1
|
Xu F, Byström AS, Johansson MJO. Sod1-deficient cells are impaired in formation of the modified nucleosides mcm 5s 2U and yW in tRNA. RNA (NEW YORK, N.Y.) 2024; 30:1586-1595. [PMID: 39322276 PMCID: PMC11571800 DOI: 10.1261/rna.080181.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Uridine residues present at the wobble position of eukaryotic cytosolic tRNAs often carry a 5-carbamoylmethyl (ncm5), 5-methoxycarbonylmethyl (mcm5), or 5-methoxycarbonylhydroxymethyl (mchm5) side-chain. The presence of these side-chains allows proper pairing with cognate codons, and they are particularly important in tRNA species where the U34 residue is also modified with a 2-thio (s2) group. The first step in the synthesis of the ncm5, mcm5, and mchm5 side-chains is dependent on the six-subunit Elongator complex, whereas the thiolation of the 2-position is catalyzed by the Ncs6/Ncs2 complex. In both yeast and metazoans, allelic variants of Elongator subunit genes show genetic interactions with mutant alleles of SOD1, which encodes the cytosolic Cu, Zn-superoxide dismutase. However, the cause of these genetic interactions remains unclear. Here, we show that yeast sod1 null mutants are impaired in the formation of 2-thio-modified U34 residues. In addition, the lack of Sod1 induces a defect in the biosynthesis of wybutosine, which is a modified nucleoside found at position 37 of tRNAPhe Our results suggest that these tRNA modification defects are caused by superoxide-induced inhibition of the iron-sulfur cluster-containing Ncs6/Ncs2 and Tyw1 enzymes. Since mutations in Elongator subunit genes generate strong negative genetic interactions with mutant ncs6 and ncs2 alleles, our findings at least partially explain why the activity of Elongator can modulate the phenotypic consequences of SOD1/sod1 alleles. Collectively, our results imply that tRNA hypomodification may contribute to impaired proteostasis in Sod1-deficient cells.
Collapse
Affiliation(s)
- Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marcus J O Johansson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
3
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Kuczera K, Naparło K, Soszyński M, Bartosz G, Sadowska-Bartosz I. Capsaicin toxicity to the yeast Saccharomyces cerevisiae is not due to oxidative stress but to disruption of membrane structure. Chem Biol Interact 2023; 374:110407. [PMID: 36804492 DOI: 10.1016/j.cbi.2023.110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Capsaicin (CAP) is a common food constituent, conferring a pungent taste to red peppers of the genus Capsicum. It has bactericidal and fungicidal activity. The study was aimed to test the hypothesis of whether oxidative stress mediates the toxicity of CAP to the baker's yeast Saccharomyces cerevisiae as a model yeast. CAP showed good antioxidant properties (1.30 and 1.10 mol Trolox equivalents/mol in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging assay and the Ferric Reducing Antioxidant Power assay, respectively). However, its autoxidation generated hydrogen peroxide. CAP inhibited the growth of S. cerevisiae at concentrations ≥100 μM. Yeast mutants deficient in superoxide dismutase 1 or catalase T were more sensitive to CAP than wild-type yeast. CAP did not augment the ROS level in yeast cells. Standard antioxidants (N-acetylcysteine and ascorbate) did not protect significantly against CAP-induced yeast growth inhibition. Thus, oxidative stress does not mediate the CAP's inhibition of yeast growth. CAP did not decrease mitochondrial membrane potential of the yeast but induced a concentration-dependent decrease in membrane fluidity. These results indicate that the disturbance of membrane properties is the apparent cause of CAP toxicity to the yeast.
Collapse
Affiliation(s)
- Klaudia Kuczera
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Katarzyna Naparło
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Mirosław Soszyński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Grzegorz Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland.
| |
Collapse
|
5
|
Kwolek-Mirek M, Dubicka-Lisowska A, Bednarska S, Zadrag-Tecza R, Kaszycki P. Changes in a Protein Profile Can Account for the Altered Phenotype of the Yeast Saccharomyces cerevisiae Mutant Lacking the Copper-Zinc Superoxide Dismutase. Metabolites 2023; 13:metabo13030459. [PMID: 36984899 PMCID: PMC10056615 DOI: 10.3390/metabo13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Copper-zinc superoxide dismutase (SOD1) is an antioxidant enzyme that catalyzes the disproportionation of superoxide anion to hydrogen peroxide and molecular oxygen (dioxygen). The yeast Saccharomyces cerevisiae lacking SOD1 (Δsod1) is hypersensitive to the superoxide anion and displays a number of oxidative stress-related alterations in its phenotype. We compared proteomes of the wild-type strain and the Δsod1 mutant employing two-dimensional gel electrophoresis and detected eighteen spots representing differentially expressed proteins, of which fourteen were downregulated and four upregulated. Mass spectrometry-based identification enabled the division of these proteins into functional classes related to carbon metabolism, amino acid and protein biosynthesis, nucleotide biosynthesis, and metabolism, as well as antioxidant processes. Detailed analysis of the proteomic data made it possible to account for several important morphological, biochemical, and physiological changes earlier observed for the SOD1 mutation. An example may be the proposed additional explanation for methionine auxotrophy. It is concluded that protein comparative profiling of the Δsod1 yeast may serve as an efficient tool in the elucidation of the mutation-based systemic alterations in the resultant S. cerevisiae phenotype.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Aleksandra Dubicka-Lisowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Pawel Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
6
|
Reprint of: Biological Effects of the Superoxide Radical. Arch Biochem Biophys 2022; 726:109228. [PMID: 35688773 DOI: 10.1016/j.abb.2022.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Can the superoxide radical exert deleterious effects independent of participating with H2O2 in the production of the hydroxyl radical? Examination of the superoxide-related literature reveals data suggesting an affirmative answer to this question. © 1986 Academic Press, Inc.
