1
|
Stefanucci A, Santoro F, D'Ingiullo S, Marinaccio L, Procino E, Learte-Aymamí S, Rodriguez J, Mascareñas JL, Amato J, Arciuolo V, Randazzo A, De Rosa M, Brancaccio D, Mollica A, Carotenuto A. Development of linear β-turn inducers containing peptides as arc mimetics with DNA topological and sequence selectivity. Eur J Med Chem 2025; 289:117423. [PMID: 40015158 DOI: 10.1016/j.ejmech.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
In general, biological macromolecules such as proteins interact with the major groove of the ds-DNA via hydrogen bonds formation, thus blocking the site access of TFs to specific DNA sequences. Considering that the primary sequence of arc repressor responsible for DNA binding is well-characterized as well as the 3D-conformational requisites for its optimal interactions with the specific DNA base-pairs, a series of well-tailored arc analogues could be designed using computational molecular tools and available structural data. These novel molecular entities have been synthesized following ultrasound assisted-solid phase peptide synthesis (US-SPPS), characterized by NMR experiments and screened for TAGA box selectivity on DNA oligomers using a battery of DNA displacement assays. Data obtained show a clear tendency of peptide ACAS_4 to assume a 3-D β-sheet like structure responsible of the interaction with DNA major groove and to bind selectively to the consensus sequence of DNA. For the best of our knowledge this is the first report on a β-sheet arc mimetic endowed with topological and sequence selectivity for the TAGA box of DNA.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Federica Santoro
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| | - Sara D'Ingiullo
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Lorenza Marinaccio
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Eleonora Procino
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Soraya Learte-Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jessica Rodriguez
- Universidade da Coruña, CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071, A Coruña, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jussara Amato
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| | - Martina De Rosa
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy.
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Napoli "Federico II", Via Montesano 49, 80131, Naples, Italy
| |
Collapse
|
2
|
Santoro F, Merlino F, Brancaccio D, Camerino I, Belli S, Cimmino A, Grieco P, Colucci-D’Amato L, Stoppelli MP, Franco P, Carotenuto A. Glioblastoma Cell Migration, Invasion and Vasculogenic Mimicry Downmodulated by Novel uPAcyclin Derivatives. Cells 2025; 14:259. [PMID: 39996732 PMCID: PMC11853379 DOI: 10.3390/cells14040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Despite extensive efforts to develop new treatments, the prognosis for glioblastoma multiforme (GBM) is extremely unfavorable, urging the identification of new chemotherapeutics. A previous work identified the cyclic decapeptide uPAcyclin as a potent inhibitor of GBM cell migration, matrix invasion and vascular-like structures' formation, acting through binding to αV integrins and not interfering with cell proliferation or survival. These clearcut activities prompted us to design and test novel derivatives on cultured U87-MG and U251 GBM-MG human cells. With the exception of the residues involved in peptide cyclization, residues were Ala-substituted one by one and the single peptides tested for binding affinity for the αV target integrin, the inhibition of migration, invasion and vasculogenic mimicry. The first screening highlighted peptides with a low binding affinity and low inhibitory ability (Ala4,7,9 derivatives) and peptides with affinity and inhibitory capacity higher than uPAcyclin (Ala2,5,6,8 derivatives). The integration of these results with conformational studies led to the design of the di-substituted variant uPAcyclin. Intriguingly, at least ten-fold greater anti-migratory and anti-invasive effects of the [Ala2,Ala5]uPAcyclin variant compared to uPAcyclin were found. The latter variant also exhibited a greater inhibitory potential for vascular-like structures' formation by matrix-seeded GBM cells. These studies shed light on the functional relevance of single amino acid residues in uPAcyclin and lead to the identification of therapeutically interesting new variants as promising candidates for anti-GBM therapies.
Collapse
Affiliation(s)
- Federica Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
| | - Iolanda Camerino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.C.); (L.C.-D.)
| | - Stefania Belli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.C.); (L.C.-D.)
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|
3
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Loffredo M, Casciaro B, Bellavita R, Troiano C, Brancaccio D, Cappiello F, Merlino F, Galdiero S, Fabrizi G, Grieco P, Stella L, Carotenuto A, Mangoni ML. Strategic Single-Residue Substitution in the Antimicrobial Peptide Esc(1-21) Confers Activity against Staphylococcus aureus, Including Drug-Resistant and Biofilm Phenotype. ACS Infect Dis 2024; 10:2403-2418. [PMID: 38848266 PMCID: PMC11250030 DOI: 10.1021/acsinfecdis.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.
Collapse
Affiliation(s)
- Maria
Rosa Loffredo
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Cassandra Troiano
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Giancarlo Fabrizi
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, 00185 Rome, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Nimerovsky E, Kosteletos S, Lange S, Becker S, Lange A, Andreas LB. Homonuclear Simplified Preservation of Equivalent Pathways Spectroscopy. J Phys Chem Lett 2024; 15:6272-6278. [PMID: 38856103 PMCID: PMC11194807 DOI: 10.1021/acs.jpclett.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Recently developed homonuclear transverse mixing optimal control pulses (hTROP) revealed an elegant way to enhance the detected signal in multidimensional magic-angle spinning (MAS) nuclear magnetic resonance experiments. Inspired by their work, we present two homonuclear simplified preservation of equivalent pathways spectroscopy (hSPEPS) sequences for recoupling CA-CO and CA-CB dipolar couplings under fast and ultrafast MAS rates, theoretically enabling a √2 improvement in sensitivity for each indirect dimension. The efficiencies of hSPEPS are evaluated for non-deuterated samples of influenza A M2 and bacterial rhomboid protease GlpG under two different external magnetic fields (600 and 1200 MHz) and MAS rates (55 and 100 kHz). Three-dimensional (H)CA(CO)NH, (H)CO(CA)NH, and (H)CB(CA)NH spectra demonstrate the high robustness of hSPEPS elements to excite carbon-carbon correlations, especially in the (H)CB(CA)NH spectrum, where hSPEPS outperforms the J-based sequence by a factor of, on average, 2.85.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Spyridon Kosteletos
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
6
|
Gindele MB, Vinod-Kumar S, Rochau J, Boemke D, Groß E, Redrouthu VS, Gebauer D, Mathies G. Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. Nat Commun 2024; 15:80. [PMID: 38167336 PMCID: PMC10761707 DOI: 10.1038/s41467-023-44381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway.
Collapse
Affiliation(s)
- Maxim B Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Johannes Rochau
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Daniel Boemke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Eduard Groß
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | | | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany.
| |
Collapse
|
7
|
Lozada C, Gonzalez S, Agniel R, Hindie M, Manciocchi L, Mazzanti L, Ha-Duong T, Santoro F, Carotenuto A, Ballet S, Lubin-Germain N. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Bioorg Chem 2023; 139:106731. [PMID: 37480815 DOI: 10.1016/j.bioorg.2023.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Over the past decades, many cell-penetrating peptides (CPP) have been studied for their capacity to cross cellular membranes, mostly in order to improve cellular uptake of therapeutic agents. Even though hydrophobic and anionic CPPs have been described, many of them are polycationic, due to the presence of several arginine (Arg) residues. Noteworthy, however, the presence of aromatic amino acids such as tryptophan (Trp) within CPPs seems to play an important role to reach high membranotropic activity. RW9 (RRWWRRWRR) is a designed CPP derived from the polyarginine R9 presenting both features. In general, when interacting with membranes, CPPs adopt an optimal conformation for membrane interactions - an amphipathic helical secondary structure in the case of RW9. Herein, we assumed that the incorporation of a locally constrained amino acid in the peptide sequence could improve the membranotropic activity of RW9, by facilitating its structuration upon contact with a membrane, while leaving a certain plasticity. Therefore, two cyclized Trp derivatives (Tcc and Aia) were synthesized to be incorporated in RW9 as surrogates of Trp residues. Thus, a series of peptides containing these building blocks has been synthesized by varying the type, position, and number of modifications. The membranotropic activity of the RW9 analogs was studied by spectrofluorescence titration of the peptides in presence of liposomes (DMPG), allowing to calculate partition coefficients (Kp). Our results indicate that the partitioning of the modified peptides depends on the type, the number and the position of the modification, with the best sequence being [Aia4]RW9. Interestingly, both NMR analysis and molecular dynamic (MD) simulations indicate that this analog presents an extended conformation similar to the native RW9, but with a much-reduced structural flexibility. Finally, cell internalization properties were also confirmed by confocal microscopy.
