1
|
Takahashi M, Ishida T, Khan S, Makino R, Cline MA, Tachibana T. Zymosan and lipopolysaccharide decrease gene expression of neuronal nitric oxide synthase in peripheral organs in chicks. Vet Immunol Immunopathol 2024; 271:110752. [PMID: 38579442 DOI: 10.1016/j.vetimm.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Tomohisa Ishida
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan; Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|
2
|
Ormesher L, Worton SA, Best A, Dodd SR, Dempsey A, Cottrell EC, Glossop H, Chmiel C, Wu HY, Hardwick B, Hennessy S, Johnstone ED, Myers JE. CHronic hypERtension and L-citRulline studY (CHERRY): an Early-Phase Randomised Controlled Trial in Pregnancy. Reprod Sci 2024; 31:560-568. [PMID: 37789125 PMCID: PMC10827856 DOI: 10.1007/s43032-023-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/20/2023] [Indexed: 10/05/2023]
Abstract
Oral supplementation with L-citrulline, which is sequentially converted to L-arginine then nitric oxide, improves vascular biomarkers and reduces blood pressure in non-pregnant, hypertensive human cohorts and pregnant mice with a pre-eclampsia-like syndrome. This early-phase randomised feasibility trial assessed the acceptability of L-citrulline supplementation to pregnant women with chronic hypertension and its effects on maternal BP and other vascular outcomes. Pregnant women with chronic hypertension were randomised at 12-16 weeks to receive 3-g L-citrulline twice daily (n = 24) or placebo (n = 12) for 8 weeks. Pregnant women reported high acceptability of oral L-citrulline. Treatment increased maternal plasma levels of citrulline, arginine and the arginine:asymmetric dimethylarginine ratio, particularly in women reporting good compliance. L-citrulline had no effect on diastolic BP (L-citrulline: - 1.82 95% CI (- 5.86, 2.22) vs placebo: - 5.00 95% CI (- 12.76, 2.76)), uterine artery Doppler or angiogenic biomarkers. Although there was no effect on BP, retrospectively, this study was underpowered to detect BP changes < 9 mmHg, limiting the conclusions about biological effects. The increase in arginine:asymmetric dimethylarginine ratio was less than in non-pregnant populations, which likely reflects altered pharmacokinetics of pregnancy, and further pharmacokinetic assessment of L-citrulline in pregnancy is advised.Trial Registration EudraCT 2015-005792-25 (2017-12-22) and ISRCTN12695929 (2018-09-20).
Collapse
Affiliation(s)
- Laura Ormesher
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Stephanie A Worton
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Ashley Best
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Susanna R Dodd
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Alice Dempsey
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Heather Glossop
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Catherine Chmiel
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Hoi Yee Wu
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ben Hardwick
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Sophie Hennessy
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Edward D Johnstone
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Jenny E Myers
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Biomolecules Triggering Altered Food Intake during Pathogenic Challenge in Chicks. J Poult Sci 2023; 60:2023009. [PMID: 36969710 PMCID: PMC10031682 DOI: 10.2141/jpsa.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Food intake is regulated by several complicated synergistic mechanisms that are affected by a variety of internal and external influences. Some of these factors include those that are released from pathogens such as bacteria, fungi, and viruses, and most of these factors are associated with suppression of the chick's food intake. Although chicks are well-known to decrease their food intake when they experience a pathogenic challenge, the mechanisms that mediate this type of satiety are poorly understood. One of the goals of our research group has been to better understand these mechanisms in chicks. We recently provided evidence that pathogen-associated molecular patterns, which are recognized by pattern-recognition receptors such as Toll-like receptors, likely contribute to satiety in chicks that are experiencing a pathogenic challenge. Additionally, we identified several inflammatory cytokines, including interleukin-1β, tumor necrosis factor-like cytokine 1A, prostaglandins, and nitric oxide, that likely contribute to satiety during a pathogenic challenge. This review summarizes the current knowledge on pathogen-induced satiety in chicks mainly accumulated through our recent research. The research will give good information to improve the loss of production during infection in poultry production in the future.