Collapse
|
7
|
Reprint of: Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts. Arch Biochem Biophys 2022; 726:109246. [PMID: 35680438 DOI: 10.1016/j.abb.2022.109246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome. Proc Natl Acad Sci U S A 2022; 119:2023328119. [PMID: 34969852 PMCID: PMC8740578 DOI: 10.1073/pnas.2023328119] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cu/Zn superoxide dismutase (Sod1) is a key antioxidant enzyme, and its importance is underscored by the fact that its ablation in cell and animal models results in oxidative stress; metabolic defects; and reductions in cell proliferation, viability, and lifespan. Curiously, Sod1 detoxifies superoxide radicals (O2•−) in a manner that produces an oxidant as byproduct, hydrogen peroxide (H2O2). While much is known about the necessity of scavenging O2•−, it is less clear what the physiological roles of Sod1-derived H2O2 are. We discovered that Sod1-derived H2O2 plays an important role in antioxidant defense by stimulating the production of NADPH, a vital cellular reductant required for reactive oxygen species scavenging enzymes, as well as redox regulating a large network of enzymes. Cu/Zn superoxide dismutase (Sod1) is a highly conserved and abundant antioxidant enzyme that detoxifies superoxide (O2•−) by catalyzing its conversion to dioxygen (O2) and hydrogen peroxide (H2O2). Using Saccharomyces cerevisiae and mammalian cells, we discovered that a major aspect of the antioxidant function of Sod1 is to integrate O2 availability to promote NADPH production. The mechanism involves Sod1-derived H2O2 oxidatively inactivating the glycolytic enzyme, GAPDH, which in turn reroutes carbohydrate flux to the oxidative phase of the pentose phosphate pathway (oxPPP) to generate NADPH. The aerobic oxidation of GAPDH is dependent on and rate-limited by Sod1. Thus, Sod1 senses O2 via O2•− to balance glycolytic and oxPPP flux, through control of GAPDH activity, for adaptation to life in air. Importantly, this mechanism for Sod1 antioxidant activity requires the bulk of cellular Sod1, unlike for its role in protection against O2•− toxicity, which only requires <1% of total Sod1. Using mass spectrometry, we identified proteome-wide targets of Sod1-dependent redox signaling, including numerous metabolic enzymes. Altogether, Sod1-derived H2O2 is important for antioxidant defense and a master regulator of metabolism and the thiol redoxome.
Collapse
|
9
|
Sea KW, Taylor AB, Thomas ST, Liba A, Bergman IB, Holloway SP, Cao X, Gralla EB, Valentine JS, Hart PJ, Galaleldeen A. A pH Switch Controls Zinc Binding in Tomato Copper-Zinc Superoxide Dismutase. Biochemistry 2021; 60:1597-1608. [PMID: 33961402 PMCID: PMC8754426 DOI: 10.1021/acs.biochem.1c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-zinc superoxide dismutase (SOD1) is a major antioxidant metalloenzyme that protects cells from oxidative damage by superoxide anions (O2-). Structural, biophysical, and other characteristics have in the past been compiled for mammalian SOD1s and for the highly homologous fungal and bovine SOD1s. Here, we characterize the biophysical properties of a plant SOD1 from tomato chloroplasts and present several of its crystal structures. The most unusual of these structures is a structure at low pH in which tSOD1 harbors zinc in the copper-binding site but contains no metal in the zinc-binding site. The side chain of D83, normally a zinc ligand, adopts an alternate rotameric conformation to form an unusual bidentate hydrogen bond with the side chain of D124, precluding metal binding in the zinc-binding site. This alternate conformation of D83 appears to be responsible for the previously observed pH-dependent loss of zinc from the zinc-binding site of SOD1. Titrations of cobalt into apo tSOD1 at a similar pH support the lack of an intact zinc-binding site. Further characterization of tSOD1 reveals that it is a weaker dimer relative to human SOD1 and that it can be activated in vivo through a copper chaperone for the SOD1-independent mechanism.
Collapse
Affiliation(s)
- Kevin W. Sea
- Department of Agriculture and Natural Resources, Santa Rosa Junior College, Santa Rosa, California 95401
| | - Alexander B. Taylor
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Susan T. Thomas
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Amir Liba
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Isabelle B. Bergman
- Department of Biological Sciences, St. Mary’s University, San Antonio, TX 78228
| | - Stephen P. Holloway
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Xiaohang Cao
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Edith B. Gralla
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Joan S. Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - P. John Hart
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Ahmad Galaleldeen
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Department of Biological Sciences, St. Mary’s University, San Antonio, TX 78228
| |
Collapse
|
10
|
Li X, Si W, Li Z, Tian Y, Liu X, Ye S, Huang Z, Ji Y, Zhao C, Hao X, Chen D, Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease. Int J Mol Med 2021; 47:61. [PMID: 33649797 PMCID: PMC7910012 DOI: 10.3892/ijmm.2021.4894] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6-hydroxydopamine (6-OHDA)-induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6-OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR-335. In both the in vivo and in vitro models, miR-335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3′-untranslated region reporter results identified FTH1 as the direct target of miR-335. The silencing of FTH1 in 6-OHDA-stimulated cells enhanced the effects of miR-335 on ferroptosis and promoted PD pathology. Mechanistically, miR-335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR-335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Wenwen Si
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Zhan Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510010, P.R. China
| | - Ye Tian
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Xuelei Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Yichun Ji
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Caiping Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| |
Collapse
|
11
|
Chandrasekharan B, Montllor-Albalate C, Colin AE, Andersen JL, Jang YC, Reddi AR. Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2021; 534:720-726. [PMID: 33218686 PMCID: PMC7785591 DOI: 10.1016/j.bbrc.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 01/20/2023]
Abstract
Cu/Zn Superoxide Dismutase (Sod1) catalyzes the disproportionation of cytotoxic superoxide radicals (O2•-) into oxygen (O2) and hydrogen peroxide (H2O2), a key signaling molecule. In Saccharomyces cerevisiae, we previously discovered that Sod1 participates in an H2O2-mediated redox signaling circuit that links nutrient availability to the control of energy metabolism. In response to glucose and O2, Sod1-derived H2O2 stabilizes a pair of conserved plasma membrane kinases - yeast casein kinase 1 and 2 (Yck1/2) - that signal glycolytic growth and the repression of respiration. The Yck1/2 homolog in humans, casein kinase 1-γ (CK1γ), is an integral component of the Wingless and Int-1 (Wnt) signaling pathway, which is essential for regulating cell fate and proliferation in early development and adult tissue and is dysregulated in many cancers. Herein, we establish the conservation of the SOD1/YCK1 redox signaling axis in humans by finding that SOD1 regulates CK1γ expression in human embryonic kidney 293 (HEK293) cells and is required for canonical Wnt signaling and Wnt-dependent cell proliferation.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
12
|
Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, Reddi AR. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol 2019; 21:101064. [PMID: 30576923 PMCID: PMC6302037 DOI: 10.1016/j.redox.2018.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Cu/Zn Superoxide Dismutase (Sod1) is a highly conserved and abundant metalloenzyme that catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and molecular oxygen. As a consequence, Sod1 serves dual roles in oxidative stress protection and redox signaling by both scavenging cytotoxic superoxide radicals and producing hydrogen peroxide that can be used to oxidize and regulate the activity of downstream targets. However, the relative contributions of Sod1 to protection against oxidative stress and redox signaling are poorly understood. Using the model unicellular eukaryote, Baker's yeast, we found that only a small fraction of the total Sod1 pool is required for protection against superoxide toxicity and that this pool is localized to the mitochondrial intermembrane space. On the contrary, we find that much larger amounts of extra-mitochondrial Sod1 are critical for peroxide-mediated redox signaling. Altogether, our results force the re-evaluation of the physiological role of bulk Sod1 in redox biology; namely, we propose that the vast majority of Sod1 in yeast is utilized for peroxide-mediated signaling rather than superoxide scavenging.
