1
|
Sarkar U, Rivera-Burgos D, Large EM, Hughes DJ, Ravindra KC, Dyer RL, Ebrahimkhani MR, Wishnok JS, Griffith LG, Tannenbaum SR. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab Dispos 2015; 43:1091-9. [PMID: 25926431 PMCID: PMC4468434 DOI: 10.1124/dmd.115.063495] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte-Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase-ultra high-performance liquid chromatography-quadrupole time of flight-mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10% of the loss, and 45-52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour(-1), 6.6 × 10(-5) l⋅hour(-1), and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver.
Collapse
Affiliation(s)
- Ujjal Sarkar
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Dinelia Rivera-Burgos
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Emma M Large
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - David J Hughes
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Kodihalli C Ravindra
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Rachel L Dyer
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Mohammad R Ebrahimkhani
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - John S Wishnok
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Linda G Griffith
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| | - Steven R Tannenbaum
- Department of Biological Engineering (U.S., D.R.-B., K.C.R., R.L.D., M.R.E., J.S.W., L.G.G., S.R.T.), Department of Chemistry (S.R.T.), and Department of Mechanical Engineering (L.G.G.), Massachusetts Institute of Technology, Cambridge, Massachusetts; and CN Bio Innovations, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom (E.M.L., D.J.H.)
| |
Collapse
|
2
|
Coecke S, Rogiers V, Bayliss M, Castell J, Doehmer J, Fabre G, Fry J, Kern A, Westmoreland C. The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status. Altern Lab Anim 2014; 27:579-638. [PMID: 25487865 DOI: 10.1177/026119299902700408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
Collapse
Affiliation(s)
- S Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra, Italy
| | - V Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Bayliss
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - J Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - J Doehmer
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany
| | - G Fabre
- Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, 34184 Montpellier, France
| | - J Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH
| | - A Kern
- Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - C Westmoreland
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| |
Collapse
|
3
|
O'Shaughnessy PJ, Monteiro A, Fowler PA, Morris ID. Identification of Leydig cell-specific mRNA transcripts in the adult rat testis. Reproduction 2014; 147:671-82. [PMID: 24505118 DOI: 10.1530/rep-13-0603] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult population of Leydig cells acts to secrete testosterone which is essential for reproductive health and fertility in the adult male. However, other physiological functions of these cells are uncertain, and to address this issue a cell ablation model has been used to identify Leydig cell-specific mRNA transcripts. Ethane dimethane sulphonate (EDS) was synthesised by a novel process and was used to ablate Leydig cells in adult male rats previously treated with butane dimethane sulphonate (busulphan) to delete the germ cell population. Levels of mRNA transcripts were measured in the testis using microarrays 1, 3, 5, 8 and 12 days after EDS injection. During this period, there was a significant change in the levels of 2200 different transcripts with a marked decline in the levels of canonical Leydig cell transcripts, such as Cyp11a1, Cyp17a1 and Insl3. A total of 95 transcripts showed a similar decline in expression after EDS treatment, suggesting that they have a Leydig cell-specific origin. Analysis of selected transcripts confirmed that they were expressed specifically in Leydig cells and showed that most had a late onset of expression during adult Leydig cell development. Apart from transcripts encoding components of the steroidogenic apparatus, the most common predicted function of translated proteins was endogenous and xenotoxicant metabolism. In addition, a number of transcripts encode acute-phase proteins involved in reduction of oxidative stress. Results show that, in addition to androgen secretion, Leydig cells may have a critical role to play in protecting the testis from damage caused by toxicants or stress.
Collapse
Affiliation(s)
- P J O'Shaughnessy
- Division of Cell Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
4
|
Hussain A, Collins G, Yip D, Cho CH. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng 2012; 110:637-47. [PMID: 22991229 DOI: 10.1002/bit.24727] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 11/08/2022]
Abstract
The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However, the cardiomyocyte-fibroblast co-cultures resulted in polarized cardiomyocyte morphology and retained their morphology and function for long-term culture. The Cx43 expression in the fibroblast co-culture was higher than the cardiomyocytes mono-culture and endothelial cells co-culture. In addition, fibroblast co-cultures demonstrated synchronized contractions involving large tissue-like cellular networks. To our knowledge, this is the first attempt to test chitosan nanofiber scaffolds as a 3-D cardiac co-culture model. Our results demonstrate that chitosan nanofibers can serve as a potential scaffold that can retain cardiac structure and function. These studies will provide useful information to develop a strategy that allows us to generate engineered 3-D cardiac tissue constructs using biocompatible and biodegradable chitosan nanofiber scaffolds for many tissue engineering applications.
Collapse
Affiliation(s)
- Ali Hussain
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
5
|
IL-1beta and IL-6 modulate apolipoprotein E gene expression in rat hepatocyte primary culture. Mediators Inflamm 2012; 1:329-33. [PMID: 18475480 PMCID: PMC2365358 DOI: 10.1155/s0962935192000498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Incubation of rat hepatocytes in primary culture with IL-1β at a concentration of 2.5 units/ml resulted in an increase (+80%) in the amount of apoE mRNA without any effect upon apoE synthesis. IL-6 at a low concentration (10 units/ml) induced a decrease (−35%) in the amount of apoE mRNA, but increased apoE synthesis (+28%). No effect was observed with higher concentrations of IL-1β (10 units/ml) or IL-6 (100 units/ml). These results suggest that inflammatory cytokines IL-1β and IL-6 modulate the expression of apoE gene in cultured rat hepatocytes, at a concentration that does not induce the acute phase response.