Collapse
Affiliation(s)
- Camille Lozada
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France; Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Rémy Agniel
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Mathilde Hindie
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Luca Manciocchi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Liuba Mazzanti
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tap Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nadège Lubin-Germain
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
8
|
Franco P, Camerino I, Merlino F, D’Angelo M, Cimmino A, Carotenuto A, Colucci-D’Amato L, Stoppelli MP. αV-Integrin-Dependent Inhibition of Glioblastoma Cell Migration, Invasion and Vasculogenic Mimicry by the uPAcyclin Decapeptide. Cancers (Basel) 2023; 15:4775. [PMID: 37835469 PMCID: PMC10571957 DOI: 10.3390/cancers15194775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Among the deadliest human cancers is glioblastoma (GBM) for which new treatment approaches are urgently needed. Here, the effects of the cyclic decapeptide, uPAcyclin, are investigated using the U87-MG, U251-MG, and U138-MG human GBM and C6 rat cell models. All GBM cells express the αV-integrin subunit, the target of uPAcyclin, and bind specifically to nanomolar concentrations of the decapeptide. Although peptide exposure affects neither viability nor cell proliferation rate, nanomolar concentrations of uPAcyclin markedly inhibit the directional migration and matrix invasion of all GBM cells, in a concentration- and αV-dependent manner. Moreover, wound healing rate closure of U87-MG and C6 rat glioma cells is reduced by 50% and time-lapse videomicroscopy studies show that the formation of vascular-like structures by U87-MG in three-dimensional matrix cultures is markedly inhibited by uPAcyclin. A strong reduction in the branching point numbers of the U87-MG, C6, and U251-MG cell lines undergoing vasculogenic mimicry, in the presence of nanomolar peptide concentrations, was observed. Lysates from matrix-recovered uPAcyclin-exposed cells exhibit a reduced expression of VE-cadherin, a prominent factor in the acquisition of vascular-like structures. In conclusion, these results indicate that uPAcyclin is a promising candidate to counteract the formation of new vessels in novel targeted anti-GBM therapies.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Iolanda Camerino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Margherita D’Angelo
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples ‘Federico II’, 80131 Naples, Italy; (F.M.); (A.C.)
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council of Italy, 80131 Naples, Italy; (P.F.); (I.C.); (M.D.); (A.C.)
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
9
|
Neira JL, Palomino-Schätzlein M. Folding of the nascent polypeptide chain of a histidine phosphocarrier protein in vitro. Arch Biochem Biophys 2023; 736:109538. [PMID: 36738980 DOI: 10.1016/j.abb.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The phosphotransferase system (PTS), a metabolic pathway formed by five proteins, modulates the use of sugars in bacteria. The second protein in the chain is the histidine phosphocarrier, HPr, with the binding site at His15. The HPr kinase/phosphorylase (HPrK/P), involved in the bacterial use of carbon sources, phosphorylates HPr at Ser46, and it binds at its binding site. The regulator of sigma D protein (Rsd) also binds to HPr at His15. We have designed fragments of HPr, growing from its N-terminus and containing the His15. In this work, we obtained three fragments, HPr38, HPr58 and HPr70, comprising the first thirty-eight, fifty-eight and seventy residues of HPr, respectively. All fragments were mainly disordered, with evidence of a weak native-like, helical population around the binding site, as shown by fluorescence, far-ultraviolet circular dichroism, size exclusion chromatography and nuclear magnetic resonance. Although HPr38, HPr58 and HPr70 were disordered, they could bind to: (i) the N-terminal domain of first protein of the PTS, EIN; (ii) Rsd; and, (iii) HPrK/P, as shown by fluorescence and biolayer interferometry (BLI). The association constants for each protein to any of the fragments were in the low micromolar range, within the same range than those measured in the binding of HPr to each protein. Then, although acquisition of stable, native-like secondary and tertiary structures occurred at the last residues of the polypeptide, the ability to bind protein partners happened much earlier in the growing chain. Binding was related to the presence of the native-like structure around His15.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia, Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980, Paterna, Valencia, Spain
| |
Collapse
|
10
|
Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248762. [PMID: 36557898 PMCID: PMC9786777 DOI: 10.3390/molecules27248762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown. In this work, phosphorylation of T9 was mimicked by introducing the T9E mutation in the NTT-AGT peptide and the full-length protein. The NTT-AGT conformational landscape was studied by circular dichroism, NMR, and statistical mechanical methods. Functional and stability effects on the full-length AGT protein were characterized by spectroscopic methods. The T9E and P11L mutations together reshaped the conformational landscape of the isolated NTT-AGT peptide by stabilizing ordered conformations. In the context of the full-length AGT protein, the T9E mutation had no effect on the overall AGT function or conformation, but enhanced aggregation of the minor allele (LM) protein and synergized with the mutations G170R and I244T. Our findings indicate that phosphorylation of T9 may affect the conformation of the NTT-AGT and synergize with PH1-causing mutations to promote aggregation in a genotype-specific manner. Phosphorylation should be considered a novel regulatory mechanism in PH1 pathogenesis.
Collapse
|
11
|
Rizzuti B, Iovanna JL, Neira JL. Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin α3. Int J Mol Sci 2022; 23:ijms232315333. [PMID: 36499669 PMCID: PMC9739371 DOI: 10.3390/ijms232315333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The oncoprotein Myc is a transcription factor regulating global gene expression and modulating cell proliferation, apoptosis, and metabolism. Myc has a nuclear localization sequence (NLS) comprising residues Pro320 to Asp328, to allow for nuclear translocation. We designed a peptide comprising such region and the flanking residues (Ala310-Asn339), NLS-Myc, to study, in vitro and in silico, the ability to bind importin α3 (Impα3) and its truncated species (ΔImpα3) depleted of the importin binding domain (IBB), by using fluorescence, circular dichroism (CD), biolayer interferometry (BLI), nuclear magnetic resonance (NMR), and molecular simulations. NLS-Myc interacted with both importin species, with affinity constants of ~0.5 µM (for Impα3) and ~60 nM (for ΔImpα3), as measured by BLI. The molecular simulations predicted that the anchoring of NLS-Myc took place in the major binding site of Impα3 for the NLS of cargo proteins. Besides clarifying the conformational behavior of the isolated NLS of Myc in solution, our results identified some unique properties in the binding of this localization sequence to the nuclear carrier Impα3, such as a difference in the kinetics of its release mechanism depending on the presence or absence of the IBB domain.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (J.L.N.)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13288 Marseille, France
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Correspondence: (B.R.); (J.L.N.)
| |
Collapse
|
12
|
Kashihara K, Oouchi M, Kodama Y, Arai T, Horie M, Kitaura T, Ishii Y. High-Field Nuclear Magnetic Resonance Studies Reveal New Structural Landscape of Sulfur-Vulcanized Natural Rubber. Biomacromolecules 2022; 23:4481-4492. [DOI: 10.1021/acs.biomac.2c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kousuke Kashihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
- NMR Science and Development Division, SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Muneki Oouchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
- NMR Science and Development Division, SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yu Kodama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Tatsuhiro Arai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Miki Horie
- Chemical Analysis Center, Research & Development HQ, Sumitomo Rubber Industries, Ltd., 1-1-2 Tsutsui, Chuo, Kobe 651-0071, Japan
- WORLD INTEC CO., Ltd., 11-2 Otemachi, Kokurakita-ku, Kitakyushu, Fukuoka 803-0814, Japan
| | - Takehiro Kitaura
- Chemical Analysis Center, Research & Development HQ, Sumitomo Rubber Industries, Ltd., 1-1-2 Tsutsui, Chuo, Kobe 651-0071, Japan
| | - Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
- NMR Science and Development Division, SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
13
|
Human Enzyme PADI4 Binds to the Nuclear Carrier Importin α3. Cells 2022; 11:cells11142166. [PMID: 35883608 PMCID: PMC9319256 DOI: 10.3390/cells11142166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1–5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.