Collapse
|
4
|
Sato A, Yumita Y, Kagami K, Ishinoda Y, Kimura T, Osaki A, Toya T, Namba T, Endo S, Ido Y, Nagatomo Y, Satoh Y, Adachi T. Endothelial Extracellular Signal-Regulated Kinase/Thromboxane A2/Prostanoid Receptor Pathway Aggravates Endothelial Dysfunction and Insulin Resistance in a Mouse Model of Metabolic Syndrome. J Am Heart Assoc 2022; 11:e027538. [PMID: 36382966 PMCID: PMC9851435 DOI: 10.1161/jaha.122.027538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Metabolic syndrome is characterized by insulin resistance, which impairs intracellular signaling pathways and endothelial NO bioactivity, leading to cardiovascular complications. Extracellular signal-regulated kinase (ERK) is a major component of insulin signaling cascades that can be activated by many vasoactive peptides, hormones, and cytokines that are elevated in metabolic syndrome. The aim of this study was to clarify the role of endothelial ERK2 in vivo on NO bioactivity and insulin resistance in a mouse model of metabolic syndrome. Methods and Results Control and endothelial-specific ERK2 knockout mice were fed a high-fat/high-sucrose diet (HFHSD) for 24 weeks. Systolic blood pressure, endothelial function, and glucose metabolism were investigated. Systolic blood pressure was lowered with increased NO products and decreased thromboxane A2/prostanoid (TP) products in HFHSD-fed ERK2 knockout mice, and Nω-nitro-l-arginine methyl ester (L-NAME) increased it to the levels observed in HFHSD-fed controls. Acetylcholine-induced relaxation of aortic rings was increased, and aortic superoxide level was lowered in HFHSD-fed ERK2 knockout mice. S18886, an antagonist of the TP receptor, improved endothelial function and decreased superoxide level only in the rings from HFHSD-fed controls. Glucose intolerance and the impaired insulin sensitivity were blunted in HFHSD-fed ERK2 knockout mice without changes in body weight. In vivo, S18886 improved endothelial dysfunction, systolic blood pressure, fasting serum glucose and insulin levels, and suppressed nonalcoholic fatty liver disease scores only in HFHSD-fed controls. Conclusions Endothelial ERK2 increased superoxide level and decreased NO bioactivity, resulting in the deterioration of endothelial function, insulin resistance, and steatohepatitis, which were improved by a TP receptor antagonist, in a mouse model of metabolic syndrome.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yusuke Yumita
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Kazuki Kagami
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yuki Ishinoda
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Toyokazu Kimura
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Ayumu Osaki
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Takumi Toya
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Takayuki Namba
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Shogo Endo
- Department of Aging NeuroscienceTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Yasuo Ido
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yuji Nagatomo
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| | - Yasushi Satoh
- Department of BiochemistryNational Defense Medical CollegeTokorozawaJapan
| | - Takeshi Adachi
- Department of CardiologyNational Defense Medical CollegeTokorozawaJapan
| |
Collapse
|
5
|
Takahashi M, Sengan A, Khan S, Makino R, Cline MA, Tachibana T. Effect of sodium nitroprusside on feeding behavior, voluntary activity, and cloacal temperature in chicks. Physiol Behav 2022; 251:113805. [PMID: 35405204 DOI: 10.1016/j.physbeh.2022.113805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) is a well-known gaseous signaling molecule that is involved in a variety of physiological and pathological processes in vertebrates. The role of NO in physiological responses of birds has been investigated primarily using NOS inhibitors. Therefore, the effect of the absence of NO is well characterized. However, there is little knowledge on the effects of abundant NO in birds, which is the case in birds that have infections. Therefore, the purpose of the present study was to determine if intraperitoneal (IP) and intracerebroventricular (ICV) injections of sodium nitroprusside (SNP), a NO donor, affected feed intake, voluntary activity, cloacal temperature, crop emptying rate, and blood constituents in domesticated chicks (Gallus gallus) as model birds. We found that both IP and ICV injections of SNP significantly decreased feed intake while there was little effect on voluntary activity. Cloacal temperature was temporarily, but significantly, decreased by both types of injection of SNP. Additionally, both IP and ICV injections of SNP significantly decreased the crop emptying rate. The IP injection of SNP significantly increased the plasma concentrations of NO2/NO3, which are metabolites of NO, and corticosterone, and decreased the plasma glucose concentrations, while the ICV injection had no effect. The IP injection of SNP also showed the tendency to increase the nitrotyrosine level, to increase superoxide dismutase activity, and to decrease catalase activity in the plasma. These results suggest that under specific situations which produce abundant NO such as infection, NO would induce anorexia, hypothermia, inhibition of feed passage, and activation of the hypothalamus-pituitary-adrenal axis in chicks.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Akira Sengan
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|
6
|
Tachibana T, Takahashi M, Khan S, Makino R, Cline MA. Poly I:C and R848 facilitate nitric oxide production via inducible nitric oxide synthase in chicks. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111211. [PMID: 35417747 DOI: 10.1016/j.cbpa.2022.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is a gaseous bioactive molecule associated with many physiological functions including vasodilation and neurotransmission. NO also plays an important role in immune responses during viral infections in mammals. However, there is a paucity of knowledge regarding the involvement of NO in viral infections in birds. Therefore, the purpose of the present study was to determine if intraperitoneal (IP) injection of poly I:C and R848 (resiquimod), which are analogues of virus component, affects NO production in chicks (Gallus gallus) as a bird model. The involvement of inducible NO synthase (iNOS) in poly I:C- and R848-induced anorexia and corticosterone release was also investigated. These virus analogues significantly increased plasma NO metabolites (NOx) concentrations. IP injection of poly I:C and R848 significantly increased iNOS mRNA expression in several organs including the liver. On the other hand, poly I:C and R848 significantly decreased mRNA expressions of endothelial NOS and neural NOS in several organs, indicating that induction of iNOS might be responsible for increased NOx levels in plasma. This finding was further confirmed by using a selective iNOS inhibitor, S-methylisothiourea sulfate (SMT), which abolished the poly I:C- and R848-induced increase in plasma NOx concentration. In addition, SMT partly attenuated the poly I:C- and R848-induced increase in plasma corticosterone concentration, suggesting that corticosterone release induced by these virus analogues may be partly mediated by iNOS. Collectively, the present results suggest that viral infections facilitate NO production by inducing iNOS. The liver would play an important role in the NO production because the response in iNOS mRNA expression to poly I:C and R848 was remarkable. The present results also suggest that NO is associated with corticosterone release in birds under viral infection.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, United States
| |
Collapse
|
7
|
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, Ruga S, Coppoletta AR, Guarnieri L, Cardamone A, Bava I, Musolino V, Paone S, Palma E, Mollace V. The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. Int J Mol Sci 2022; 23:ijms23073698. [PMID: 35409057 PMCID: PMC8999124 DOI: 10.3390/ijms23073698] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
- Correspondence: (J.M.); (M.G.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Correspondence: (J.M.); (M.G.)