Collapse
|
6
|
Howarth DL, Vacaru AM, Tsedensodnom O, Mormone E, Nieto N, Costantini LM, Snapp EL, Sadler KC. Alcohol disrupts endoplasmic reticulum function and protein secretion in hepatocytes. Alcohol Clin Exp Res 2011; 36:14-23. [PMID: 21790674 DOI: 10.1111/j.1530-0277.2011.01602.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many alcoholic patients have serum protein deficiency that contributes to their systemic problems. The unfolded protein response (UPR) is induced in response to disequilibrium in the protein folding capability of the endoplasmic reticulum (ER) and is implicated in hepatocyte lipid accumulation and apoptosis, which are associated with alcoholic liver disease (ALD). We investigated whether alcohol affects ER structure, function, and UPR activation in hepatocytes in vitro and in vivo. METHODS HepG2 cells expressing human cytochrome P450 2E1 and mouse alcohol dehydrogenase (VL-17A) were treated for up to 48 hours with 50 and 100 mM ethanol. Zebrafish larvae at 4 days postfertilization were exposed to 350 mM ethanol for 32 hours. ER morphology was visualized by fluorescence in cells and transmission electron microscopy in zebrafish. UPR target gene activation was assessed using quantitative PCR, in situ hybridization, and Western blotting. Mobility of the major ER chaperone, BIP, was monitored in cells by fluorescence recovery after photobleaching (FRAP). RESULTS VL-17A cells metabolized alcohol yet only had slight activation of some UPR target genes following ethanol treatment. However, ER fragmentation, crowding, and accumulation of unfolded proteins as detected by immunofluorescence and FRAP demonstrate that alcohol induced some ER dysfunction despite the lack of UPR activation. Zebrafish treated with alcohol, however, showed modest ER dilation, and several UPR targets were significantly induced. CONCLUSIONS Ethanol metabolism directly impairs ER structure and function in hepatocytes. Zebrafish are a novel in vivo system for studying ALD.
Collapse
Affiliation(s)
- Deanna L Howarth
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Peters SJAC, Vanhaecke T, Papeleu P, Rogiers V, Haagsman HP, van Norren K. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response. Cell Tissue Res 2010; 340:451-7. [PMID: 20411395 PMCID: PMC2882052 DOI: 10.1007/s00441-010-0955-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 02/25/2010] [Indexed: 12/01/2022]
Abstract
Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6-stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CC-RLEC), a collagen type I sandwich culture (SW) and a conventional primary hepatocyte monolayer culture (ML). Basal albumin secretion was most stable over time in SW. Fibrinogen secretion was induced by IL-6 in all cell culture models. Compared with ML, CC-RLEC showed an almost three-fold higher fibrinogen secretion under both control and IL-6-stimulated conditions. Induction of fibrinogen release by IL-6 was lowest in SW. Albumin secretion was decreased after IL-6 stimulation in both ML and CC-RLEC. Thus, cells growing under the various primary hepatocyte cell culture techniques react differently to IL-6 stimulation with regard to acute-phase protein secretion. CC-RLEC is the preferred method for studying cytokine-mediated induction of acute-phase proteins, because of the pronounced stimulation of fibrinogen secretion upon IL-6 exposure under these conditions.
Collapse
Affiliation(s)
- Stephan J. A. C. Peters
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
- Nutricia Advanced Medical Nutrition, Danone Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
| | - Tamara Vanhaecke
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peggy Papeleu
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | - Klaske van Norren
- Nutricia Advanced Medical Nutrition, Danone Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
8
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
9
|
Ohno M, Motojima K, Okano T, Taniguchi A. Up-Regulation of Drug-Metabolizing Enzyme Genes in Layered Co-Culture of a Human Liver Cell Line and Endothelial Cells. Tissue Eng Part A 2008; 14:1861-9. [DOI: 10.1089/ten.tea.2007.0160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maki Ohno
- Cell-Sensing Group, Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Kiyoto Motojima
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akiyoshi Taniguchi
- Cell-Sensing Group, Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Thomas RJ, Bhandari R, Barrett DA, Bennett AJ, Fry JR, Powe D, Thomson BJ, Shakesheff KM. The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro. Cells Tissues Organs 2006; 181:67-79. [PMID: 16534201 DOI: 10.1159/000091096] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2005] [Indexed: 12/25/2022] Open
Abstract
In this study, we demonstrate the ability of a three-dimensional co-culture model to preserve some key aspects of differentiated hepatocyte function in vitro. Freshly isolated rat hepatocytes in co-culture with activated stellate cells rapidly aggregate to form well-defined viable spheroids. After 5 days in culture, the spheroids have a complex extracellular matrix support and hepatic ultrastructure including bile canaliculi, tight junctions, desmosomes and lipid storage. Co-culture spheroids have superior cytochrome P450 (CYP450) 3A and 2B function, and increased inducibility of 2B function, relative to a range of hepatocyte monoculture techniques (high-performance liquid chromatography of testosterone metabolites). Increased function in co-culture is supported by greater expression of CYP450 3A23, 1A2, and 2E1 mRNA relative to monoculture (reverse transcriptase quantitative polymerase chain reaction). Also, high hepatocyte growth factor mRNA expression in co-culture suggests a post-traumatic, or possibly regenerative, environment. A preliminary study of human hepatocytes co-cultured with rat stellate cells demonstrated prolonged function of CYP450 3A4, 2C19 and 2C9. This study shows that stellate cells facilitate spheroid formation, influence spheroid architecture, and are an effective method of preserving some aspects of hepatocyte function in the early stage of culture.