Collapse
Affiliation(s)
| | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Naimah Bolaji
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
13
|
Naparlo K, Zyracka E, Bartosz G, Sadowska-Bartosz I. Flavanols protect the yeast Saccharomyces cerevisiae against heating and freezing/thawing injury. J Appl Microbiol 2019; 126:872-880. [PMID: 30520210 DOI: 10.1111/jam.14170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
AIMS The aim of the study was to check whether two flavanols ((-)-epigallocatechin gallate and (+)-catechin) can ameliorate oxidative stress (OS) accompanying and contributing to the lethal effects of heating (50°C) and freezing-thawing on the yeast Saccharomyces cerevisiae. METHODS AND RESULTS The flavanols studied increased yeast survival during heating and freezing-thawing, estimated by the colony forming assay. They improved also such indices of OS as increased production of reactive oxygen species, decrease of total antioxidant activity of yeast cell extracts and increase in the level of protein carbonyls. CONCLUSIONS Amelioration of OS by flavanols increases the survival of the yeast subjected to high temperature and freezing-thawing. SIGNIFICANCE AND IMPACT OF THE STUDY Flavanols may be considered as means of enhancing yeast survival under extreme temperature conditions and probably in other conditions involving OS.
Collapse
Affiliation(s)
- K Naparlo
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - E Zyracka
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - G Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - I Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
14
|
Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017; 551:639-643. [PMID: 29168506 PMCID: PMC5808442 DOI: 10.1038/nature24637] [Citation(s) in RCA: 550] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
Environmental nutrient levels impact cancer cell metabolism, resulting in context-dependent gene essentiality. Here, using loss-of-function screening based on RNA interference, we show that environmental oxygen levels are a major driver of differential essentiality between in vitro model systems and in vivo tumours. Above the 3-8% oxygen concentration typical of most tissues, we find that cancer cells depend on high levels of the iron-sulfur cluster biosynthetic enzyme NFS1. Mammary or subcutaneous tumours grow despite suppression of NFS1, whereas metastatic or primary lung tumours do not. Consistent with a role in surviving the high oxygen environment of incipient lung tumours, NFS1 lies in a region of genomic amplification present in lung adenocarcinoma and is most highly expressed in well-differentiated adenocarcinomas. NFS1 activity is particularly important for maintaining the iron-sulfur co-factors present in multiple cell-essential proteins upon exposure to oxygen compared to other forms of oxidative damage. Furthermore, insufficient iron-sulfur cluster maintenance robustly activates the iron-starvation response and, in combination with inhibition of glutathione biosynthesis, triggers ferroptosis, a non-apoptotic form of cell death. Suppression of NFS1 cooperates with inhibition of cysteine transport to trigger ferroptosis in vitro and slow tumour growth. Therefore, lung adenocarcinomas select for expression of a pathway that confers resistance to high oxygen tension and protects cells from undergoing ferroptosis in response to oxidative damage.
Collapse
Affiliation(s)
- Samantha W Alvarez
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - Vladislav O Sviderskiy
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - Erdem M Terzi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - Andre L Moreira
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - Sylvia Adams
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Kıvanç Birsoy
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York 10065, USA
| | - Richard Possemato
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, USA
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
15
|
Martín Muñoz P, Anel-López L, Ortiz-Rodríguez JM, Álvarez M, de Paz P, Balao da Silva C, Rodríguez Martinez H, Gil MC, Anel L, Peña FJ, Ortega Ferrusola C. Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OH•) only induces spermptosis. Reprod Domest Anim 2017; 53:54-67. [DOI: 10.1111/rda.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Affiliation(s)
- P Martín Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - L Anel-López
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - JM Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - M Álvarez
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - P de Paz
- Department of Molecular Biology; University of León; León Spain
| | - C Balao da Silva
- Portalagre Polytechnic Institute; Superior Agriculture School of Elvas; Elvas Portugal
| | - H Rodríguez Martinez
- Department of Clinical and Experimental Medicine; Faculty of Medicine & Health Sciences; Linköping University; Linköping Sweden
| | - MC Gil
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - L Anel
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - FJ Peña
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - C Ortega Ferrusola
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| |
Collapse
|
16
|
Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int 2017; 104:34-48. [DOI: 10.1016/j.neuint.2017.01.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/18/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
|
17
|
Molon M, Szajwaj M, Tchorzewski M, Skoczowski A, Niewiadomska E, Zadrag-Tecza R. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast. AGE (DORDRECHT, NETHERLANDS) 2016; 38:11. [PMID: 26783001 PMCID: PMC5005888 DOI: 10.1007/s11357-015-9868-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/22/2015] [Indexed: 05/13/2023]
Abstract
Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland.
| | - Monika Szajwaj
- Department of Molecular Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Marek Tchorzewski
- Department of Molecular Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | | | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| |
Collapse
|
18
|
Molon M, Zadrag-Tecza R. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology 2015; 17:347-57. [PMID: 26481919 DOI: 10.1007/s10522-015-9619-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
19
|
Baron JA, Chen JS, Culotta VC. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Biochem Biophys Res Commun 2015; 462:251-6. [PMID: 25956063 PMCID: PMC4458189 DOI: 10.1016/j.bbrc.2015.04.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 12/30/2022]
Abstract
In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This "synthetic lethality" was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection.