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Irene Bava
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
| | - Sara Paone
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
8
|
Role of nitric oxide on zymosan-induced inhibition of crop emptying in chicks. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111057. [PMID: 34419574 DOI: 10.1016/j.cbpa.2021.111057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023]
Abstract
Zymosan, a component of yeast cell walls, reduces feed passage through the digestive tract in chicks (Gallus gallus), although the mechanism mediating this effect is poorly understood. Nitric oxide (NO) is associated with a variety of biological actions including effects on the immune system. In addition, it has been suggested that NO is involved in relaxation of the digestive tract and affects feed passage in mammals. It is therefore possible that NO might be related to zymosan-induced reduction of feed passage in chicks. However, the role of NO on the effect of zymosan feed passage has not been clarified yet. Thus, the purpose of the present study was to investigate whether NO is associated with zymosan-induced alteration of feed passage in chicks. Intraperitoneal (IP) injection of zymosan significantly increased plasma nitrate and nitrite (NOx) concentrations at 6 h after injection. Zymosan-induced elevation of plasma NOx concentration was abolished by co-injection of S-methylisothiourea (SMT), a selective inhibitor for inducible NO synthase (iNOS), indicating that zymosan facilitated the induction of iNOS. Furthermore, because zymosan increased iNOS mRNA expression in the digestive tract, NO is likely associated with the effect of zymosan on the digestive tract. IP injection of NO donors significantly decreased crop emptying rate, suggesting that NO functions as an inhibitor of crop emptying. This result implied that zymosan stimulates NO production by the induction of iNOS in the digestive tract and thereby inhibits crop emptying rate. However, the co-injection of SMT did not attenuate the inhibitory effect of zymosan on crop emptying. The present study provides evidence that some changes in the digestive tract caused by zymosan are mediated by iNOS-induced NO in chicks, but NO does not mediate the effect of zymosan on feed passage through the crop.
Collapse
|
9
|
Mittal A, Kakkar R. Nitric Oxide Synthases and Their Inhibitors: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190222154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric Oxide (NO), an important biological mediator, is involved in the regulation of the cardiovascular, nervous and immune systems in mammals. Synthesis of NO is catalyzed by its biosynthetic enzyme, Nitric Oxide Synthase (NOS). There are three main isoforms of the enzyme, neuronal NOS, endothelial NOS and inducible NOS, which have very similar structures but differ in their expression and activities. NO is produced in the active site of the enzyme in two distinct cycles from oxidation of the substrate L-arg (L-arginine) in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reaction. NOS has gained considerable attention of biochemists due to its complexity and unique catalytic mechanism. The review focuses on NOS structure, its function and catalytic reaction mechanism. In particular, the review is concluded with a discussion on the role of all three isoforms of NOS in physiological and pathological conditions and their inhibitors with a focus on the role of computational techniques in their development.
Collapse
Affiliation(s)
- Anshika Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
10
|
|
11
|
Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018; 57:12804-12808. [DOI: 10.1002/anie.201807823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 01/20/2023]
|
12
|
Hasegawa S, Hashikawa Y, Kato T, Murata Y. Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Hasegawa
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | | | - Tatsuhisa Kato
- Institute for Liberal Arts and Sciences; Kyoto University; Kyoto Kyoto 605-8501 Japan
| | - Yasujiro Murata
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
13
|
Abstract
Sickle cell disease (SCD) is a monogenetic disorder caused by a mutation in the β-globin gene HBB leading to polymerization of red blood cells causing damage to cell membranes, increasing its rigidity and intravascular hemolysis. Multiple lines of evidence suggest that SCD can be viewed as pan-vasculopathy associated with multiple mechanisms but driven by hemoglobin S polymerization. Here we review the pathophysiology, clinical manifestations and management strategies for cerebrovascular disease, pulmonary hypertension and renal disease associated with SCD. These "vascular phenotypes" reflect the systemic nature of the complications of SCD and are a major threat to the well-being of patients with the disorder.