Collapse
|
11
|
Khetani SR, Szulgit G, Del Rio JA, Barlow C, Bhatia SN. Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 2004; 40:545-54. [PMID: 15349892 DOI: 10.1002/hep.20351] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cocultivation of primary hepatocytes with a plethora of nonparenchymal cells (from within and outside the liver) has been shown to support hepatic functions in vitro. Despite significant investigation into this phenomenon, the molecular mechanism underlying epithelial-nonparenchymal interactions in hepatocyte cocultures remains poorly understood. In this study, we present a functional genomic approach utilizing gene expression profiling to isolate molecular mediators potentially involved in induction of liver-specific functions by nonparenchymal cells. Specifically, primary rat hepatocytes were cocultivated with closely related murine fibroblast cell types (3T3-J2, NIH-3T3, mouse embryonic fibroblasts) to allow their classification as "high," "medium," or "low" inducers of hepatic functions. These functional responses were correlated with fibroblast gene expression profiles obtained using Affymetrix GeneChips. Microarray data analysis provided us with 17 functionally characterized candidate genes in the cell communication category (cell surface, extracellular matrix, secreted factors) that may be involved in induction of hepatic functions. Further analysis using various databases (i.e., PubMed, GenBank) facilitated prioritization of the candidates for functional characterization. We experimentally validated the potential role of two candidates in our coculture model. The cell surface protein, neural cadherin (N-cadherin), was localized to hepatocyte-fibroblast junctions, while adsorbed decorin up-regulated hepatic functions in pure cultures as well as cocultures with low-inducing fibroblasts. In the future, identifying mediators of hepatocyte differentiation may have implications for both fundamental hepatology and cell-based therapies (e.g., bioartificial liver devices). In conclusion, the functional genomic approach presented in this study may be utilized to investigate mechanisms of cell-cell interaction in a variety of tissues and disease states.
Collapse
Affiliation(s)
- Salman R Khetani
- Department of Bioengineering at the University of California-San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | |
Collapse
|
12
|
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999; 13:1883-900. [PMID: 10544172 DOI: 10.1096/fasebj.13.14.1883] [Citation(s) in RCA: 732] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heterotypic cell interaction between parenchymal cells and nonparenchymal neighbors has been reported to modulate cell growth, migration, and/or differentiation. In both the developing and adult liver, cell-cell interactions are imperative for coordinated organ function. In vitro, cocultivation of hepatocytes and nonparenchymal cells has been used to preserve and modulate the hepatocyte phenotype. We summarize previous studies in this area as well as recent advances in microfabrication that have allowed for more precise control over cell-cell interactions through 'cellular patterning' or 'micropatterning'. Although the precise mechanisms by which nonparenchymal cells modulate the hepatocyte phenotype remain unelucidated, some new insights on the modes of cell signaling, the extent of cell-cell interaction, and the ratio of cell populations are noted. Proposed clinical applications of hepatocyte cocultures, typically extracorporeal bioartificial liver support systems, are reviewed in the context of these new findings. Continued advances in microfabrication and cell culture will allow further study of the role of cell communication in physiological and pathophysiological processes as well as in the development of functional tissue constructs for medical applications.
Collapse
Affiliation(s)
- S N Bhatia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
13
|
Hino H, Tateno C, Sato H, Yamasaki C, Katayama S, Kohashi T, Aratani A, Asahara T, Dohi K, Yoshizato K. A long-term culture of human hepatocytes which show a high growth potential and express their differentiated phenotypes. Biochem Biophys Res Commun 1999; 256:184-91. [PMID: 10066444 DOI: 10.1006/bbrc.1999.0288] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study succeeded for the first time in cultivating for more than 2 months human normal hepatocytes which showed a high growth potential and expressed their differentiated phenotypes. Constituents of culture medium were critical for this culture, and the medium optimized for their growth contained fresh human serum, fetal bovine serum, Swiss 3T3-cell conditioned medium, L-ascorbic acid 2-phosphate, epidermal growth factor, nicotinamide, and dimethyl sulfoxide. Hepatocytes steadily replicated and formed colonies which continued to increase in size up to around 35 days. The number of hepatocytes in the most replicative colonies increased 17-fold during 31 days. Cells in colonies expressed normal differentiated hepatocytic phenotypes for as long as 35 days. These hepatocytes retained normal liver functions at least for 70 days such as to secrete albumin, and to metabolize lidocaine and D-galactose.
Collapse
Affiliation(s)
- H Hino
- Yoshizato MorphoMatrix Project, ERATO, JST, Department of Biological Science, Faculty of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Camborieux L, Bertrand N, Swerts JP. Changes in expression and localization of hemopexin and its transcripts in injured nervous system: a comparison of central and peripheral tissues. Neuroscience 1998; 82:1039-52. [PMID: 9466428 DOI: 10.1016/s0306-4522(97)00271-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent demonstration of hemopexin synthesis in the adult rat sciatic nerve and its accumulation after injury has raised the question of the possible role of this acute phase protein during the process of nerve repair. To gain insight into its function, we have compared the distribution of both hemopexin and its messenger RNA in the peripheral and the central nervous systems. We find that hemopexin is present in all types of peripheral nerves and ganglia, confined to the extracellular matrix and basement membranes of the endoneurium, blood vessels and connective tissues. After injury, hemopexin messenger RNA is overexpressed by Schwann cells, fibroblasts and invading macrophages. The content in hemopexin protein increases in all nerves studied, without changes in localization. Therefore, hemopexin does not appear to be associated with the fate of myelin or with the regeneration of a particular type of nerve fibre. In the central nervous system, hemopexin messenger RNA cannot be detected and the protein is only found in basement membranes of the vascular system (capillaries, meninges and choroid plexus). Furthermore, hemopexin and its messenger RNA remain absent from the distal part of the injured optic nerves. Our results further support the idea that hemopexin plays specific roles during nerve repair, and that it may be associated with the endoneurial extracellular matrix.