Collapse
|
14
|
Staśkiewicz A, Quagliata M, Real-Fernandez F, Nuti F, Lanzillo R, Brescia-Morra V, Rusche H, Jewginski M, Carotenuto A, Brancaccio D, Aharoni R, Arnon R, Rovero P, Latajka R, Papini AM. Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Front Chem 2022; 10:885180. [PMID: 35795217 PMCID: PMC9250970 DOI: 10.3389/fchem.2022.885180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81–106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76–116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81–106) (1) is recognized more efficiently by IgM antibodies than MBP (76–116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Brescia-Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Hendrik Rusche
- Fischer Analytics GmbH, Weiler, Germany
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
| | - Michal Jewginski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
- *Correspondence: Anna Maria Papini,
| |
Collapse
|
15
|
Bourafai-Aziez A, Benabderrahmane M, Paysant H, Weiswald LB, Poulain L, Carlier L, Ravault D, Jouanne M, Coadou G, Oulyadi H, Voisin-Chiret AS, Sopková-de Oliveira Santos J, Sebban M. Drug Repurposing: Deferasirox Inhibits the Anti-Apoptotic Activity of Mcl-1. Drug Des Devel Ther 2021; 15:5035-5059. [PMID: 34949914 PMCID: PMC8688747 DOI: 10.2147/dddt.s323077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction With the aim of repositioning commercially available drugs for the inhibition of the anti-apoptotic myeloid cell leukemia protein, Mcl-1, implied in various cancers, five molecules, highlighted from a published theoretical screening, were selected to experimentally validate their affinity toward Mcl-1. Results A detailed NMR study revealed that only two of the five tested drugs, Torsemide and Deferasirox, interacted with Mcl-1. NMR data analysis allowed the complete characterization of the binding mode of both drugs to Mcl-1, including the estimation of their affinity for Mcl-1. Biological assays evidenced that the biological activity of Torsemide was lower as compared to the Deferasirox, which was able to efficiently and selectively inhibit the anti-apoptotic activity of Mcl-1. Finally, docking and molecular dynamics led to a 3D model for the Deferasirox:Mcl-1 complex and revealed the positioning of the drug in the Mcl-1 P2/P3 pockets as well as almost all synthetic Mcl-1 inhibitors. Interestingly, contrary to known synthetic Mcl-1 inhibitors which interact through Arg263, Deferasirox, establishes a salt bridge with Lys234. Conclusion Deferasirox could be a potential candidate for drug repositioning as Mcl-1 inhibitor.
Collapse
Affiliation(s)
- Asma Bourafai-Aziez
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Rouen, 76000, France
| | | | - Hippolyte Paysant
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France.,UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France
| | - Louis-Bastien Weiswald
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France.,UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France
| | - Laurent Poulain
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE «Interdisciplinary Research Unit for Cancer Prevention and Treatment», Biology and Innovative Therapeutics for Ovarian Cancers Group (BioTICLA), Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France.,UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, Caen, 14076, France
| | - Ludovic Carlier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | - Delphine Ravault
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
| | | | - Gaël Coadou
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Rouen, 76000, France
| | - Hassan Oulyadi
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Rouen, 76000, France
| | | | | | - Muriel Sebban
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Rouen, 76000, France
| |
Collapse
|
16
|
Scala MC, Di Micco S, Lanzillotta D, Musella S, Di Sarno V, Parrino B, Casciofierro SM, Bifulco G, Trapasso F, Campiglia P, Sala M. Overcome Chemoresistance: Biophysical and Structural Analysis of Synthetic FHIT-Derived Peptides. Front Mol Biosci 2021; 8:715263. [PMID: 34901149 PMCID: PMC8655160 DOI: 10.3389/fmolb.2021.715263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind ANXA4 but also to hold its target in the cytosol during paclitaxel treatment, thus avoiding ANXA4 translocation to the inner side of the cell membrane. Starting from these results, to obtain much information about structure requirements involved in the interaction of the peptide mentioned above, we synthetized a panel of seven peptides through an Ala-scan approach. In detail, to study the binding of FHIT derived peptides with ANXA4, we applied a combination of different biophysical techniques such as differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and microscale thermophoresis (MST). Circular dichroism (CD) and nuclear magnetic resonance (NMR) were used to determine the conformational structure of the lead peptide (7–13) and peptides generated from ala-scan technique. The application of different biophysical and structural techniques, integrated by a preliminary biological evaluation, allowed us to build a solid structure activity relationship on the synthesized peptides.
Collapse
Affiliation(s)
| | - Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Delia Lanzillotta
- Department of Experimental and Clinical Medicine, University Magna Græcia, Campus S. Venuta, Catanzaro, Italy
| | - Simona Musella
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Barbara Parrino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Stella Maria Casciofierro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, University Magna Græcia, Campus S. Venuta, Catanzaro, Italy
| | | | - Marina Sala
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
17
|
Cannalire R, Santoro F, Russo C, Graziani G, Tron GC, Carotenuto A, Brancaccio D, Giustiniano M. Photomicellar Catalyzed Synthesis of Amides from Isocyanides: Optimization, Scope, and NMR Studies of Photocatalyst/Surfactant Interactions. ACS ORGANIC & INORGANIC AU 2021; 2:66-74. [PMID: 36855402 PMCID: PMC9954382 DOI: 10.1021/acsorginorgau.1c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The merging of micellar and photoredox catalysis represents a key issue to promote "in water" photochemical transformations. A photomicellar catalyzed synthesis of amides from N-methyl-N-alkyl aromatic amines and both aliphatic and aromatic isocyanides is herein presented. The mild reaction conditions enabled a wide substrate scope and a good functional groups tolerance, as further shown in the late-stage functionalization of complex bioactive scaffolds. Furthermore, solution 1D and 2D NMR experiments performed, for the first time, in the presence of paramagnetic probes enabled the study of the reaction environment at the atomic level along with the localization of the photocatalyst with respect to the micelles, thus providing experimental data to drive the identification of optimum photocatalyst/surfactant pairing.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Federica Santoro
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Camilla Russo
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Giulia Graziani
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Department
of Drug Science, University of Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Mariateresa Giustiniano
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| |
Collapse
|
18
|
Residual Helicity at the Active Site of the Histidine Phosphocarrier, HPr, Modulates Binding Affinity to Its Natural Partners. Int J Mol Sci 2021; 22:ijms221910805. [PMID: 34639146 PMCID: PMC8509676 DOI: 10.3390/ijms221910805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.
Collapse
|
19
|
Wüthrich K. Brownian motion, spin diffusion and protein structure determination in solution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 331:107031. [PMID: 34391647 DOI: 10.1016/j.jmr.2021.107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This paper presents my recollections on the development of protein structure determination by NMR in solution from 1968 to 1992. The key to success was to identify NMR-accessible parameters that unambiguously determine the spatial arrangement of polypeptide chains. Inspired by work with cyclopeptides, model considerations showed that enforcing short non-bonding interatomic distances imposes «ring closure conditions» on polypeptide chains. Given that distances are scalar parameters, this indicated an avenue for studies of proteins in solution, i.e., under the regime of stochastic rotational and translational motions at frequencies in the nanosecond range (Brownian motion), where sharp pictures could not be obtained by photography-related methods. Later-on, we used distance geometry calculations with sets of inter-atomic distances derived from protein crystal structures to confirm that measurements of short proton-proton distances could provide atomic-resolution structures of globular proteins. During the years 1976-1984 the following four lines of research then led to protein structure determination by NMR in solution. First, the development of NMR experiments enabling the use of the nuclear Overhauser effect (NOE) for measurements of interatomic distances between pairs of hydrogen atoms in proteins. Second, obtaining sequence-specific resonance assignment solved the "phase problem" for protein structure determination by NMR. Third, generating and programming novel distance geometry algorithms enabled the calculation of atomic-resolution protein structures from limited sets of distance constraints measured by NMR. Fourth, the introduction of two-dimensional NMR provided greatly improved spectral resolution of the complex spectra of proteins as well as efficient delineation of scalar and dipole-dipole 1H-1H connectivities, thus making protein structure determination in solution viable and attractive.