Collapse
Affiliation(s)
- Ashar Usmani
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto F. Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
14
|
Smee DF, Dagley A, Tarbet EB. Combinations of L-N G-monomethyl-arginine and oseltamivir against pandemic influenza A virus infections in mice. Antivir Chem Chemother 2017; 25:11-17. [PMID: 28417640 DOI: 10.1177/2040206617691885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
L-NG-monomethyl-arginine (L-NMMA) is an experimental compound that suppresses nitric oxide production in animals. The compound was combined with oseltamivir to treat lethal influenza A/California/04/2009 (H1N1) pandemic virus infections in mice. Treatments were given twice a day for five days starting 4 h (oseltamivir, by oral gavage) or three days (L-NMMA, by intraperitoneal route; corresponding to the time previously reported for nitric oxide induction in the animals) after infection. Low doses of oseltamivir were used in order to demonstrate synergy or antagonism. Oseltamivir monotherapy protected 70% of mice from death at 1 mg/kg/day. L-NMMA (40 and 80 mg/kg/day) was ineffective alone in preventing mortality. Compared to oseltamivir treatment alone, L-NMMA combined with oseltamivir was synergistically effective (as evaluated by three-dimensional MacSynergy analysis), resulting in survival increases from 20 to 70% when 40 or 80 mg/kg/day of L-NMMA was combined with 0.3 mg/kg/day of oseltamivir, and from 70 to 100% survival increases when these doses were combined with 1 mg/kg/day of oseltamivir. These data demonstrate that a nitric oxide inhibitor such as L-NMMA has the potential to be beneficial when combined with oseltamivir in treating influenza virus infections.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Ashley Dagley
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - E B Tarbet
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| |
Collapse
|
15
|
Abstract
Numerous reports have indicated that the plasma concentration of endogenously produced inhibitors of nitric oxide synthase are elevated in human disease states. In this review we discuss recent advances in our understanding of the enzymes responsible for the synthesis of these inhibitors.
Collapse
Affiliation(s)
- Shelagh Anthony
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| | - James Leiper
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| | - Patrick Vallance
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| |
Collapse
|
16
|
Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med 2015; 21:1028-1037. [PMID: 26301690 DOI: 10.1038/nm.3934] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022]
Abstract
Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein-coupled receptor-dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II-induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II-induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis.
Collapse
|
17
|
CHASWAL M, DAS S, PRASAD J, KATYAL A, FAHIM M. Chemical Sympathectomy Restores Baroreceptor-Heart Rate Reflex and Heart Rate Variability in Rats With Chronic Nitric Oxide Deficiency. Physiol Res 2015; 64:459-66. [DOI: 10.33549/physiolres.932804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide (NO) plays a crucial role not only in regulation of blood pressure but also in maintenance of cardiac autonomic tone and its deficiency induced hypertension is accompanied by cardiac autonomic dysfunction. However, underlying mechanisms are not clearly defined. We hypothesized that sympathetic activation mediates hemodynamic and cardiac autonomic changes consequent to deficient NO synthesis. We used chemical sympathectomy by 6-hydroxydopamine to examine the influence of sympathetic innervation on baroreflex sensitivity (BRS) and heart rate variability (HRV) of chronic NG-nitro-L-arginine methyl ester (L-NAME) treated adult Wistar rats. BRS was determined from heart rate responses to changes in systolic arterial pressure achieved by intravenous administration of phenylephrine and sodium nitroprusside. Time and frequency domain measures of HRV were calculated from 5-min electrocardiogram recordings. Chronic L-NAME administration (50 mg/kg per day for 7 days orally through gavage) in control rats produced significant elevation of blood pressure, tachycardia, attenuation of BRS for bradycardia and tachycardia reflex and fall in time as well as frequency domain parameters of HRV. Sympathectomy completely abolished the pressor as well as tachycardic effect of chronic L-NAME. In addition, BRS and HRV improved after removal of sympathetic influence in chronic L-NAME treated rats. These results support the concept that an exaggerated sympathetic activity is the principal mechanism of chronic L NAME hypertension and associated autonomic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - M. FAHIM
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 24738065 DOI: 10.1155/2014/598271.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|
19
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014; 2014:598271. [PMID: 24738065 PMCID: PMC3971506 DOI: 10.1155/2014/598271] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|
20
|
Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm 2012; 2012:318087. [PMID: 22988346 PMCID: PMC3441039 DOI: 10.1155/2012/318087] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/24/2022] Open
Abstract
In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.