Collapse
Affiliation(s)
- L Camborieux
- Centre de Biologie du Développement, UMR CNRS 5547, affiliée à l'INSERM, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
15
|
Perrone CE, Williams GM. Rodent hepatocarcinogenic peroxisome proliferators induce proliferation of rat hepatocytes in primary mixed cultures with rat liver epithelial cells. Cancer Lett 1998; 123:27-33. [PMID: 9461014 DOI: 10.1016/s0304-3835(97)00363-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of two members of the hypolipidemic medicine class of hepatocarcinogenic peroxisome proliferators on proliferation of hepatocytes in primary mixed cultures with liver epithelial cells was studied. Rat hepatocytes present in primary mixed cultures with rat liver epithelial cells were maintained for 3 months retaining their differentiated characteristics and proliferative potential. Hepatocyte clusters in mixed cultures stained positive for albumin, indicating that they retained some metabolic functions. Furthermore, in mixed cultures exposed to 0.2 mM clofibric acid or ciprofibrate for 3 months, hepatocytes were engaged in proliferation as shown by the expression of proliferating cell nuclear antigen (PCNA) and the presence of mitotic figures. This in vitro system could be useful to obtain more information about responses of liver cells during prolonged exposure to peroxisome proliferators.
Collapse
Affiliation(s)
- C E Perrone
- Department of Pathology and Toxicology, American Health Foundation, Valhalla, NY 10595, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- P Skett
- Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | |
Collapse
|
17
|
Madore N, Sagot Y, Guinaudy MJ, Cochard P, Swerts JP. Long-lasting accumulation of hemopexin in permanently transected peripheral nerves and its down-regulation during regeneration. J Neurosci Res 1994; 39:186-94. [PMID: 7837288 DOI: 10.1002/jnr.490390209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously demonstrated that hemopexin is present in the intact sciatic nerve and is overproduced in the distal stump after nerve transection (Swerts et al.: J Biol Chem 267:10596-10600, 1992). To get further insight into the function of this hemoprotein in nervous tissue, we have documented long-term changes in hemopexin levels in permanently degenerated (transected) and regenerating (crush-lesioned) sciatic nerves of adult rats, using immunochemical techniques. As early as a couple of days after nerve transection, the amount of hemopexin was raised in the distal stump and at the end of the proximal stump. Similarly, after a crush lesion hemopexin was rapidly increased at the injury site and in the distal part of the nerve. Subsequently, in transected nerves the level of hemopexin rose steadily and remained elevated, representing, three months after injury, over 20 times the amount found in intact contralateral nerves. In contrast, in crush-lesioned nerves, hemopexin level declined progressively in a proximodistal direction and returned to basal values 2 months after injury, together with axonal regeneration. This long-term increase in hemopexin in permanently degenerated nerves and its progressive return to normal levels during nerve regeneration suggests that hemopexin content could be regulated negatively, directly or indirectly, by growing axons. In turn, these results support the idea that hemopexin could be involved in the process of Wallerian degeneration and/or in nerve repair.
Collapse
Affiliation(s)
- N Madore
- Centre de Biologie du Développement, UMR 9925 CNRS/UPS, Toulouse, France
| | | | | | | | | |
Collapse
|
18
|
Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions? Toxicol In Vitro 1994; 8:491-504. [DOI: 10.1016/0887-2333(94)90174-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1993] [Revised: 12/22/1993] [Indexed: 01/15/2023]
|
19
|
Loyer P, Ilyin G, Abdel Razzak Z, Banchereau J, Dezier JF, Campion JP, Guguen-Guillouzo C, Guillouzo A. Interleukin 4 inhibits the production of some acute-phase proteins by human hepatocytes in primary culture. FEBS Lett 1993; 336:215-20. [PMID: 7505238 DOI: 10.1016/0014-5793(93)80806-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin 4 (IL4) has been shown to exhibit anti-inflammatory effects by inhibiting the secretion by monocytes of proinflammatory cytokines such as interleukin 1 (IL1), interleukin 6 (IL6), and tumor necrosis factor (TNF) and by inducing the secretion of the IL1 receptor antagonist. We investigated the role of this cytokine on the production of acute-phase proteins in primary human hepatocyte cultures. Cells were exposed to either IL4 and/or IL6, the most potent mediator of hepatic acute phase proteins. IL4 led to decreased production of haptoglobin, C-reactive protein and albumin while alpha 1-antitrypsin and fibrinogen remained unaffected. These inhibitory effects of IL4 were also observed at the mRNA level. In addition, IL4 inhibited the IL6-induced production of haptoglobin although it had no effect on the induced C-reactive protein and fibrinogen. Our results demonstrate that IL4 can affect the production of a subset of acute-phase proteins by human hepatocytes and can antagonize some of the effects of IL6. These observations reinforce the notion that IL4 can be considered as an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- P Loyer
- Institut National de la Santé et de la Recherche Médicale, Unité de Recherches Hépatologues U-49, Hôpital Pontchaillou, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