Collapse
Affiliation(s)
- Kurt Wüthrich
- ETH Zürich, Zürich Switzerland and Scripps Research, La Jolla, CA, USA
| |
Collapse
|
20
|
Markoska T, Huppertz T, Vasiljevic T. pH-induced changes in β-casomorphin 7 structure studied by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Bellavita R, Casciaro B, Di Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J Med Chem 2021; 64:11675-11694. [PMID: 34296619 PMCID: PMC8389922 DOI: 10.1021/acs.jmedchem.1c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Bruno Casciaro
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi
Vanvitelli”, Caserta 81100, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Annarita Falanga
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Portici 80055, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Elisabetta Buommino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Tom N. Grossmann
- Department
of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| |
Collapse
|
22
|
Nassour H, Hoang TA, Martin RD, Dallagnol JCC, Billard É, Létourneau M, Novellino E, Carotenuto A, Allen BG, Tanny JC, Fournier A, Hébert TE, Chatenet D. Lipidated peptides derived from intracellular loops 2 and 3 of the urotensin II receptor act as biased allosteric ligands. J Biol Chem 2021; 297:101057. [PMID: 34389356 PMCID: PMC8424217 DOI: 10.1016/j.jbc.2021.101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 01/14/2023] Open
Abstract
Over the last decade, the urotensinergic system, composed of one G protein-coupled receptor and two endogenous ligands, has garnered significant attention as a promising new target for the treatment of various cardiovascular diseases. Indeed, this system is associated with various biomarkers of cardiovascular dysfunctions and is involved in changes in cardiac contractility, fibrosis and hypertrophy contributing, like the angiotensinergic system, to the pathogenesis and progression of heart failure. Significant investment has been made toward the development of clinically relevant UT ligands for therapeutic intervention, but with little or no success to date. This system therefore remains to be therapeutically exploited. Pepducins and other lipidated peptides have been used as both mechanistic probes and potential therapeutics; therefore, pepducins derived from the human urotensin II receptor might represent unique tools to generate signaling bias and study hUT signaling networks. Two hUT-derived pepducins, derived from the second and the third intracellular loop of the receptor (hUT-Pep2 and [Trp1, Leu2]hUT-Pep3, respectively) were synthesized and pharmacologically characterized. Our results demonstrated that hUT-Pep2 and [Trp1, Leu2]hUT-Pep3 acted as biased ago-allosteric modulators, triggered ERK1/2 phosphorylation and to a lesser extent, IP1 production and stimulated cell proliferation yet were devoid of contractile activity. Interestingly, both hUT-derived pepducins were able to modulate human urotensin II (hUII)- and urotensin II-related peptide (URP)-mediated contraction albeit to different extents. These new derivatives represent unique tools to reveal the intricacies of hUT signaling and also a novel avenue for the design of allosteric ligands selectively targeting hUT signaling potentially.
Collapse
Affiliation(s)
- Hassan Nassour
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada
| | - Tuan Anh Hoang
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Juliana C C Dallagnol
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada; Department of Medicine, Université de Montreal, Montreal Heart Institute, Montreal, Québec, Canada
| | - Étienne Billard
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Myriam Létourneau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Bruce G Allen
- Department of Medicine, Université de Montreal, Montreal Heart Institute, Montreal, Québec, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - Alain Fournier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec, Canada.
| |
Collapse
|
23
|
Structure of Nanobody Nb23. Molecules 2021; 26:molecules26123567. [PMID: 34207949 PMCID: PMC8230604 DOI: 10.3390/molecules26123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of β2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. Methods: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. Results: The solution structure of isolated Nb23 nanobody was determined. Conclusions: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.
Collapse
|
24
|
Neira JL, Jiménez-Alesanco A, Rizzuti B, Velazquez-Campoy A. The nuclear localization sequence of the epigenetic factor RYBP binds to human importin α3. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140670. [PMID: 33945888 DOI: 10.1016/j.bbapap.2021.140670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
RYBP (Ring1 and YY1 binding protein, UniProt ID: Q8N488) is an epigenetic factor with a key role during embryonic development; it does also show an apoptotic function and an ubiquitin binding activity. RYBP is an intrinsically disordered protein (IDP), with a Zn-finger domain at its N-terminal region, which folds upon binding to DNA. It is predicted that RYBP has a nuclear localization sequence (NLS), comprising residues Asn58 to Lys83, to allow for nuclear translocation. We studied in this work the ability of intact RYBP to bind Impα3 and its truncated species, ΔImpα3, without the importin binding domain (IBB), by using fluorescence and circular dichroism (CD). Furthermore, the binding of the peptide matching the isolated NLS region of RYBP (NLS-RYBP) was also studied using the same methods and isothermal titration calorimetry (ITC), and in silico molecular docking. Moreover, we carried out experiments with NLS-RYBP in the absence or in the presence of NaCl (140 mM). Our results show that RYBP interacted with Impα3 and ΔImpα3, causing protein precipitation. The NLS-RYBP also interacted with both importin species (dissociation constant in the low micromolar range), at low or high ionic strength, as shown by intrinsic fluorescence and ITC. These findings indicate that the NLS region, which was mainly unfolded in isolation in solution, was essentially responsible for the binding of RYBP to each of the importin species. Furthermore, the molecular simulations predict that the anchoring of NLS-RYBP takes place in the major binding site for the NLS of cargo proteins bound to Impα3. Taken together, our findings pinpoint the theoretical predictions of the NLS region in RYBP and, more importantly, suggest that this IDP relies on an importin for its nuclear translocation.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Ana Jiménez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Bruno Rizzuti
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Adrián Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain
| |
Collapse
|
25
|
Stefanucci A, Amato J, Brancaccio D, Pagano B, Randazzo A, Santoro F, Mayol L, Learte-Aymamí S, Rodriguez J, Mascareñas JL, Novellino E, Carotenuto A, Mollica A. A novel β-hairpin peptide derived from the ARC repressor selectively interacts with the major groove of B-DNA. Bioorg Chem 2021; 112:104836. [PMID: 33812270 DOI: 10.1016/j.bioorg.2021.104836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) have a remarkable role in the homeostasis of the organisms and there is a growing interest in how they recognize and interact with specific DNA sequences. TFs recognize DNA using a variety of structural motifs. Among those, the ribbon-helix-helix (RHH) proteins, exemplified by the MetJ and ARC repressors, form dimers that insert antiparallel β-sheets into the major groove of DNA. A great chemical challenge consists of using the principles of DNA recognition by TFs to design minimized peptides that maintain the DNA affinity and specificity characteristics of the natural counterparts. In this context, a peptide mimic of an antiparallel β-sheet is very attractive since it can be obtained by a single peptide chain folding in a β-hairpin structure and can be as short as 14 amino acids or less. Herein, we designed eight linear and two cyclic dodeca-peptides endowed with β-hairpins. Their DNA binding properties have been investigated using fluorescence spectroscopy together with the conformational analysis through circular dichroism and solution NMR. We found that one of our peptides, peptide 6, is able to bind DNA, albeit without sequence selectivity. Notably, it shows a topological selectivity for the major groove of the DNA which is the interaction site of ARC and many other DNA-binding proteins. Moreover, we found that a type I' β-hairpin folding pattern is a favorite peptide structure for interaction with the B-DNA major groove. Peptide 6 is a valuable lead compound for the development of novel analogs with sequence selectivity.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Laura Mayol