Collapse
Affiliation(s)
- J Allen Baron
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Janice S Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins U. Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Molon M, Zadrag-Tecza R, Bilinski T. The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochem Biophys Res Commun 2015; 460:651-6. [PMID: 25817783 DOI: 10.1016/j.bbrc.2015.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Longevity of the selected "longevity mutants" of yeast was studied using two methods. The standard method was based on counting the number of daughter cells produced. Modification of that method allowed for establishing the length of life expressed in units of time. It appeared that all the studied "deletion longevity mutants" showed a statistically meaningful increase in the number of daughters produced (replicative lifespan), whereas only one of the mutants, previously regarded as "short lived", showed a meaningful increase in the time of life. The analysis of the available data shows that the time of life of most yeast strains is similar irrespective of their genetic background and mutations, which suggests a quasi-programmed nature of yeast death.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Tomasz Bilinski
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
21
|
Briones-Martin-Del-Campo M, Orta-Zavalza E, Cañas-Villamar I, Gutiérrez-Escobedo G, Juárez-Cepeda J, Robledo-Márquez K, Arroyo-Helguera O, Castaño I, De Las Peñas A. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival. MICROBIOLOGY-SGM 2014; 161:300-310. [PMID: 25479837 DOI: 10.1099/mic.0.000006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.
Collapse
Affiliation(s)
- Marcela Briones-Martin-Del-Campo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Emmanuel Orta-Zavalza
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Israel Cañas-Villamar
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Jacqueline Juárez-Cepeda
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Karina Robledo-Márquez
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Omar Arroyo-Helguera
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| |
Collapse
|
22
|
Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014; 20:2416-36. [PMID: 23964890 PMCID: PMC4005499 DOI: 10.1089/ars.2013.5576] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. RECENT ADVANCES The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. CRITICAL ISSUES AND FUTURE DIRECTIONS Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.
Collapse
Affiliation(s)
- Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
23
|
Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. J Biol Inorg Chem 2013; 19:595-603. [PMID: 24043471 DOI: 10.1007/s00775-013-1045-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/28/2013] [Indexed: 11/27/2022]
Abstract
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.
Collapse
|
24
|
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443-54. [PMID: 23712352 DOI: 10.1038/nrmicro3032] [Citation(s) in RCA: 1063] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
25
|
Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 2013; 152:224-35. [PMID: 23332757 PMCID: PMC3552299 DOI: 10.1016/j.cell.2012.11.046] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/27/2012] [Accepted: 11/09/2012] [Indexed: 12/22/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is an abundant enzyme that has been best studied as a regulator of antioxidant defense. Using the yeast Saccharomyces cerevisiae, we report that SOD1 transmits signals from oxygen and glucose to repress respiration. The mechanism involves SOD1-mediated stabilization of two casein kinase 1-gamma (CK1γ) homologs, Yck1p and Yck2p, required for respiratory repression. SOD1 binds a C-terminal degron we identified in Yck1p/Yck2p and promotes kinase stability by catalyzing superoxide conversion to peroxide. The effects of SOD1 on CK1γ stability are also observed with mammalian SOD1 and CK1γ and in a human cell line. Therefore, in a single circuit, oxygen, glucose, and reactive oxygen can repress respiration through SOD1/CK1γ signaling. Our data therefore may provide mechanistic insight into how rapidly proliferating cells and many cancers accomplish glucose-mediated repression of respiration in favor of aerobic glycolysis.
Collapse
Affiliation(s)
- Amit R Reddi
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
26
|
Nagira K, Tamura S, Kawano S, Ikeda S. Ascorbic Acid and Thiol Antioxidants Suppress Spontaneous Mutagenesis in a Cu,Zn-superoxide Dismutase-deficient Mutant of Saccharomyces cerevisiae. Genes Environ 2013. [DOI: 10.3123/jemsge.2013.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Dumitru I, Ene CD, Ofiteru AM, Paraschivescu C, Madalan AM, Baciu I, Farcasanu IC. Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu,Zn superoxide dismutase (Sod1p) activity in yeast. J Biol Inorg Chem 2012; 17:961-74. [PMID: 22714120 DOI: 10.1007/s00775-012-0912-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/04/2012] [Indexed: 12/20/2022]
Abstract
Superoxide dismutases (SODs) stand in the prime line of enzymatic antioxidant defense in nearly all eukaryotic cells exposed to oxygen, catalyzing the breakdown of the superoxide anionic radical to O(2) and H(2)O(2). Overproduction of superoxide correlates with numerous pathophysiological conditions, and although the native enzyme can be used as a therapeutic agent in superoxide-associated conditions, synthetic low molecular weight mimetics are preferred in terms of cost, administration mode, and bioavailability. In this study we make use of the model eukaryote Saccharomyces cerevisiae to investigate the SOD-mimetic action of a mononuclear mixed-ligand copper(II) complex, [CuCl(acac)(tmed)] (where acac is acetylacetonate anion and tmed is N,N,N',N'-tetramethylethylenediamine). Taking advantage of an easily reproducible phenotype of yeast cells which lack Cu-Zn SOD (Sod1p), we found that the compound could act either as a superoxide scavenger in the absence of native Sod1p or as a Sod1p modulator which behaved differently under various genetic backgrounds.