el Boustani S, Ribeiro A, Janvier B, Loriette C, Bensman R, Druet P, Chambaz J, Mangeney M. Lipid synthesis and apolipoprotein gene expression in hepatocytes in primary culture from (puromycin-induced) nephrotic rats. Eur J Clin Invest 1993; 23:211-8. [PMID: 8500513 DOI: 10.1111/j.1365-2362.1993.tb00764.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary culture of hepatocytes from puromycin aminonucleoside-induced nephrotic rats were used to discriminate between the hepatic and extra-hepatic contribution to the hyperlipidemia occurring in the nephrotic syndrome. De novo lipogenesis and utilization of exogenous fatty acids were not modified in nephrotic hepatocytes as compared to controls. In contrast 2.2 and 5.3-fold more triacylglycerol and phospholipids were secreted respectively by nephrotic hepatocytes than by controls. Triacylglycerol overproduction was not associated with an increase either in apo B mRNA level or in apo B synthesis or secretion measured by [35S]-methionine incorporation and immunoprecipitation. We also observed a significant increase in apo AI and apo E synthesis and secretion by nephrotic hepatocytes. This increase was correlated with a greater amount of apo AI and apo E mRNA than in controls. The overproduction of apo AI and apo E by nephrotic hepatocytes might intervene in the clearance of plasma lipoproteins and the redistribution of plasma cholesterol.
Collapse
|
21
|
Saad B, Schawalder H, Maier P. Crude liver membrane fractions as substrate preserve liver-specific functions in long-term, serum-free rat hepatocyte cultures. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1993; 29A:32-40. [PMID: 7680337 DOI: 10.1007/bf02634369] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over time, rat hepatocytes cultured on collagen lose the capacity to express liver-specific functions. The influence on this degradation process of an alternative substratum--crude membrane fractions prepared from the liver of the same rat strain--was investigated. Freshly isolated rat hepatocytes were cultured in serum-free Williams E medium supplemented with aprotinin, selenium, dexamethasone, and insulin in flasks coated with a mixture of rat liver crude membrane fractions:collagen type I (100:1). The cells adhered firmly, exhibiting minimal spreading and remaining grouped in columns or in cell islands, and retained their liver-specific functions for more than 1 wk. Hepatocytes secreted substantially higher amounts of albumin than cells cultured on collagen-coated dishes, and on Days 1 and 9 in culture the total P-450 content was 72 and 40%, respectively, of that of freshly isolated cells. On Day 6, the 7-ethoxyresorufin-O-deethylase and the aldrin epoxidase activities were still more than 50% that of freshly isolated hepatocytes. Exposure to phenobarbital on Days 3 to 6 increased the total cytochrome P-450 content twofold; exposure to 3-methylcholanthrene increased the activity of the corresponding cytochrome P-450 isoforms to 20 times that observed in untreated cultures and 6 times that observed in freshly isolated cells. Thus, given the ease with which they are prepared, the use of crude membrane fractions combined with culture medium supplemented with aprotinin and selenium can facilitate the preparation of reproducible cultures suitable for long-term in vitro pharmacotoxicologic studies using rat hepatocytes.
Collapse
Affiliation(s)
- B Saad
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| | | | | |
Collapse
|
22
|
Hiron M, Daveau M, Arnaud P, Bauer J, Lebreton JP. The human hepatoma Hep3B cell line as an experimental model in the study of the long-term regulation of acute-phase proteins by cytokines. Biochem J 1992; 287 ( Pt 1):255-9. [PMID: 1384466 PMCID: PMC1133152 DOI: 10.1042/bj2870255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of the synthesis by the cytokines interleukin-1 (IL-1) and IL-6 of the positive acute-phase protein alpha 1-acid glycoprotein (AGP) and of the negative acute-phase protein alpha 2-HS glycoprotein (AHSG) has been studied in a long-term culture system of the human hepatoma cell line Hep3B. The culture system contained 30 nM-sodium selenite as the only supplement. This allowed maintenance of the synthesis of the proteins under study at a near steady state for over 3 months. An increase in AGP mRNA and a decrease in AHSG mRNA were observed when cells were treated for two successive 48 h-periods with monocyte-conditioned medium. A return to basal levels was obtained after cessation of the cytokine addition. Two further additions of cytokines led to alterations in mRNA levels similar to those observed following the first cytokine treatment. The amounts of AGP and AHSG secreted were altered in accordance with the mRNA modifications. These results suggest that new cytokine receptors were being constantly synthesized during cell culture. When cytokines were present in the culture medium for 10 days, maximum alterations in AGP and AHSG synthesis were obtained following 2 and 4 days of treatment respectively, but further alterations in protein levels could not be observed afterwards. Expression of IL-6 receptor mRNA was not up-regulated by cytokines, but only by 1 microM-dexamethasone. Our results show that, in this long-term culture system, cytokines induce a response in hepatoma cells similar to that observed in vivo during human inflammatory states. This model could be used to evaluate the effects of agonists or antagonists of cytokines responsible for the hepatic acute-phase protein response.