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Soraya Learte-Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jessica Rodriguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
26
|
Hornos F, Feng HZ, Rizzuti B, Palomino-Schätzlein M, Wieczorek D, Neira JL, Jin JP. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect. J Biol Chem 2021; 296:100228. [PMID: 33814345 PMCID: PMC7948816 DOI: 10.1074/jbc.ra120.016012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
The conserved C-terminal end segment of troponin I (TnI) plays a critical role in regulating muscle relaxation. This function is retained in the isolated C-terminal 27 amino acid peptide (residues 184-210) of human cardiac TnI (HcTnI-C27): When added to skinned muscle fibers, HcTnI-C27 reduces the Ca2+-sensitivity of activated myofibrils and facilitates relaxation without decreasing the maximum force production. However, the underlying mechanism of HcTnI-C27 function is unknown. We studied the conformational preferences of HcTnI-C27 and a myopathic mutant, Arg192His, (HcTnI-C27-H). Both peptides were mainly disordered in aqueous solution with a nascent helix involving residues from Trp191 to Ile195, as shown by NMR analysis and molecular dynamics simulations. The population of nascent helix was smaller in HcTnI-C27-H than in HcTnI-C27, as shown by circular dichroism (CD) titrations. Fluorescence and isothermal titration calorimetry (ITC) showed that both peptides bound tropomyosin (αTm), with a detectably higher affinity (∼10 μM) of HcTnI-C27 than that of HcTnI-C27-H (∼15 μM), consistent with an impaired Ca2+-desensitization effect of the mutant peptide on skinned muscle strips. Upon binding to αTm, HcTnI-C27 acquired a weakly stable helix-like conformation involving residues near Trp191, as shown by transferred nuclear Overhauser effect spectroscopy and hydrogen/deuterium exchange experiments. With the potent Ca2+-desensitization effect of HcTnI-C27 on skinned cardiac muscle from a mouse model of hypertrophic cardiomyopathy, the data support that the C-terminal end domain of TnI can function as an isolated peptide with the intrinsic capacity of binding tropomyosin, providing a promising therapeutic approach to selectively improve diastolic function of the heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/prevention & control
- Disease Models, Animal
- Gene Expression
- Humans
- Kinetics
- Mice
- Molecular Docking Simulation
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Relaxation
- Mutation
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/pathology
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Troponin I/chemistry
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Felipe Hornos
- IDIBE, Universidad Miguel Hernández, Alicante, Spain
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Cosenza, Italy
| | | | - David Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cinncinnnati, Ohio, USA
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
27
|
Lin Y, Yan M, Su J, Huang Y, Feng J, Chen Z. Improving efficiency of measuring individual 1H coupling networks by pure shift 2D J-resolved NMR spectroscopy. J Chem Phys 2020; 153:174114. [PMID: 33167634 DOI: 10.1063/5.0025962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 1H coupling networks, including 1H-1H correlation and J coupling values, provide the important information for structure elucidation and conformation analysis. However, the presence of a large number of couplings and the phase-twist lineshapes often prevents revealing 1H coupling networks. Here, we provide a clean absorption-mode 2D NMR method, SIMAJ (SImple Methods for 2D Absorption mode J-resolved spectrum), for a straightforward assignment and measurement of the coupling network involving the chosen proton. Relying on the pure shift element, 1H-1H couplings and chemical shift evolution are totally separately demonstrating along the F1 and F2 dimensions, respectively. Processing with a single experiment dataset and free of 45° spectral shearing, an absorption-mode 2D J-resolved spectrum can be reconstructed. Two pulse sequences were proposed as examples. The SIMAJ signal processing method will be a general procedure for obtaining absorption-mode lineshapes when analyzing the experiment datasets with chemical shifts and J coupling multiplets in the orthogonal dimensions. With excellent sensitivity, high spectral purity, and ability of easily identifying 1H-1H correlations, significant improvements are beneficial for structural, conformational, or complex composition analyses.
Collapse
Affiliation(s)
- Yulan Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Ming Yan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jianwei Su
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Intracellular Sodium Changes in Cancer Cells Using a Microcavity Array-Based Bioreactor System and Sodium Triple-Quantum MR Signal. Processes (Basel) 2020. [DOI: 10.3390/pr8101267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The sodium triple-quantum (TQ) magnetic resonance (MR) signal created by interactions of sodium ions with macromolecules has been demonstrated to be a valuable biomarker for cell viability. The aim of this study was to monitor a cellular response using the sodium TQ signal during inhibition of Na/K-ATPase in living cancer cells (HepG2). The cells were dynamically investigated after exposure to 1 mM ouabain or K+-free medium for 60 min using an MR-compatible bioreactor system. An improved TQ time proportional phase incrementation (TQTPPI) pulse sequence with almost four times TQ signal-to-noise ratio (SNR) gain allowed for conducting experiments with 12–14 × 106 cells using a 9.4 T MR scanner. During cell intervention experiments, the sodium TQ signal increased to 138.9 ± 4.1% and 183.4 ± 8.9% for 1 mM ouabain (n = 3) and K+-free medium (n = 3), respectively. During reperfusion with normal medium, the sodium TQ signal further increased to 169.2 ± 5.3% for the ouabain experiment, while it recovered to 128.5 ± 6.8% for the K+-free experiment. These sodium TQ signal increases agree with an influx of sodium ions during Na/K-ATPase inhibition and hence a reduced cell viability. The improved TQ signal detection combined with this MR-compatible bioreactor system provides a capability to investigate the cellular response of a variety of cells using the sodium TQ MR signal.
Collapse
|
29
|
Neira JL, Rizzuti B, Jiménez-Alesanco A, Abián O, Velázquez-Campoy A, Iovanna JL. The Paralogue of the Intrinsically Disordered Nuclear Protein 1 Has a Nuclear Localization Sequence that Binds to Human Importin α3. Int J Mol Sci 2020; 21:ijms21197428. [PMID: 33050086 PMCID: PMC7583046 DOI: 10.3390/ijms21197428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous carrier proteins intervene in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, with several human isoforms; among them, importin α3 (Impα3) features a particularly high flexibility. The protein NUPR1L is an intrinsically disordered protein (IDP), evolved as a paralogue of nuclear protein 1 (NUPR1), which is involved in chromatin remodeling and DNA repair. It is predicted that NUPR1L has a nuclear localization sequence (NLS) from residues Arg51 to Gln74, in order to allow for nuclear translocation. We studied in this work the ability of intact NUPR1L to bind Impα3 and its depleted species, ∆Impα3, without the importin binding domain (IBB), using fluorescence, isothermal titration calorimetry (ITC), circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular docking techniques. Furthermore, the binding of the peptide matching the isolated NLS region of NUPR1L (NLS-NUPR1L) was also studied using the same methods. Our results show that NUPR1L was bound to Imp α3 with a low micromolar affinity (~5 μM). Furthermore, a similar affinity value was observed for the binding of NLS-NUPR1L. These findings indicate that the NLS region, which was unfolded in isolation in solution, was essentially responsible for the binding of NUPR1L to both importin species. This result was also confirmed by our in silico modeling. The binding reaction of NLS-NUPR1L to ∆Impα3 showed a larger affinity (i.e., lower dissociation constant) compared with that of Impα3, confirming that the IBB could act as an auto-inhibition region of Impα3. Taken together, our findings pinpoint the theoretical predictions of the NLS region in NUPR1L and, more importantly, suggest that this IDP relies on an importin for its nuclear translocation.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Correspondence: (J.L.N.); (J.L.I.); Tel.: +34-966-65-8475 (J.L.N.); +33(0)491-82-8803 (J.L.I.)