Collapse
Affiliation(s)
- Ioana Dumitru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 2011; 189:1261-70. [PMID: 21926297 DOI: 10.1534/genetics.111.134007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers' yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness.
Collapse
|
29
|
Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants. Cell Biol Int 2010; 34:731-6. [PMID: 20337598 DOI: 10.1042/cbi20100134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress during aging of Saccharomyces cerevisiae in stationary culture was documented by demonstration of progressive increase in the formation of superoxide, decrease in the content of acid-soluble thiols and of acid-soluble antioxidant capacity of cell extracts, and accumulation of aldehydes and protein carbonyl groups in two yeast strains and decreases in activities of antioxidant enzymes. Cells of a CuZn-SOD (superoxide dismutase)-1-deficient strain showed a higher loss of viability than cells of an isogenic wild-type strain. Cell survival was augmented, and changes in biochemical parameters were ameliorated, by addition of exogenous antioxidants (ascorbic acid, glutathione and melatonin) in both strains.
Collapse
|
30
|
Abstract
Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made.
Collapse
Affiliation(s)
- Qiang Li
- Strathclyde Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
31
|
TAMURA S, WADA C, HASE A, KANAMITSU K, IKEDA S. A Simple Growth Test of a Saccharomyces cerevisiae Cu, Zn-Superoxide Dismutase-Deficient Mutant in Hypertonic Medium for Biological Evaluation of Antioxidants. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2010. [DOI: 10.3136/fstr.16.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Lewinska A, Bilinski T, Bartosz G. Limited Effectiveness of Antioxidants in the Protection of Yeast Defective in Antioxidant Proteins. Free Radic Res 2009; 38:1159-65. [PMID: 15621692 DOI: 10.1080/10715760400009860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Efficacy of several antioxidants in the protection of the yeast Saccharomyces cerevisiae mutants deficient in CuZnSOD and deficient in glutaredoxin 5 to growth restriction induced by oxidants was studied. Ascorbate and glutathione protected the Deltasod1 and Deltagrx5 mutants against the effects of t-butyl hydroperoxide and cumene hydroperoxide, Deltasod1 mutants against oxytetracycline and Deltagrx5 mutants against menadione and 2,2'-azobis-(2-amidinopropane). However, Tempol, Trolox and melatonin were much less effective, showing prooxidative effects and, at high concentrations, hampering the growth of the mutants in the absence of exogenous oxidants. These results point to a complication of cellular effects of antioxidants by their prooxidative effects and to the usefulness of cellular tests to evaluate the biological effectiveness of antioxidants.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszów, ul. Cegielniana 12, PL 35-595 Rzeszów, Poland
| | | | | |
Collapse
|
33
|
Reddi AR, Jensen LT, Naranuntarat A, Rosenfeld L, Leung E, Shah R, Culotta VC. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 2009; 46:154-62. [PMID: 18973803 PMCID: PMC2707084 DOI: 10.1016/j.freeradbiomed.2008.09.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.
Collapse
Affiliation(s)
- Amit R. Reddi
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Laran T. Jensen
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Amornrat Naranuntarat
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Edison Leung
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Rishita Shah
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| |
Collapse
|
34
|
Zadrag-Tecza R, Kwolek-Mirek M, Bartosz G, Bilinski T. Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology 2008; 10:481-8. [DOI: 10.1007/s10522-008-9192-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
35
|
Ito-Kuwa S, Nakamura K, Aoki S, Osafune T, Vidotto V, Pienthaweechai K. Oxidative stress sensitivity and superoxide dismutase of a wild-type parent strain and a respiratory mutant of Candida albicans. Med Mycol 2008. [DOI: 10.1111/j.1365-280x.1999.00224.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Bednarska S, Leroy P, Zagulski M, Bartosz G. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols. Biochimie 2008; 90:1476-85. [PMID: 18555025 DOI: 10.1016/j.biochi.2008.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
We have found previously that only a limited number of antioxidants are able to protect yeast cells against endogenous and exogenous oxidative stress. In search of factors determining this selectivity of antioxidant action we compared the ability of a set of antioxidants to: (i) protect a thiol-dependent enzyme alcohol dehydrogenase (ADH) against inactivation by superoxide, peroxynitrite and hydrogen peroxide; (ii) prevent H(2)O(2)-induced activation of Yap1 p; and (iii) decrease extracellular redox potential of the medium. The results obtained provide demonstration with respect to yeast that the ability to lower redox potential and to maintain critical thiol groups in the reduced state is an important facet of the action of antioxidants.
Collapse
Affiliation(s)
- Sabina Bednarska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland.
| | | | | | | |
Collapse
|
37
|
Munroe W, Kingsley C, Durazo A, Gralla EB, Imlay JA, Srinivasan C, Valentine JS. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. J Inorg Biochem 2007; 101:1875-82. [PMID: 17723242 PMCID: PMC3237304 DOI: 10.1016/j.jinorgbio.2007.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
A variety of manganese-containing coordination compounds, frequently termed superoxide dismutase (SOD) mimics, have been reported to have SOD activity in vitro and to be effective at improving conditions related to increased oxidative stress in multicellular organisms. We tested the effectiveness of several of these compounds in substituting for authentic SOD enzymes in two simple systems--the prokaryote Escherichia coli and the single-celled eukaryote, Saccharomyces cerevisiae--where strains are available that completely lack cytoplasmic SOD activity and are thus significantly impaired in their ability to grow aerobically. Most of the compounds tested, including Euk-8 and Euk-134, manganese salen derivatives developed by Eukarion; M40403, a manganese complex of a bis(cyclohexylpyridine)-substituted macrocyclic ligand developed by Metaphore; and several manganese porphyrin derivatives, were ineffective in both systems. Only the manganese tetrapyridyl porphyrin complex MnTM-2-PyP and two close relatives were effective in rescuing aerobic growth of E. coli lacking SOD, and, in the case of sod1Delta yeast, only MnTM-2-PyP itself was fully effective. Surprisingly, several compounds reported to be beneficial in other in vivo model systems (Euk-8, Euk-134, M40403) were actually toxic to these organisms lacking SOD, although they had no effect on the wild-type parent strains. Our results suggest the possibility that the beneficial effects of some of the so-called "SOD mimic drugs" may be due to some property other than in vivo superoxide dismutase activity.