Collapse
Affiliation(s)
- Jan Víteček
- International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | - Giuseppe Valacchi
- Department of Evolutionary Biology, University of Ferrara, 44100 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Lukáš Kubala
- International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| |
Collapse
|
21
|
Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simonsen U, Füchtbauer EM, Aalkjaer C. Disruption of Na+,HCO₃⁻ cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca²⁺ sensitivity, and hypertension development in mice. Circulation 2011; 124:1819-29. [PMID: 21947296 DOI: 10.1161/circulationaha.110.015974] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Disturbances in pH affect artery function, but the mechanistic background remains controversial. We investigated whether Na(+), HCO₃- transporter NBCn1, by regulating intracellular pH(pH₁), influences artery function and blood pressure regulation. METHODS AND RESULTS Knockout of NBCn1 in mice eliminated Na+, HCO₃⁻ cotransport and caused a lower steady-state pH(i) in mesenteric artery smooth muscle and endothelial cells in situ evaluated by fluorescence microscopy. Using myography, arteries from NBCn1 knockout mice showed reduced acetylcholine-induced NO-mediated relaxations and lower rho-kinase-dependent norepinephrine-stimulated smooth muscle Ca²⁺ sensitivity. Acetylcholine-stimulated NO levels (electrode measurements) and N-nitro-l-arginine methyl ester-sensitive l-arginine conversion (radioisotope measurements) were reduced in arteries from NBCn1 knockout mice, whereas relaxation to NO-donor S-nitroso-N-acetylpenicillamine, acetylcholine-induced endothelial Ca²⁺ responses (fluorescence microscopy), and total and Ser-1177 phosphorylated endothelial NO-synthase expression (Western blot analyses) were unaffected. Reduced NO-mediated relaxations in arteries from NBCn1 knockout mice were not rescued by superoxide scavenging. Phosphorylation of myosin phosphatase targeting subunit at Thr-850 was reduced in arteries from NBCn1 knockout mice. Evaluated by an in vitro assay, rho-kinase activity was reduced at low pH. Without CO₂/HCO₃⁻, no differences in pH(i), contraction or relaxation were observed between arteries from NBCn1 knockout and wild-type mice. Based on radiotelemetry and tail-cuff measurements, NBCn1 knockout mice were mildly hypertensive at rest, displayed attenuated blood pressure responses to NO-synthase and rho-kinase inhibition and were resistant to developing hypertension during angiotensin-II infusion. CONCLUSIONS Intracellular acidification of smooth muscle and endothelial cells after knockout of NBCn1 inhibits NO-mediated and rho-kinase-dependent signaling in isolated arteries and perturbs blood pressure regulation.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
|
24
|
Hill-Kapturczak N, Kapturczak MH, Malinski T, Gross P. Nitric Oxide and Nitric Oxide Synthase in the Kidney: Potential Roles in Normal Renal Function and in Renal Dysfunction. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509024671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Arraj M, Lemmer B. Circadian Rhythms in Heart Rate, Motility, and Body Temperature of Wild‐type C57 and eNOS Knock‐out Mice Under Light‐dark, Free‐run, and After Time Zone Transition. Chronobiol Int 2009; 23:795-812. [PMID: 16887749 DOI: 10.1080/07420520600827111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.
Collapse
Affiliation(s)
- M Arraj
- Institute of Pharmacology and Toxicology Mannheim, Ruprecht-Karls-University of Heidelberg, Germany
| | | |
Collapse
|
26
|
Ahokas RA, Lubarsky SL, Park GC, Friedman SA, Sibai BM. Chronic Nitric Oxide Synthesis Inhibition Does Not Prevent Pregnancy Vasodilation in the Rat. Hypertens Pregnancy 2009. [DOI: 10.3109/10641959809072238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Lemmer B, Arraj M. Effect of NO Synthase Inhibition on Cardiovascular Circadian Rhythms in Wild‐Type and eNOS‐Knock‐Out Mice. Chronobiol Int 2009; 25:501-10. [DOI: 10.1080/07420520802257695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
|
29
|
Karimollah AR, Ghasemi M, Ghahremani MH, Dehpour AR. Inhibition by lithium of the nitrergic relaxation of rat anococcygeus muscle. Nitric Oxide 2009; 20:31-8. [DOI: 10.1016/j.niox.2008.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/29/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
|
30
|
Stoessel A, Paliege A, Theilig F, Addabbo F, Ratliff B, Waschke J, Patschan D, Goligorsky MS, Bachmann S. Indolent course of tubulointerstitial disease in a mouse model of subpressor, low-dose nitric oxide synthase inhibition. Am J Physiol Renal Physiol 2008; 295:F717-25. [PMID: 18596080 DOI: 10.1152/ajprenal.00071.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deficiency of nitric oxide (NO) represents a consistent manifestation of endothelial dysfunction (ECD), and the accumulation of asymmetric dimethylarginine occurs early in renal disease. Here, we confirmed in vitro and in vivo the previous finding that a fragment of collagen XVIII, endostatin, was upregulated by chronic inhibition of NO production and sought to support a hypothesis that primary ECD contributes to nephrosclerosis in the absence of other profibrotic factors. To emulate more closely the indolent course of ECD, the study was expanded to an in vivo model with N(G)-monomethyl-L-arginine (L-NMMA; mimics effects of asymmetric dimethylarginine) administered to mice in the drinking water at subpressor doses of 0.3 and 0.8 mg/ml for 3-6 mo. This resulted in subtle but significant morphological alterations detected in kidneys of mice chronically treated with L-NMMA: 1) consistent perivascular expansion of interstitial matrix components at the inner stripe of the outer medulla and 2) collagen XVIII/endostatin abundance. Ultrastructural abnormalities were detected in L-NMMA-treated mice: 1) increased activity of the interstitial fibroblasts; 2) occasional detachment of endothelial cells from the basement membrane; 3) splitting of the vascular basement membrane; 4) focal fibrosis; and 5) accumulation of lipofuscin by interstitial fibroblasts. Preembedding labeling of microvasculature with anti-CD31 antibodies showed infiltrating leukocytes and agglomerating platelets attaching to the visibly intact or denuded capillaries. Collectively, the data indicate that the mouse model of subpressor chronic administration of L-NMMA is not a robust one (endothelial pathology visible only ultrastructurally), and yet it closely resembles the natural progression of endothelial dysfunction, microvascular abnormalities, and associated tubulointerstitial scarring.