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Ana Jiménez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundacion ARAID, Gobierno de Aragon, 50009 Zaragoza, Spain
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
- Correspondence: (J.L.N.); (J.L.I.); Tel.: +34-966-65-8475 (J.L.N.); +33(0)491-82-8803 (J.L.I.)
| |
Collapse
|
30
|
A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules 2020; 10:biom10091313. [PMID: 32933064 PMCID: PMC7565984 DOI: 10.3390/biom10091313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Several carrier proteins are involved in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, of which there are several human isoforms; among them, importin α3 (Impα3) has a high flexibility. The protein NUPR1, a nuclear protein involved in the cell-stress response and cell cycle regulation, is an intrinsically disordered protein (IDP) that has a nuclear localization sequence (NLS) to allow for nuclear translocation. NUPR1 does localize through the whole cell. In this work, we studied the affinity of the isolated wild-type NLS region (residues 54–74) of NUPR1 towards Impα3 and several mutants of the NLS region by using several biophysical techniques and molecular docking approaches. The NLS region of NUPR1 interacted with Impα3, opening the way to model the nuclear translocation of disordered proteins. All the isolated NLS peptides were disordered. They bound to Impα3 with low micromolar affinity (1.7–27 μM). Binding was hampered by removal of either Lys65 or Lys69 residues, indicating that positive charges were important; furthermore, binding decreased when Thr68 was phosphorylated. The peptide phosphorylated at Thr68, as well as four phospho-mimetic peptides (all containing the Thr68Glu mutation), showed the presence of a sequential NN(i,i + 1) nuclear Overhauser effect (NOE) in the 2D-1H-NMR (two-dimensional–proton NMR) spectra, indicating the presence of turn-like conformations. Thus, the phosphorylation of Thr68 modulates the binding of NUPR1 to Impα3 by a conformational, entropy-driven switch from a random-coil conformation to a turn-like structure.
Collapse
|
31
|
Breast Tumor Cell Invasion and Pro-Invasive Activity of Cancer-Associated Fibroblasts Co-Targeted by Novel Urokinase-Derived Decapeptides. Cancers (Basel) 2020; 12:cancers12092404. [PMID: 32847144 PMCID: PMC7564779 DOI: 10.3390/cancers12092404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023] Open
Abstract
Among peritumoral cells, cancer-associated fibroblasts (CAFs) are major facilitators of tumor progression. This study describes the effects of two urokinase-derived, novel decapeptides, denoted as Pep 1 and its cyclic derivative Pep 2. In a mouse model of tumor dissemination, using HT1080 fibrosarcoma cells, Pep 2 reduced the number and size of lung metastases. Specific binding of fluoresceinated Pep 2 to HT1080 and telomerase immortalised fibroblasts (TIF) cell surfaces was enhanced by αv overexpression or abolished by excess vitronectin, anti-αv antibodies or silencing of ITGAV αv gene, identifying αv-integrin as the Pep 2 molecular target. In 3D-organotypic assays, peptide-exposed TIFs and primary CAFs from breast carcinoma patients both exhibited a markedly reduced pro-invasive ability of either HT1080 fibrosarcoma or MDA-MB-231 mammary carcinoma cells, respectively. Furthermore, TIFs, either exposed to Pep 2, or silenced for αv integrin, were impaired in their ability to chemoattract cancer cells and to contract collagen matrices, exhibiting reduced α-smooth muscle actin (α-SMA) levels. Finally, peptide exposure of αv-expressing primary CAFs led to the downregulation of α-SMA protein and to a dramatic reduction of their pro-invasive capability. In conclusion, the ability of the novel decapeptides to interfere with tumor cell invasion directly and through the down-modulation of CAF phenotype suggests their use as lead compounds for co-targeting anti-cancer strategies.
Collapse
|
32
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
33
|
Insights into the mechanism of action of two analogues of aurein 2.2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183262. [DOI: 10.1016/j.bbamem.2020.183262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
|
34
|
Sheberstov KF, Sistaré Guardiola E, Jeannerat D. Everything you wanted to know about phase and reference frequency in one- and two-dimensional NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:376-389. [PMID: 31701572 DOI: 10.1002/mrc.4938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The fundamental concept of phase discussed in this tutorial aimed at providing students with an explanation of the delays and processing parameters they may find in nuclear magnetic resonance (NMR) pulse programs. We consider the phase of radio-frequency pulses, receiver, and magnetization and how all these parameters are related to phases and offsets of signals in spectra. The impact of the off-resonance effect on the phase of the magnetization is discussed before presenting an overview of how adjustment of the time reference of the free induction decay avoids first-order correction of the phase of spectra. The main objective of this tutorial is to show how the relative phase of a pulse and the receiver can be used to change the reference frequency along direct and indirect dimensions of NMR experiments. Unusual of phase incrementation with non-90° angles will be illustrated on one- and two-dimensional NMR spectra.
Collapse
Affiliation(s)
| | | | - Damien Jeannerat
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Sani MA, Le Brun AP, Separovic F. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183204. [DOI: 10.1016/j.bbamem.2020.183204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/15/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
|
36
|
Hunashal Y, Cantarutti C, Giorgetti S, Marchese L, Molinari H, Niccolai N, Fogolari F, Esposito G. Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra. Phys Chem Chem Phys 2020; 22:6247-6259. [PMID: 32129386 DOI: 10.1039/c9cp06950j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and DAME, Università di Udine, 33100 Udine, Italy
| | - Cristina Cantarutti
- Institute of Chemistry, UMR CNRS 7272, Université Côte d'Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108, Nice Cedex 2, France
| | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Loredana Marchese
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), CNR, Via A. Corti, 12, 20133, Milano, Italy
| | - Neri Niccolai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Moro 2, 53100 Siena, Italy
| | - Federico Fogolari
- DMIF, Università di Udine, 33100 Udine, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
37
|
Lebetin Peptides, A New Class of Potent Platelet Aggregation Inhibitors: Chemical Synthesis, Biological Activity and NMR Spectroscopic Study. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2020; 2068:129-162. [PMID: 31576526 DOI: 10.1007/978-1-4939-9845-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has over the last few decades proven to be an extremely useful technique for, and indeed an integral part of, investigating the structural features of peptides and small proteins directly in solution, without the need for crystallization. This advantage over X-ray methods is important when dealing with peptides and small proteins that do not readily form crystals. In this chapter we outline what specific NMR experiments are useful, considerations about how to acquire and interpret these experiments, and how information derived from the NMR data can be used to determine solution structures of small peptides.
Collapse
|
39
|
Grabowsky S, White AH, Healy PC, Lapere KM, Ng SW, Skelton BW, Wild DA, Bowmaker GA, Hanna JV. Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(I) Mono-Carboxylate and -Nitrate Systems. Aust J Chem 2020. [DOI: 10.1071/ch19616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutral mononuclear molecular silver(i) carboxylate complexes of the form [(Ph3P)2Ag(O2XY)] with O2XY=O2CCH2Ph, O2CCHPh2, O2CC(CH3)3, O2CCH2C(CH3)3, and O2CCF3 (compounds 1–4 and 5β) have been investigated in the solid state using single-crystal X-ray structure determinations, 1D 31P CPMAS NMR and 2D 31P–31P CPCOSY NMR measurements, and ab initio computational modelling. The results show that these complexes contain P2AgO2 molecular cores with four-coordinate silver in which the carboxylate ligands are weakly bound to the silver atoms via the two oxygen atoms giving rise to unsymmetrical chelate units. Crystal structure determinations and solid-state NMR spectra have also been analysed for the mononuclear molecular silver(i) nitrate complex [(Ph3P)2Ag(O2NO)] (9α) and two polymorphs of its toluene monosolvate (11α, β). In 9α, the two PPh3 ligands are of the same chirality, whereas in 11α, β, they are opposed. The crystalline environments in the polymorphs have been explored by way of Hirshfeld surface analyses, after quantum-mechanical isolated-molecule calculations had shown that although the molecular energies of the experimental geometries of 9α, and 11α, β are significantly different from each other and from the energies of the optimized geometries, the latter, in contrast, do not differ significantly from each other despite the conformational isomerism. It has further been shown using 9α as an example that the energy dependence on variation of the P–Ag–P angle over a range of ~15° is only ~5 kJ mol−1. All this indicates that the forces arising from crystal packing result in significant perturbations in the experimental geometries, but do not alter the stereoisomerism caused by the donor atom array around the Ag atom. In the NMR study, a strong inverse correlation has been found between 1J(107/109Ag,31P) and the Ag–P bond length across all carboxylate and nitrate compounds.