Collapse
Affiliation(s)
| | | | | | | | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801 USA
| | - Chandra Srinivasan
- Department of Chemistry and Biochemistry, California State University, Fullerton, 92834-9480
| | - Joan Selverstone Valentine
- Corresponding authors: (J. S. Valentine) and (C. Srinivasan), Prof. Joan S. Valentine, Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive, East Los Angeles CA 90095-1569, Phone: (310) 825-9835, Fax: (310) 206-9880
| |
Collapse
|
38
|
Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R, Huang TT, Epstein CJ, Roberts LJ, Csete M, Faulkner JA, Van Remmen H. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 2006; 40:1993-2004. [PMID: 16716900 DOI: 10.1016/j.freeradbiomed.2006.01.036] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/30/2005] [Accepted: 01/25/2006] [Indexed: 12/12/2022]
Abstract
We describe a novel phenotype in mice lacking the major antioxidant enzyme, CuZn-superoxide dismutase (Sod1(-/-) mice), namely a dramatic acceleration of age-related loss of skeletal muscle mass. Sod1(-/-) mice are 17 to 20% smaller and have a significantly lower muscle mass than wild-type mice as early as 3 to 4 months of age. Muscle mass in the Sod1(-/-) mice is further reduced with age and by 20 months, the hind-limb muscle mass in Sod1(-/-) mice is nearly 50% lower than in age-matched wild-type mice. Skeletal muscle tissue from young Sod1(-/-) mice has elevated oxidative damage to proteins, lipids, and DNA compared to muscle from young wild-type mice. The reduction in muscle mass and elevated oxidative damage are accompanied by a 40% decrease in voluntary wheel running by 6 months of age and decreased performance on the Rota-rod test at 13 months of age, but are not associated with a decline in overall spontaneous activity. In some of the old Sod1(-/-) mice, the loss in muscle mass is also associated with the presence of tremors and gait disturbances. Thus, the absence of CuZnSOD imposes elevated oxidative stress, loss of muscle mass, and physiological consequences that resemble an acceleration of normal age-related sarcopenia.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Krzepiłko A, Swieciło A, Wawryn J, Zadrag R, Kozioł S, Bartosz G, Biliński T. Ascorbate restores lifespan of superoxide-dismutase deficient yeast. Free Radic Res 2005; 38:1019-24. [PMID: 15621721 DOI: 10.1080/10715760410001717327] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yeast (Saccharomyces cerevisiae) mutants lacking CuZn-superoxide dismutase (CuZnSOD) are hypersensitive to oxygen and have significantly decreased replicative life span. Both these defects can be ameliorated by exogenous ascorbate. The effect of ascorbate on life span is complicated by auto-oxidation of its compound in the medium. If negative effects of auto-oxidation are prevented by exchange of the medium, ascorbate prolongs not only mean but also maximal replicative life span of the yeast in the atmosphere of air and of pure oxygen. These results demonstrate that life span shortening due to the lack of a vital antioxidant enzyme can be ameliorated by a low-molecular weight antioxidant.
Collapse
Affiliation(s)
- Anna Krzepiłko
- Zamość College of Agriculture, ul. Szczebrzeska 102, PL 22-400 Zamość, Poland
| | | | | | | | | | | | | |
Collapse
|
40
|
Zadrag R, Bartosz G, Bilinski T. Replicative aging of the yeast does not require DNA replication. Biochem Biophys Res Commun 2005; 333:138-41. [PMID: 15939403 DOI: 10.1016/j.bbrc.2005.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/17/2005] [Indexed: 11/29/2022]
Abstract
Mating pheromone treatment resulting in shmoo formation is a physiologically relevant model for separation of cell growth and division processes in the yeast Saccharomyces cerevisiae. Using this attitude we demonstrate that yeast loses its capacity for division at a faster rate when engaged in intensive growth and metabolism without cell divisions (in the shmoo state) than during normal reproductive growth. These results suggest that limitation of the division potential in the yeast is not due to a counter of cell divisions but is of growth/metabolic nature, perhaps involving attaining a limitation of cell volume.
Collapse
Affiliation(s)
- Renata Zadrag
- Department of Biochemistry and Cell Biology, University of Rzeszów, Poland.
| | | | | |
Collapse
|
41
|
Zyracka E, Zadrag R, Kozioł S, Krzepiłko A, Bartosz G, Biliński T. Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae. Yeast can be a biosensor for antioxidants. J Biotechnol 2005; 115:271-8. [PMID: 15639089 DOI: 10.1016/j.jbiotec.2004.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 09/02/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022]
Abstract
Yeast (Saccharomyces cerevisiae) mutants lacking cytoplasmic superoxide dismutase (CuZnSOD) show Lys and Met auxotrophy under aerobic conditions. This metabolic defect can be ameliorated by exogenous ascorbate as well as other antioxidants (glutathione, cysteine and N-acetylcysteine). Restoration of growth of CuZnSOD- yeast mutants on media devoid of Met and/or Lys may therefore be a simple and useful means to detect and quantify antioxidants. The protective effect of antioxidants is oxygen-dependent: the lower the oxygen content of the atmosphere, the lower antioxidant concentrations are required to restore prototrophy. Therefore, the sensitivity of the test can be augmented by growing the yeast under lowered partial oxygen pressure. While 6 mM, 10 mM and 30 mM ascorbate was necessary to restore the growth in the absence of Met, in the absence of Lys, and in the absence of Lys and Met, respectively, under 21% oxygen, 3 mM and 6 mM ascorbate was sufficient for growth restoration in the absence of Lys and in the absence of Lys and Met, respectively, under 3% oxygen. The protective effects of cysteine and N-acetylcysteine peaked at 0.5 mM and 6 mM, respectively, disappearing at higher concentrations of these compounds, pointing to the detection of not only protective but also toxic cellular effects of the compounds studied by the test proposed.