Collapse
Affiliation(s)
- Adelina Stoessel
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med 2008; 44:1506-28. [PMID: 18261470 DOI: 10.1016/j.freeradbiomed.2008.01.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/21/2007] [Accepted: 01/11/2008] [Indexed: 12/31/2022]
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.
Collapse
Affiliation(s)
- Katherine C Wood
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
Grimble GK. Essential and Conditionally-Essential Nutrients in Clinical Nutrition. Nutr Res Rev 2007; 6:97-119. [DOI: 10.1079/nrr19930008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Bishop MJ, Crow B, Norton D, Paliakov E, George J, Bralley JA. Direct analysis of un-derivatized asymmetric dimethylarginine (ADMA) and L-arginine from plasma using mixed-mode ion-exchange liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 859:164-9. [PMID: 17931984 DOI: 10.1016/j.jchromb.2007.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/18/2022]
Abstract
A high-throughput analytical method was developed for the measurement of asymmetric dimethylarginine (ADMA) and L-arginine (ARG) from plasma using LC/MS/MS. The sample preparation was simple and only required microfiltration prior to analysis. ADMA and ARG were assayed using mixed-mode ion-exchange chromatography which allowed for the retention of the un-derivatized compounds. The need for chromatographic separation of ADMA from symmetric dimethylarginine (SDMA) was avoided by using an ADMA specific product ion. As a result, the analytical method only required a total run time of 2 min. The method was validated by linearity, with r2>or=0.995 for both compounds, and accuracy, with no more than 7% deviation from the theoretical value. The estimated limit of detection and limit of quantification were suitable for clinical evaluations. The mean values of plasma ADMA and ARG taken from healthy volunteers (n=15) were 0.66+/-0.12 and 87+/-35 microM, respectively; the mean molar ratio of ARG to ADMA was 142+/-81.
Collapse
Affiliation(s)
- Michael J Bishop
- Metametrix Clinical Laboratory, 3425 Corporate Way, Duluth, GA 30096, United States.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Refractory hypotension with end-organ hypoperfusion and failure is an ominous feature of shock. Distributive shock is caused by severe infections (septic shock) or severe systemic allergic reactions (anaphylactic shock). In 1986, it was concluded that nitric oxide (NO) is the endothelium-derived relaxing factor that had been discovered 6 years earlier. Since then, NO has been shown to be important for the physiological and pathological control of vascular tone. Nevertheless, although inhibition of NO synthesis restores blood pressure, NO synthase (NOS) inhibition cannot improve outcome, on the contrary. This implies that NO acts as a double-edged sword during septic shock. Consequently, the focus has shifted towards selective inducible NOS (iNOS) inhibitors. The contribution of NO to anaphylactic shock seems to be more straightforward, as NOS inhibition abrogates shock in conscious mice. Surprisingly, however, this shock-inducing NO is not produced by the inducible iNOS, but by the so-called constitutive enzyme endothelial NOS. This review summarizes the contribution of NO to septic and anaphylactic shock. Although NOS inhibition may be promising for the treatment of anaphylactic shock, the failure of a phase III trial indicates that other approaches are required for the successful treatment of septic shock. Amongst these, high hopes are set for selective iNOS inhibitors. But it might also be necessary to shift gears and focus on downstream cardiovascular targets of NO or on other vasodilating phenomena.