Collapse
|
40
|
Fritz M, Kraus J, Quinn CM, Yap GPA, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-Frequency Magic Angle Spinning NMR Approach. J Phys Chem B 2019; 123:10680-10690. [PMID: 31682453 DOI: 10.1021/acs.jpcb.9b08919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-range interatomic distance restraints are critical for the determination of molecular structures by NMR spectroscopy, both in solution and in the solid state. Fluorine is a powerful NMR probe in a wide variety of contexts, owing to its favorable magnetic properties, ease of incorporation into biological molecules, and ubiquitous use in synthetic organic molecules designed for diverse applications. Because of the large gyromagnetic ratio of the 100% naturally abundant 19F isotope, interfluorine distances as long as 20 Å are accessible in magic-angle spinning (MAS) dipolar recoupling experiments. Herein, we present an approach for the determination of accurate interfluorine distances in multispin systems, using the finite pulse radio frequency driven recoupling (fpRFDR) at high MAS frequencies of 40-60 kHz. We use a series of crystalline "molecular ruler" solids, difluorobenzoic acids and 7F-L-tryptophan, for which the intra- and intermolecular interfluorine distances are known. We describe the optimal experimental conditions for accurate distance determinations, including the choice of a phase cycle, the relative advantages of selective inversion one-dimensional versus two-dimensional correlation experiments, and the appropriate numerical simulation protocols. An optimal strategy for the analysis of RFDR exchange curves in organic solids with extended spin interaction networks is presented, which, even in the absence of crystal structures, can be potentially incorporated into NMR structure determination.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
41
|
Beil A, Jurt S, Walser R, Schönhut T, Güntert P, Palacios Ò, Atrian S, Capdevila M, Dallinger R, Zerbe O. The Solution Structure and Dynamics of Cd-Metallothionein from Helix pomatia Reveal Optimization for Binding Cd over Zn. Biochemistry 2019; 58:4570-4581. [DOI: 10.1021/acs.biochem.9b00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Beil
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Reto Walser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Òscar Palacios
- Departmento de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Silvia Atrian
- Departmento de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Mercè Capdevila
- Departmento de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
42
|
Bourafai-Aziez A, Sebban M, Benabderrahmane M, Marekha B, Denis C, Paysant H, Weiswald LB, Carlier L, Bureau R, Coadou G, Ravault D, Voisin-Chiret AS, Sopková-de Oliveira Santos J, Oulyadi H. Binding mode of Pyridoclax to myeloid cell leukemia-1 (Mcl-1) revealed by nuclear magnetic resonance spectroscopy, docking and molecular dynamics approaches. J Biomol Struct Dyn 2019; 38:4162-4178. [PMID: 31612791 DOI: 10.1080/07391102.2019.1680434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family proteins. Its amplification is one of the most frequent genetic aberrations found in human cancers. Pyridoclax, a promising BH3 mimetic inhibitor, interacts directly with Mcl-1 and induces massive apoptosis at a concentration of 15 µM in combination with anti-Bcl-xL strategies in chemo-resistant ovarian cancer cell lines. In this study, a combined experimental and theoretical approach was used to investigate the binding mode of Pyridoclax to Mcl-1. The representative poses generated from dynamics simulations compared with NMR data revealed: (i) Pyridoclax bound to P1 and P2 pockets of Mcl-1 BH3 binding groove through its styryl and methyl groups establishing mainly hydrophobic contacts, (ii) one of the ending pyridines interacts through electrostatic interaction with K234 side chain, a negatively charged residue present only in this position in Mcl-1. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Bourafai-Aziez
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France.,Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - M Sebban
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | | | - B Marekha
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - C Denis
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - H Paysant
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L B Weiswald
- Normandie Université, UNICAEN, Inserm U1086 ANTICIPE « Interdisciplinary Research Unit for Cancer Prevention and Treatment », Biologie et Thérapies Innovantes des Cancers de l'ovaire (BioTICLA), Caen, France.,Centre de Lutte Contre le Cancer F. Baclesse, Unicancer, Caen, France
| | - L Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - R Bureau
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - G Coadou
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| | - D Ravault
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris, France
| | | | | | - H Oulyadi
- CNRS Laboratoire COBRA (UMR 6014 & FR 3038), Normandie Université, UNIROUEN, INSA de Rouen, Rouen, France
| |
Collapse
|
43
|
Ariunbold GO, Semon B, Nagpal S, Adhikari P. Coherent Anti-Stokes-Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes. APPLIED SPECTROSCOPY 2019; 73:1099-1106. [PMID: 31293185 DOI: 10.1177/0003702819857771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Both the coherent Stokes and anti-Stokes Raman spectra are recorded simultaneously as the concentration of water in pyridine varied. A 3 ps and 10 cm-1 narrowband probe pulse enables us to observe well-resolved Raman spectra. The hydrogen bonding between pyridine and water forms the complexes that have altered vibrational frequencies. These red and blue shifts were observed to be uneven. This asymmetry was result of the generated background nonlinear optical processes of pyridine-water complexes. This asymmetry tends to disappear as probe pulse further delayed attaining background-free coherent Raman spectra. For better visualization, spectral analyses both traditional two-dimensional correlation spectroscopy and recent second-order correlation functions defined in frequency domain are employed. Recognized as a label-free and background-free technique, the coherent Raman spectroscopy, complemented with a known high-resolution spectroscopic correlation analysis, has potential in studying the hydrogen-bonded pyridine-water complexes. These complexes are of great biological importance both due to the ubiquitous nature of hydrogen bonds and due to the close resemblance to chemical bases in macro-biomolecules.
Collapse
Affiliation(s)
- Gombojav O Ariunbold
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS, USA
| | - Bryan Semon
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS, USA
| | - Supriya Nagpal
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS, USA
| | - Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
44
|
Im J, Lee J, Lee JH. Pre-Homonuclear Decoupling Enables High-Resolution NMR Analysis of Intrinsically Disordered Proteins in Solution. J Phys Chem Lett 2019; 10:4720-4724. [PMID: 31369281 DOI: 10.1021/acs.jpclett.9b01773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Probing the atomic details of intrinsically disordered proteins is crucial to understanding their biological function and relation to pathogenesis. Although amide-detected NMR experiments are widely employed in protein studies, 3JHNHα couplings between amide (1HN) and alpha (1Hα) protons impose an intrinsic limit on the achievable 1HN linewidth. Here, we present a homonuclear decoupling method that narrows the α-synuclein 1HN linewidths to 3-5 Hz. Tightly distributed 1JCαHα coupling values were employed to generate homogeneous antiphase coherences of 2HαzHNy and 4Hα(2)zHα(3)zHNy for nonglycine and glycine residues, respectively, which were combined with their in-phase HNy counterparts to achieve homonuclear decoupling. By reducing the multiplet structure to a singlet, the width of the 1HN cross-peak was reduced by ∼3-fold in the 2D HSQC and 3D intra-HNCA spectra, and good spectral quality was achieved without the need for postprocessing.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| | - Jongchan Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| | - Jung Ho Lee
- Department of Chemistry , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
45
|
Guo C, Williams JC, Polenova T. Conformational Flexibility of p150 Glued(1-191) Subunit of Dynactin Assembled with Microtubules. Biophys J 2019; 117:938-949. [PMID: 31445682 DOI: 10.1016/j.bpj.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Microtubule (MT)-associated proteins perform diverse functions in cells. These functions are dependent on their interactions with MTs. Dynactin, a cofactor of dynein motor, assists the binding of dynein to various organelles and is crucial to the long-distance processivity of dynein-based complexes. The largest subunit of dynactin, the p150Glued, contains an N-terminus segment that is responsible for the MT-binding interactions and long-range processivity of dynactin. We employed solution and magic angle spinning NMR spectroscopy to characterize the structure and dynamics of the p150Glued N-terminal region, both free and in complex with polymerized MTs. This 191-residue region encompasses the cytoskeleton-associated protein glycine-rich domain, the basic domain, and serine/proline-rich (SP-rich) domain. We demonstrate that the basic and SP-rich domains are intrinsically disordered in solution and significantly enhance the binding affinity to MTs as these regions contain the second MT-binding site on the p150Glued subunit. The majority of the basic and SP-rich domains are predicted to be random coil, whereas the segments S111-I116, A124-R132, and K144-T146 in the basic domain contain short α-helical or β-sheet structures. These three segments possibly encompass the MT-binding site. Surprisingly, the protein retains a high degree of flexibility upon binding to MTs except for the regions that are directly involved in the binding interactions with MTs. This conformational flexibility may be essential for the biological functions of the p150Glued subunit.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
