. Some properties and the complete primary structure of three toxins (CM-2, CM-11 and CM-12). EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 90:359-67. [PMID: 710433 DOI: 10.1111/j.1432-1033.1978.tb12612.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three toxins (CM-2, CM-11 and CM-12) were purified from Naja haje haje (Egyptian cobra) venom. Whereas toxin CM-11 contains 65 amino acid residues and five intrachain disulphide bridges, toxin CM-2 and CM-12 comprise, respectively, 61 and 62 residues but both contain four disulphide bridges. The complete primary structures of the three toxins have been established. The sequence and the invarient amino acid residues of CM-2 resemble those of part of a long neurotoxin, a short neurotoxin and a cytotoxin. The sequence of CM-11 reveals that it is a homologue of the neurotoxins and to some extent also a cytotoxin. The immunochemical properties and the sequences of CM-12 suggest that it is related to the cytotoxin group. Further, the sequences of CM-11 and CM-12 from Naja haje haje venom show a high degree of homology with those of the corresponding toxins isolated from NaJA annulifera or NaJA melanoleuca venoms.
Collapse
|
28
|
ERICKSON BRUCEW. SEQUENCE HOMOLOGY OF SNAKE, SCORPION, AND BEE TOXINS. Toxins (Basel) 1978. [DOI: 10.1016/b978-0-08-022640-8.50100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Strydom DJ. Snake venom toxins. The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor, from Dendroaspis polylepis polylepis (black mamba) venom. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 491:361-9. [PMID: 857902 DOI: 10.1016/0005-2795(77)90279-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amino acid sequence of venom component Vi2, a protein of low toxicity from Dendroaspis polylepis polylepis venom was determined by automatic sequence analysis in combination with sequence studies on tryptic peptides. This protein, the most retarded fraction of this venom on a cation-exchange resin, is a homologue of bovine pancreatic trypsin inhibitor consisting of a single chain of 57 amino acid residues containing six half-cystine residues. The active site lysyl residue of bovine trypsin inhibitor is conserved in Vi2 although large differences are found in the rest of the molecule.
Collapse
|