Collapse
Affiliation(s)
- A Cauwels
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
35
|
Sadeghipour H, Ghasemi M, Ebrahimi F, Dehpour AR. Effect of lithium on endothelium-dependent and neurogenic relaxation of rat corpus cavernosum: Role of nitric oxide pathway. Nitric Oxide 2007; 16:54-63. [PMID: 16828320 DOI: 10.1016/j.niox.2006.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/08/2006] [Accepted: 05/24/2006] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Some studies have reported erectile dysfunction in patients receiving lithium through a mechanism that has not yet been defined. The aim of the present study was to verify the effect of acute lithium administration on the nonadrenergic noncholinergic (NANC)- and endothelium-mediated relaxation of rat isolated corpus cavernosum. MATERIALS AND METHODS The isolated rat corporeal strips were precontracted with phenylephrine hydrochloride (7.5 microM) and electrical field stimulation (EFS) was applied at different frequencies (2, 5, 10, and 15 Hz) to obtain NANC-mediated relaxation or relaxed by adding cumulative doses of acetylcholine (10nM-1mM) to obtain endothelium-dependent relaxation in the presence or absence of lithium (0.3, 0.5, 1, and 5mM). Also, effects of combining lithium (0.3mM) with 30 nM and 0.1 nM L-NAME (an NO synthase inhibitor) on NANC- and acetylcholine-mediated relaxation was investigated, respectively. Moreover, effects of combining lithium (1mM) with 0.1mM and 10 microM L-arginine (a precursor of NO) on NANC- and endothelium-mediated relaxation was assessed, respectively. Also, the effect of lithium (1mM) on relaxation to sodium nitroprusside (SNP; 1nM-1mM), an NO donor, was investigated. RESULTS The NANC-mediated relaxation was significantly (P<0.001) reduced by 1 and 5mM, but not by 0.3 and 0.5mM lithium. Lithium significantly (P<0.001) attenuated the maximum response to acetylcholine in a concentration-dependent manner. Combination of lithium (0.3mM) with 30 and 0.1 nM L-NAME, which separately had a minimum effect on NANC- and endothelium-mediated relaxation, significantly (P<0.001) reduced the NANC- and endothelium-mediated relaxation, respectively. Although L-arginine at 10 microM and 0.1mM did not alter the relaxant responses to acetylcholine and EFS, it improved the inhibition by lithium (1mM) of relaxant responses to acetylcholine and EFS, respectively. Also, SNP produced similar concentration-dependent relaxations from both groups. DISCUSSION Our experiments indicated that lithium likely by interfering with NO pathway in both endothelium and nitrergic nerve can result in impairment of both the endothelium- and NANC-mediated relaxation of rat corpus cavernosum.
Collapse
Affiliation(s)
- Hamed Sadeghipour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
36
|
Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:287-346. [PMID: 1373932 DOI: 10.1002/9780470123119.ch8] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D J Stuehr
- Department of Medicine, Cornell University Medical College, New York, New York
| | | |
Collapse
|
37
|
Abstract
Numerous reports have indicated that the plasma concentration of endogenously produced inhibitors of nitric oxide synthase are elevated in human disease states. In this review we discuss recent advances in our understanding of the enzymes responsible for the synthesis of these inhibitors.
Collapse
Affiliation(s)
- Shelagh Anthony
- Centre for Clinical Pharmacology, The British Heart Foundation Laboratories, University College London, UK
| | | | | |
Collapse
|
38
|
Eldesoky ES. Effect of acute inhibition of nitric oxide synthesis by l-NAME on cardiovascular responses following peripheral autonomic blockade in rabbits. Fundam Clin Pharmacol 2006; 20:239-45. [PMID: 16671958 DOI: 10.1111/j.1472-8206.2006.00405.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pressor and chronotropic responses to acute inhibition of nitric oxide synthase enzyme by N(G)-nitro-L-arginine methyl ester (L-NAME) were studied in anaesthetized rabbits with intact autonomic nervous system (ANS) activity. Also, they were investigated when administration of L-NAME was preceded by peripheral autonomic blockade. Autonomic blockade had different forms: ganglionic (hexamethonium-induced), post-ganglionic beta-adrenergic blockade (propranolol induced), parasympathetic blockade (atropine induced), and complete autonomic blockade by coadministration of hexamethonium and atropine simultaneously. L-NAME injected intravenously (10 mg/kg) in animals with intact and blocked autonomic activity induced a pressor response. This pressor response was accompanied by bradycardia in rabbits with either intact autonomic activity or hexamethonium-induced ganglionic blockade. L-NAME exerted no effect on heart rate in animals with beta-adrenergic blockade or parasympathetic blockade. In rabbits with complete autonomic blockade, L-NAME evoked tachycardia. These experiments indicate that L-NAME-induced hypertension is not relying only on ANS. Also, L-NAME-induced tachycardia in rabbits treated with atropine plus hexamethonium suggests other humoral mechanisms that may be involved in the L-NAME induced chronotropic response.