Collapse
Affiliation(s)
- Ewa Zyracka
- University of Rzeszów, ul. Rejtana 16, PL 35-310 Rzeszów, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Biliński T, Kwolek M, Sas E, Krynicka M, Koziol S, Owsiak-Teleon A, Krzepilko A, Bartosz G. A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased sensitivity of superoxide-deficient yeast to aldehydes and their metabolic precursors. Biofactors 2005; 24:59-65. [PMID: 16403964 DOI: 10.1002/biof.5520240107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel test for the identification of genes involved in aldehyde metabolism is proposed, based on detection of altered sensitivity of the yeast to corresponding alcohols, metabolic precursors of the aldehydes. This attitude enabled to an unexpected detection increased sensitivity of mutants devoid of CuZn-superoxide dismutase (CuZnSOD) to allyl alcohol (precursor of acrolein) and nonenol. We interpret this finding as due to inactivation of some important element of aldehyde detoxification by increased flux of superoxide in DeltaCuZnSOD mutants.
Collapse
Affiliation(s)
- Tomasz Biliński
- Department of Biochemistry and Cell Biology, University of Rzeszów, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tone Y, Kawai-Yamada M, Uchimiya H. Isolation and characterization of Arabidopsis thaliana ISU1 gene. ACTA ACUST UNITED AC 2004; 1680:171-5. [PMID: 15507320 DOI: 10.1016/j.bbaexp.2004.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/01/2004] [Accepted: 09/04/2004] [Indexed: 11/20/2022]
Abstract
We describe the isolation of a cDNA encoding Arabidopsis thaliana ISU1 (AtISU1), which regulates iron homeostasis in the mitochondria. The AtISU1 gene contained an open reading frame that encoded 167 amino acid residues. Northern blot analysis demonstrated that AtISU1 gene was ubiquitously expressed in plant tissues examined. The yeast seo5-1, which harbors a single base-pair deletion in ScISU1, is a suppressor of oxidative damage in sod1-deficient mutant. Based on comparative expression analyses using yeast ISU1 gene (ScISU1) in seo5-1 mutant, we found that AtISU1 acts as a counterpart of ScISU1.
Collapse
Affiliation(s)
- Yoshiko Tone
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
44
|
Jensen LT, Sanchez RJ, Srinivasan C, Valentine JS, Culotta VC. Mutations in Saccharomyces cerevisiae Iron-Sulfur Cluster Assembly Genes and Oxidative Stress Relevant to Cu,Zn Superoxide Dismutase. J Biol Chem 2004; 279:29938-43. [PMID: 15107423 DOI: 10.1074/jbc.m402795200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae lacking Cu,Zn superoxide dismutase (SOD1) show several metabolic defects including aerobic blockages in methionine and lysine biosynthesis. We have previously shown that mutations in genes implicated in the formation of iron-sulfur clusters, designated seo (suppressors of endogenous oxidation), reverse the oxygen-dependent methionine and lysine auxotrophies of a sod1Delta strain. We now report the surprising finding that seo mutants do not reduce oxidative damage as shown by the lack of reduction of EPR-detectable "free" iron, which is characteristic of sod1Delta mutants. In fact, they exhibit increased oxidative damage as evidenced by increased accumulation of protein carbonyls. The seo class of mutants overaccumulates mitochondrial iron, and this iron accumulation is critical for suppression of the sod1Delta biosynthetic defects. Blocking overaccumulation of mitochondrial iron abolished the ability of the seo mutants to suppress the sod1Delta auxotrophies. By contrast, increasing the mitochondrial iron content of sod1Delta yeast using high copy MMT1, which encodes a mitochondrial iron transporter, was sufficient to mimic the seo mutants. Our studies indicated that suppression of the sod1Delta methionine auxotrophy was dependent on the pentose phosphate pathway, which is a major source of NADPH production. By comparison, the sod1Delta lysine auxotrophy appears to be reversed in the seo mutants by increased expression of genes in the lysine biosynthetic pathway, perhaps through sensing of mitochondrial damage by the retrograde response.
Collapse
Affiliation(s)
- Laran T Jensen
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
45
|
Radyuk SN, Klichko VI, Orr WC. Profiling Cu,Zn-superoxide dismutase expression in Drosophila melanogaster--a critical regulatory role for intron/exon sequence within the coding domain. Gene 2004; 328:37-48. [PMID: 15019982 DOI: 10.1016/j.gene.2003.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/27/2003] [Accepted: 12/12/2003] [Indexed: 11/15/2022]
Abstract
Cu,Zn-superoxide dismutase (SOD1) represents along with catalase the first coordinated line of defense against ROS and is found in all aerobic organisms. The dissection of the regulatory controls that drive the expression of SOD1 may provide further insight into the functional significance of this enzyme. The aim of this study was to elucidate temporal and spatial patterns of SOD1 expression, as well as to identify gene domains that govern its expression. Immunostaining analysis was used to delineate marked tissue and stage-specific expression patterns during the course of development and aging. By and large, there were no significant alterations in SOD1 mRNA and protein levels in response to the stress that accompanies aging, nor in response to different environmental insults, such as heat and hyperoxia. Expression of SOD1 seems to be largely determined by intrinsic factors. By histochemical analysis of transgenics carrying various sod1-reporter gene fusions, it was also possible to identify sequence domains, governing SOD1 expression. In particular a 1140 base pair region, composed of the single sod1 intron along with exon 2, was found to be essential for permitting spatial and temporal expression patterns that approximate normal endogenous expression.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Ave, Dedman Life Sciences Building, Dallas, TX 75275, USA
| | | | | |
Collapse
|
46
|
Wallace MA, Liou LL, Martins J, Clement MHS, Bailey S, Longo VD, Valentine JS, Gralla EB. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 2004; 279:32055-62. [PMID: 15166213 DOI: 10.1074/jbc.m403590200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the phenotypes of Saccharomyces cerevisiae mutants lacking CuZn-superoxide dismutase (Sod1p) is an aerobic lysine auxotrophy; in the current work we show an additional leaky auxotrophy for leucine. The lysine and leucine biosynthetic pathways each contain a 4Fe-4S cluster enzyme homologous to aconitase and likely to be superoxide-sensitive, homoaconitase (Lys4p) and isopropylmalate dehydratase (Leu1p), respectively. We present evidence that direct aerobic inactivation of these enzymes in sod1 Delta yeast results in the auxotrophies. Located in the cytosol and intermembrane space of the mitochondria, Sod1p likely provides direct protection of the cytosolic enzyme Leu1p. Surprisingly, Lys4p does not share a compartment with Sod1p but is located in the mitochondrial matrix. The activity of a second matrix protein, the tricarboxylic acid cycle enzyme aconitase, was similarly lowered in sod1 Delta mutants. We measured only slight changes in total mitochondrial iron and found no detectable difference in mitochondrial "free" (EPR-detectable) iron making it unlikely that a gross defect in mitochondrial iron metabolism is the cause of the decreased enzyme activities. Thus, we conclude that when Sod1p is absent a lysine auxotrophy is induced because Lys4p is inactivated in the matrix by superoxide that originates in the intermembrane space and diffuses across the inner membrane.