Collapse
Affiliation(s)
- M Hiron
- Institut National de la Santé et de la Recherche, Médicale Unité 78, Bois-Guillaume, France
| | | | | | | | | |
Collapse
|
23
|
Hemopexin is synthesized in peripheral nerves but not in central nervous system and accumulates after axotomy. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50058-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Yagi K, Suenobu N, Serada M, Tsuda K, Kondoh A, Miura Y. Stimulative effect of non-parenchymal liver cells on ability of tyrosine aminotransferase induction in hepatocytes. Cytotechnology 1992; 10:25-31. [PMID: 1369495 DOI: 10.1007/bf00376097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hepatocytes and non-parenchymal liver cells were isolated from adult rat liver and co-cultured for 48 hours as a monolayer on polystyrene culture dishes. The ability of tyrosine aminotransferase (TAT) induction in hepatocytes was examined in the presence of dexamethasone and dibutyryl cAMP. Non-parenchymal cells greatly enhance the ability of TAT induction of hepatocytes. A soluble factor with molecular weight of more than 10,000 is responsible for this enhancement, because conditioned medium prepared from non-parenchymal cells is also stimulatory. Non-parenchymal cells restored the ability in hepatocytes damaged with the addition of D-galactosamine. Conditioned medium prepared from non-parenchymal cells treated with D-galactosamine had higher activity of enhancement than the medium from normal cells. The soluble factor might be released in response to some signal of injury. Hepatocytes and non-parenchymal cells were immobilized within Ca-alginate, and although immobilized hepatocytes rapidly lost the ability to induce TAT, hepatocytes co-immobilized with non-parenchymal cells maintained the ability during 4 days of culture. These results indicated that non-parenchymal liver cells, as well as hepatocytes, could be used to construct a bioartificial liver support system.
Collapse
Affiliation(s)
- K Yagi
- Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Busso N, Chesne C, Delers F, Morel F, Guillouzo A. Transforming growth-factor-beta (TGF-beta) inhibits albumin synthesis in normal human hepatocytes and in hepatoma HepG2 cells. Biochem Biophys Res Commun 1990; 171:647-54. [PMID: 2169730 DOI: 10.1016/0006-291x(90)91195-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We explored the effect of transforming growth factor beta (TGF-beta), a cytokine that appears to play a central role in inflammatory events, on albumin expression by normal adult human hepatocytes and hepatoma cells. Addition of TGF-beta to primary human hepatocyte cultures resulted in a dramatic decrease in albumin accumulation and synthesis. This effect was dose-dependent, took place after a 48h incubation period and was maintained over 96h. TGF-beta-decreased albumin protein levels were associated with reduced albumin mRNA content. Actin mRNA levels were concomittantly increased. Comparable qualitative effects of TGF-beta were observed on human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- N Busso
- Laboratoires GLAXO, Centre de Recherches, Les Ulis, France
| | | | | | | | | |
Collapse
|
26
|
Conner J, Vallet-Collom I, Daveau M, Delers F, Hiron M, Lebreton JP, Guillouzo A. Acute-phase-response induction in rat hepatocytes co-cultured with rat liver epithelial cells. Biochem J 1990; 266:683-8. [PMID: 1691630 PMCID: PMC1131193 DOI: 10.1042/bj2660683] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The response of rat hepatocytes co-cultured with rat liver epithelial cells to conditioned medium (CM) from lipopolysaccharide (LPS)-activated monocytes was investigated by measuring the concentration of alpha 2-macroglobulin (alpha 2M), alpha 1-acid glycoprotein (AGP), albumin and transferrin, as well as the changes in glycosylation of alpha 1-acid glycoprotein. During an initial 8-day treatment with CM, concentrations of alpha 2M and AGP increased markedly over those of control culture, whereas concentrations of albumin and transferrin decreased. The glycosylation pattern of AGP indicated an important relative increase of the concanavalin A-strongly-reactive (SR) variant upon treatment. When CM addition to hepatocyte culture medium was stopped, the concentrations of the four proteins and the glycosylation pattern of AGP reverted to those of control cultures. Further addition (on day 15) to cultures of CM increased the concentration of alpha 2M and decreased albumin and transferrin concentrations. Although AGP concentrations did not increase above those of controls, the appearance of the SR variant was again stimulated by CM. These results show that, in co-culture, rat hepatocytes remain able to respond to repeated inflammatory stimuli.
Collapse
Affiliation(s)
- J Conner
- INSERM U49, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Nordmann P, Diez-Ibanez M, Chessebeuf-Padieu M, Luu B, Mack G, Mersel M. Toxic effects of 7 beta-hydroxycholesterol on rat liver primary cultures, epithelial lines and co-cultures. Cell Biol Toxicol 1989; 5:261-70. [PMID: 2598085 DOI: 10.1007/bf01795355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The toxic effects of 7 beta-hydroxycholesterol (7 beta-OHC) on cultures and co-cultures of rat hepatocytes, rat liver epithelial cell lines, and rat liver fibroblast lines were investigated. Hepatocytes in primary culture or co-cultured with proliferative epithelial cells, were not affected by the presence of 7 beta-OHC at a concentration of 400 microM over a period of 72 hours. In contrast, proliferative cultures of liver epithelial cell lines and liver fibroblast lines were killed by 50 microM 7 beta-OHC within the first 24 hours. Established liver epithelial cells (hyperploid) were more sensitive to 7 beta-OHC than the same line at early passages (diploid). When hepatocytes and liver epithelial cells were co-cultured and treated with 100 microM 7 beta-OHC, only epithelial cells were lysed. A concentration of 50 microM 7 beta-OHC was toxic to co-cultures of liver epithelial cell and fibroblasts together. In a serum-free medium, the cytotoxic concentration of 7 beta-OHC was lower than that in the serum-supplemented medium. Thus, liver epithelial cells cultured alone or co-cultured with hepatocytes were killed at 12.5 microM and 50 microM 7 beta-OHC, respectively. Finally, cholesterol concentrations four-fold that of 7 beta-OHC antagonized the lethal effects of 7 beta-OHC in the serum-free medium.