46
|
Nepravishta R, Ferrentino F, Mandaliti W, Mattioni A, Weber J, Polo S, Castagnoli L, Cesareni G, Paci M, Santonico E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules 2019; 9:biom9070284. [PMID: 31319543 PMCID: PMC6681339 DOI: 10.3390/biom9070284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44, including residues Leu8, Ile44, His68, and Val70. A variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD specifically contacts ubiquitin. Here, we describe the structural model of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis, and nuclear magnetic resonance (NMR) spectroscopy of the 15N isotopically labeled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the coupling of ubiquitin conjugation to endoplasmic-reticulum (ER) degradation (CUE) domain family, where an invariant proline, usually following a phenylalanine, is required for ubiquitin binding. Interestingly, this novel UBD, which is not evolutionary related to CUE domains, shares a 40% identity and 47% similarity with cullin binding domain associating with NEDD8 (CUBAN), a protein module that also recognizes the ubiquitin-like NEDD8. Based on these features, we dubbed the region spanning the C-terminal 50 residues of N4BP1 the CoCUN domain, for Cousin of CUBAN. By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the CoCUN domain lacks the NEDD8 binding properties observed in CUBAN. We also show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both CUBAN and CoCUN are poly-ubiquitinated in cells. The structural and the functional characterization of this novel UBD can contribute to a deeper understanding of the molecular mechanisms governing N4BP1 function, providing at the same time a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- School of Pharmacy East Anglia, University of Norwich, Norwich NR4 7TJ, UK
| | | | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Anna Mattioni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Janine Weber
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Simona Polo
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Gianni Cesareni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
- DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, 20122 Milan, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| |
Collapse
|
47
|
Buommino E, Carotenuto A, Antignano I, Bellavita R, Casciaro B, Loffredo MR, Merlino F, Novellino E, Mangoni ML, Nocera FP, Brancaccio D, Punzi P, Roversi D, Ingenito R, Bianchi E, Grieco P. The Outcomes of Decorated Prolines in the Discovery of Antimicrobial Peptides from Temporin-L. ChemMedChem 2019; 14:1283-1290. [PMID: 31087626 DOI: 10.1002/cmdc.201900221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Indexed: 01/17/2023]
Abstract
Previously, we identified a potent antimicrobial analogue of temporin L (TL), [Pro3 ]TL, in which glutamine at position 3 was substituted with proline. In this study, a series of analogues in which position 3 is substituted with non-natural proline derivatives, was investigated for correlations between the conformational properties of the compounds and their antibacterial, cytotoxic, and hemolytic activities. Non-natural proline analogues with substituents at position 4 of the pyrrolidine ring were considered. Structure-activity relationship (SAR) studies of these analogues were performed by means of antimicrobial and cytotoxicity assays along with circular dichroism (CD) and NMR spectroscopic analyses for selected compounds. The most promising peptides were additionally evaluated for their activity against some representative veterinary microbial strains to compare with those from human strains. We identified novel analogues with interesting properties that make them attractive lead compounds.
Collapse
Affiliation(s)
- Elisabetta Buommino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Ignazio Antignano
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, 00161, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00185, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, 80137, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| | - Pasqualina Punzi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Daniela Roversi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Raffaele Ingenito
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Elisabetta Bianchi
- Peptide Chemistry Unit, IRBM S.p.A., via Pontina km 30 600, Pomezia, 00071, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy.,Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", Naples, 80134, Italy
| |
Collapse
|
48
|
Becker J, Koos MRM, Schulze-Sünninghausen D, Luy B. ASAP-HSQC-TOCSY for fast spin system identification and extraction of long-range couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:76-83. [PMID: 30711785 DOI: 10.1016/j.jmr.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Based on Ernst-angle-type excitation and Acceleration by Sharing Adjacent Polarization (ASAP), a fast HSQC-TOCSY experiment is introduced. In the approach, the DIPSI-2 isotropic mixing period of the ASAP-HSQC is simply shifted, which provides a TOCSY period without additional application of rf-energy. The ASAP-HSQC-TOCSY allows the acquisition of a conventional 2D in about 30 s. Alternatively, it allows the acquisition of highly carbon-resolved spectra (several Hz digital resolution) on the order of minutes. An ASAP-HSQC-TOCSY-IPAP variant, finally, allows the sign-sensitive extraction of heteronuclear long-range coupling constants from a pair of highly resolved spectra in less than an hour. Pulse sequences, several example spectra, and a discussion of results are given.
Collapse
Affiliation(s)
- Johanna Becker
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Martin R M Koos
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David Schulze-Sünninghausen
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
49
|
Gouilleux B, Christensen NV, Malmos KG, Vosegaard T. Analytical Evaluation of Low-Field 31P NMR Spectroscopy for Lipid Analysis. Anal Chem 2019; 91:3035-3042. [PMID: 30657309 DOI: 10.1021/acs.analchem.8b05416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the potential of 31P NMR with simple, maintenance-free benchtop spectrometers to probe phospholipids in complex mixtures. 31P NMR-based lipidomics has become an important topic in a wide range of applications in food- and health-sciences, and the continuous improvements of compact, maintenance- and cryogen-free instruments opens new opportunities for NMR routine analyses. A prior milestone is the evaluation of the analytical performance provided by 31P NMR at low magnetic field. To address this, we assess the ability of state-of-the-art benchtop NMR spectrometers to detect, identify, and quantify several types of phospholipids in mixtures. Relying on heteronuclear cross-polarization experiments, phospholipids can be detected in 2 h with a limit of detection of 0.5 mM at 1 T and 0.2 mM at 2 T, while the headgroups of phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidyl-glycerol (PG) can be unambiguously assigned based on 2D 1H-31P total correlated spectroscopy (TOCSY) spectra. Furthermore, two quantitative methods to obtain absolute concentrations are proposed and discussed, and the performance is evaluated regarding precision and accuracy.
Collapse
Affiliation(s)
- Boris Gouilleux
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Kirsten G Malmos
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
50
|
MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans. Cell Death Differ 2019; 26:2157-2178. [PMID: 30728462 DOI: 10.1038/s41418-019-0291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023] Open
Abstract
Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer. Many RBPs are conserved between Caenorhabditis elegans and humans, and several are known to regulate apoptosis in the adult C. elegans germ line. How these RBPs control apoptosis is, however, largely unknown. Here, we identify mina-1(C41G7.3) in a RNA interference-based screen as a novel regulator of apoptosis, which is exclusively expressed in the adult germ line. The absence of MINA-1 causes a dramatic increase in germ cell apoptosis, a reduction in brood size, and an impaired P granules organization and structure. In vivo crosslinking immunoprecipitation experiments revealed that MINA-1 binds a set of mRNAs coding for RBPs associated with germ cell development. Additionally, a system-wide analysis of a mina-1 deletion mutant compared with wild type, including quantitative proteome and transcriptome data, hints to a post-transcriptional regulatory RBP network driven by MINA-1 during germ cell development in C. elegans. In particular, we found that the germline-specific Argonaute WAGO-4 protein levels are increased in mina-1 mutant background. Phenotypic analysis of double mutant mina-1;wago-4 revealed that contemporary loss of MINA-1 and WAGO-4 strongly rescues the phenotypes observed in mina-1 mutant background. To strengthen this functional interaction, we found that upregulation of WAGO-4 in mina-1 mutant animals causes hypersensitivity to exogenous RNAi. Our comprehensive experimental approach allowed us to describe a phenocritical interaction between two RBPs controlling germ cell apoptosis and exogenous RNAi. These findings broaden our understanding of how RBPs can orchestrate different cellular events such as differentiation and death in C. elegans.
Collapse
|