Collapse
Affiliation(s)
- Matthew Alan Wallace
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Manfredini V, Roehrs R, Peralba MCR, Henriques JAP, Saffi J, Ramos ALLP, Benfato MS. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage. Braz J Med Biol Res 2004; 37:159-65. [PMID: 14762569 DOI: 10.1590/s0100-879x2004000200001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44%) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126%), while sod1delta had lower activity (77%) than the wild type. Glutathione levels in sod1delta were increased (200-260%) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167%) and sod2delta (225%) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.
Collapse
Affiliation(s)
- V Manfredini
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2003; 15:456-67. [PMID: 14617819 PMCID: PMC329211 DOI: 10.1091/mbc.e03-03-0179] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Superoxide dismutases (SOD) convert superoxide radicals into less damaging hydrogen peroxide. The opportunistic human pathogen Candida albicans is known to express CuZnSOD (SOD1) and MnSOD (SOD3) in the cytosol and MnSOD (SOD2) in the mitochondria. We identified three additional CuZn-containing superoxide dismutases, SOD4, SOD5, and SOD6, within the sequence of the C. albicans genome. The transcription of SOD5 was up-regulated during the yeast to hyphal transition of C. albicans, and SOD5 was induced when C. albicans cells were challenged with osmotic or with oxidative stresses. SOD5 transcription was also increased when cells were grown on nonfermentable substrates as the only carbon source. The Rim101p transcription factor was required for all inductions observed, whereas the Efg1p transcription factor was specifically needed for serum-modulated expression. Deletion of SOD5 produced a viable mutant strain that showed sensitivity to hydrogen peroxide when cells were grown in nutrient-limited conditions. Sod5p was found to be necessary for the virulence of C. albicans in a mouse model of infection. However, the sod5 mutant strain showed the same resistance to macrophage attack as its parental strain, suggesting that the loss of virulence in not due to an increased sensitivity to macrophage attack.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|
49
|
Grabowska D, Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 2003; 278:13984-8. [PMID: 12584194 DOI: 10.1074/jbc.m210076200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reducing equivalents in the form of NADPH are essential for many enzymatic steps involved in the biosynthesis of cellular macromolecules. An adequate level of NADPH is also required to protect cells against oxidative stress. The major enzymatic source of NADPH in the cell is the reaction catalyzed by glucose-6-phosphate dehydrogenase, the first enzyme in the pentose phosphate pathway. Disruption of the ZWF1 gene, encoding glucose-6-phosphate dehydrogenase in the yeast Saccharomyces cerevisiae, results in methionine auxotrophy and increased sensitivity to oxidizing agents. It is assumed that both phenotypes are due to an NADPH deficiency in the zwf1Delta strain. We used a Met(-) phenotype displayed by the zwf1Delta strain to look for multicopy suppressors of this deletion. We found that overexpression of the ALD6 gene coding for cytosolic acetaldehyde dehydrogenase, which utilizes NADP(+) as its cofactor, restores the Met(+) phenotype of the zwf1Delta strain. Another multicopy suppressor identified in our screen, the ZMS1 gene encoding a putative transcription factor, regulates the level of ALD6 expression. A strain bearing a double ZWF1 ALD6 gene disruption is not viable. Thus, our results indicate the reaction catalyzed by Ald6p as an important source of reducing equivalents in the yeast cells.
Collapse
Affiliation(s)
- Dorota Grabowska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | |
Collapse
|
50
|
Narasipura SD, Ault JG, Behr MJ, Chaturvedi V, Chaturvedi S. Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol Microbiol 2003; 47:1681-94. [PMID: 12622821 DOI: 10.1046/j.1365-2958.2003.03393.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenic yeast Cryptococcus neoformans (Cn) var. gattii causes meningoencephalitis in healthy individuals, unlike the better known Cn varieties grubii and neoformans, which are common in immunocompromised individuals. The virulence determinants and mechanisms of host predilection are poorly defined for var. gattii. The present study focused on the characterization of a Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant constructed by developing a DNA transformation system. The sod1 mutant was highly sensitive to the redox cycling agent menadione, and showed fragmentation of the large vacuole in the cytoplasm, but no other defects were seen in growth, capsule synthesis, mating, sporulation, stationary phase survival or auxotrophies for sulphur-containing amino acids. The sod1 mutant was markedly attenuated in virulence in a mouse model, and it was significantly susceptible to in vitro killing by human neutrophils (PMNs). The deletion of SOD1 also resulted in defects in the expression of a number of virulence factors, i.e. laccase, urease and phospholipase. Complementation of the sod1 mutant with SOD1 resulted in recovery of virulence factor expression and menadione resistance, and in restoration of virulence. Overall, these results suggest that the antioxidant function of Cu,Zn SOD is critical for the pathogenesis of the fungus, but is dispensable in its saprobic life. This report constitutes the first instance in which superoxide dismutase has been directly implicated in the virulence of a fungal pathogen.
Collapse
Affiliation(s)
- Srinivas D Narasipura
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208-2002, USA
| | | | | | | | | |
Collapse
|