Collapse
Affiliation(s)
- P Nordmann
- Laboratoire de Biochimie Médicale, Faculté de Médecine, Dijon
| | | | | | | | | | | |
Collapse
|
29
|
Miyazaki M, Suzuki Y, Oda M, Kawai A, Bai LY, Sato J. Improved maintenance of adult rat hepatocytes in a new serum-free medium in the presence or absence of barbiturates. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:839-48. [PMID: 2793782 DOI: 10.1007/bf02623668] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For serum-free primary culture of adult rat hepatocytes, a synthetic medium DM-160 and rat-tail collagen were selected for the basal medium and for the culture substratum, respectively. Barbiturates, such as phenobarbital and 1-ethyl-5-isobutylbarbiturate, efficiently supported survival of hepatocytes and maintained their morphologic features at lower concentrations under the serum-free conditions than under the serum-supplemented conditions. However, the hepatocyte survival rates under the serum-free conditions were lower than those under the serum-supplemented conditions in the presence or absence of barbiturates. Supplementation of the basal medium with a combination of five groups of factors (5Fs), such as eight amino acids (Ala, Arg, Gly, Ile, Met, Phe, Pro, and Trp), two unsaturated fatty acids (linoleate and oleate), a protease inhibitor (aprotinin), three vitamins (A, C, and E), and five trace elements (Mn, Fe, Cu, Zn, and Se), improved the hepatocyte survival under the serum-free conditions in the presence or absence of barbiturates. In other words, the serum could be completely substituted by the 5Fs. Hepatocyte cultures maintained in the 5Fs-supplemented basal medium showed excellent induction of tyrosine aminotransferase activity in response to dexamethasone in the presence or absence of barbiturates. The efficiency of the 5Fs-supplemented basal medium for maintaining hepatocytes was not inferior to those of other media in common use with hepatocytes, such as Williams' medium E and Waymouth's medium MB-752/1. In conclusion, maintenance of functional hepatocytes in serum-free primary culture could be improved by use of the new medium preparation (the 5Fs-supplemented DM-160) in the presence of barbiturates.
Collapse
Affiliation(s)
- M Miyazaki
- Division of Pathology, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Mazzorana M, Cornillon B, Baffet G, Hubert N, Belleville J, Eloy R, Guguen-Guillouzo C. Biosynthesis of factor V by normal adult rat hepatocytes. Thromb Res 1989; 54:655-75. [PMID: 2675384 DOI: 10.1016/0049-3848(89)90131-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of coagulation factor V was investigated in isolated rat hepatocytes maintained in long-term primary culture. Two culture conditions were compared. A clotting assay and an immunoprecipitation experiment with rabbit anti rat factor V IgG were used to demonstrate not only the presence of factor V in the cells but also active secretion into the culture medium. Both the inhibition of the clotting reaction in presence of the antibody and absence of thrombin in culture media confirmed the specificity of the clotting assays. Electron microscopic examination located factor V in the endoplasmic reticulum and Golgi apparatus of hepatocytes in common with other liver specific plasma proteins. Examination of liver tissue sections confirmed the production of factor V in hepatocytes but not in hepatic endothelial cells although it did not exclude a transit pathway of factor V through these cells. Addition of Russell viper venom factor V activating enzyme to the culture medium had no effect on the factor V activity. In contrast, treatment of cell extracts did increase the coagulant activity. This suggests that hepatocytes contained principally an unactivated form or procofactor, whereas factor V present into the culture medium was mainly in an activated form. These data provide evidence for synthesis and secretion of an hepatocytic factor V.
Collapse
Affiliation(s)
- M Mazzorana
- INSERM - U 49, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Miyazaki M, Utsumi K, Sato J. Mechanisms responsible for long-term survival of adult rat hepatocytes in the presence of phenobarbital in primary culture. Exp Cell Res 1989; 182:415-24. [PMID: 2721587 DOI: 10.1016/0014-4827(89)90246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanisms, by which phenobarbital (PB) supports the survival of adult rat hepatocytes in primary culture, were investigated. PB altered the shape of rat erythrocytes to produce cup-formed cells and protected them from hypotonic hemolysis. Anesthetics (ketamine, lidocaine, mepivacaine, and bupivacaine) and an anti-inflammatory agent (indomethacin), which are also known to protect erythrocytes from hypotonic hemolysis by stabilizing their membranes, efficiently supported the survival of hepatocytes in primary culture. Furthermore, the well-known biological membrane stabilizers, such as cholesterol and vitamin E, also showed the maintenance effect on primary cultured hepatocytes. PB effectively reduced the leakage of lactate dehydrogenase from hepatocytes caused by chenodeoxycholic acid in primary culture. Rotenone and amobarbital, which act repressively on the PB-sensitive site in the respiratory chain and are known to inhibit the mitochondrial formation of active oxygen species with NAD-linked substances, effectively prolonged the hepatocyte survival in primary culture. Elevation of oxygen tension in primary culture remarkably decreased the hepatocyte survival rate, which was preserved by addition of antioxidant substances, such as vitamin C, vitamin E, bifemelane, selenite, and superoxide dismutase. On the other hand, in the presence of PB, the hepatocyte survival rate hardly changed with the elevation of oxygen tension. From these findings, it seems that PB stabilizes the hepatocyte membranes and reduces the mitochondrial formation of active oxygen species and that the stabilized functions of membrane and the reduction of oxidative stress result in the prolonged survival of hepatocytes in primary culture.
Collapse
Affiliation(s)
- M Miyazaki
- Division of Pathology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
32
|
Baumann H. Hepatic acute phase reaction in vivo and in vitro. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:115-26. [PMID: 2466031 DOI: 10.1007/bf02626167] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- H Baumann
- Department of Molecular and Cellular Biology, Roswell Park Memorial Institute, Buffalo, New York 14263
| |
Collapse
|
33
|
Feldmann G. Rôle des cellules hépatiques dans la biosynthèse des protéines de la réaction inflammatoire aiguë et des protéines de la nutrition. NUTR CLIN METAB 1989. [DOI: 10.1016/s0985-0562(89)80044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Agius L. Metabolic interactions of parenchymal hepatocytes and dividing epithelial cells in co-culture. Biochem J 1988; 252:23-8. [PMID: 3421903 PMCID: PMC1149101 DOI: 10.1042/bj2520023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When parenchymal hepatocytes isolated from adult liver are co-cultured with other epithelial cells, the production of various plasma proteins by the hepatocytes is preserved for much longer than in conventional culture. This study examines some of the metabolic interactions between parenchymal hepatocytes and epithelial cells maintained in co-culture. The leakage of lactate dehydrogenase by hepatocytes co-cultured with epithelial cells was lower than in conventional hepatocyte culture. The epithelial cells have a high glycolytic rate and provide the hepatocytes with a continual supply of lactate. The [lactate] was lower in co-cultures of hepatocytes and epithelial cells than in pure epithelial cultures of similar density, suggesting lactate clearance by the hepatocytes. Alanine uptake was higher in conventional hepatocyte cultures, which lack an exogenous supply of lactate, than in parenchymal hepatocytes in co-culture. Studies with pure parenchymal hepatocytes incubated with increasing [lactate] suggest that lactate is utilized in preference to alanine as a gluconeogenic substrate by hepatocytes co-cultured with epithelial cells. Ketogenesis and carnitine palmitoyltransferase activity declined more slowly in hepatocytes co-cultured with epithelial cells than in conventional culture. It is concluded that the co-culture model has potential for long-term studies of carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- L Agius
- Department of Medicine, University of Newcastle upon Tyne, U.K
| |
Collapse
|
35
|
Salas-Prato M, Tanguay JF, Lefebvre Y, Wojciechowicz D, Liem HH, Barnes DW, Ouellette G, Muller-Eberhard U. Attachment and multiplication, morphology and protein production of human fetal primary liver cells cultured in hormonally defined media. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:230-8. [PMID: 2450864 DOI: 10.1007/bf02623552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We established for human fetal liver cells (cultured for 2 wk) in a hormonally defined medium, optimal conditions for attachment, multiplication, and preservation of epithelial morphology as well as production and secretion of serum proteins characteristic of fetal (alpha l-fetoprotein, AFP) and adult (albumin and hemopexin) life. Conditions were considered optimal when cell number, albumin, and hemopexin levels were maintained throughout the 2-wk culture period. However, the decrease in AFP concentration, which occurred after a few days of culture, could not be reversed. The culture system developed is a suitable model for studying regulatory mechanisms governing structure and function during differentiation and may prove useful for testing the effect of toxic agents during fetal development of the human liver.
Collapse
Affiliation(s)
- M Salas-Prato
- Research Center, Notre-Dame Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Agius L. Human liver in vitro techniques for metabolic studies. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1987; 1:999-1021. [PMID: 3330438 DOI: 10.1016/s0950-351x(87)80014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Guillouzo A, Begue JM, Campion JP, Gascoin MN, Guguen-Guillouzo C. Human hepatocyte cultures: a model of pharmaco-toxicological studies. Xenobiotica 1985; 15:635-41. [PMID: 3907158 DOI: 10.3109/00498258509047421] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Viable adult human hepatocytes were obtained in large yields by perfusion of the liver of kidney donors. The hepatocytes were cultured either alone or in association with rat-liver epithelial cells. In pure culture the survival of hepatocytes did not exceed two to three weeks, while in co-culture they survived for several weeks and better retained the specific liver functions of albumin secretion, cytochrome P-450 content and glucuronidation of drugs. Human hepatocytes, particularly when mixed with rat-liver epithelial cells, may provide a valuable tool for predicting the metabolic pathways and hepatotoxicity of new drugs in man.
Collapse
|
38
|
Abstract
Isolation of specialized cell types for the analysis of tissue-specific gene function often results in loss of the differentiated phenotype. Examples of this type of phenotypic change following tissue disaggregation are reviewed together with possible explanations. Close similarities between the effects of cell isolation with those of other cellular stresses such as heat or anoxia point to common biochemical mechanisms being involved. This suggests that the study of freshly isolated cells will contribute significantly to out understanding of the nature of cellular stress and its consequences for the maintenance of phenotype and induction of tissue specific gene expression.
Collapse
|