Collapse
Affiliation(s)
- Ehab S Eldesoky
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
39
|
Li H, Witte K, August M, Brausch I, Gödtel-Armbrust U, Habermeier A, Closs EI, Oelze M, Münzel T, Förstermann U. Reversal of Endothelial Nitric Oxide Synthase Uncoupling and Up-Regulation of Endothelial Nitric Oxide Synthase Expression Lowers Blood Pressure in Hypertensive Rats. J Am Coll Cardiol 2006; 47:2536-44. [PMID: 16781385 DOI: 10.1016/j.jacc.2006.01.071] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We sought to examine the hypothesis that a pharmacologic up-regulation of endothelial nitric oxide synthase (eNOS) combined with a reversal of eNOS uncoupling provides a protective effect against cardiovascular disease. BACKGROUND Many cardiovascular diseases are associated with oxidant stress involving protein kinase C (PKC) and uncoupling of eNOS. METHODS Messenger ribonucleic acid (mRNA) expression was analyzed with RNase protection assay or quantitative real-time polymerase chain reaction, vascular nitric oxide (NO) with spin trapping, and reactive oxygen species (ROS) with dihydroethidium fluorescence. RESULTS Aortas of spontaneously hypertensive rats (SHR) showed an elevated production of ROS when compared with aortas of Wistar-Kyoto rats (WKY). The aortic expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox1, Nox2, Nox4, and p22phox) was higher in SHR compared with WKY. In SHR, aortic production of ROS was reduced by the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), indicating eNOS "uncoupling" in hypertension. Oral treatment with the PKC inhibitor midostaurin reduced aortic Nox1 expression, diminished ROS production, and reversed eNOS uncoupling in SHR. Aortic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) were significantly reduced in SHR compared with WKY. Midostaurin normalized BH4 levels in SHR. In both WKY and SHR, midostaurin increased aortic expression of eNOS mRNA and protein, stimulated bioactive NO production, and enhanced relaxation of the aorta to acetylcholine. Midostaurin lowered blood pressure in SHR and, to a lesser extent, in WKY; the compound did not change blood pressure in WKY made hypertensive with L-NAME. CONCLUSIONS Pharmacologic interventions that combine eNOS up-regulation and reversal of eNOS uncoupling can markedly increase bioactive NO in the vasculature and produce beneficial hemodynamic effects such as a reduction of blood pressure.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291:H985-1002. [PMID: 16632549 DOI: 10.1152/ajpheart.00292.2006] [Citation(s) in RCA: 547] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|
41
|
|
42
|
Dhawan V, Handu SS, Nain CK, Ganguly NK. Chronic L-arginine supplementation improves endothelial cell vasoactive functions in hypercholesterolemic and atherosclerotic monkeys. Mol Cell Biochem 2005; 269:1-11. [PMID: 15786711 DOI: 10.1007/s11010-005-1810-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chronic exposure to L-arginine results in regression of atherosclerotic lesions and reversal of endothelial dysfunction. We investigated whether chronic L-arginine supplementation induces regression of atherosclerotic lesions and reversal of endothelial dysfunction in atherogenic rhesus monkeys and the mechanism which leads to these effects. About 12 male rhesus monkeys were fed 1% cholesterol and 18 g butter for 6 months to create an experimental model of hypercholesterolaemia and atherosclerosis (Group I) and 12 monkeys were fed standard stock diet for 6 months (Group II). After, 6 months these two groups were further divided into 2 sub-groups which in addition to their respective diets were fed 2.5% L-arginine in drinking water for additional 6 months (Group III and Group IV). Systemic nitric oxide (NO) formation was assessed as plasma nitrite and cGMP formation every 3 months. Oxygen free radical (OFR) generation and malondialdehyde production as an index of lipid peroxidation were determined. Changes in isometric tension were compared in isolated ring segments of thoracic aorta from normal and hypercholesterolemic animals. Cholesterol feeding progressively reduced plasma nitrite and cGMP generation (p < 0.05). Dietary L-arginine partly restored the levels of plasma nitrite and cGMP (p < 0.05) but did not change plasma cholesterol levels. L-arginine significantly reduced aortic intimal thickening, blocked the production of carotid and coronary intimal plaques and completely preserved endothelium-dependent vasodilator function. Further, L-arginine significantly inhibited generation of the reactive oxygen species (ROS) generation and lipid peroxidation. Chronic oral supplementation with L-arginine blocks the progression of plaques via restoration of nitric oxide synthase substrate availability and reduction of vascular oxidative stress.
Collapse
Affiliation(s)
- Veena Dhawan
- Departments of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India.
| | | | | | | |
Collapse
|
43
|
Xavier-Vidal R. Oxytalan elastic and collagen fibers during the repair process in experimental nitric oxide inhibition. Clinics (Sao Paulo) 2005; 60:85-92. [PMID: 15880243 DOI: 10.1590/s1807-59322005000200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the repair process in rats with experimentally induced arterial hypertension. This study aimed to evaluate lesions in the ventricular myocardium and the repair process during experimental hypertension induced by systemic blockage of nitric oxide using N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME). Nitric oxide is an endothelial vasorelaxing factor and is necessary for the maintenance of normal arterial pressure, and L-NAME is an analog and antagonist of L-arginine, the substrate of the nitric oxide synthase. MATERIALS AND METHODS We used 26 normotensive young male Wistar rats belonging to several litters. Animals were treated with oral administration of L-NAME dissolved in water (75 mg/100 mL) for 43 days. Hearts were weighed and processed by routine methods. Special stains utilized were Gomori's trichrome (aniline blue), picrosirius red polarization to identify fibrillar collagen, alcian blue technique (pH 0.5 and pH 2.5) to identify glycosaminoglycans, periodic acid-Schiff technique (with and without amylases) to identify proteoglycans, and Weigert's resorcinol fuchsin solution (with and without oxone) to identify elastic fibers. RESULTS The results showed significant elevation of the arterial pressure (P <0.01) and significant increase of cardiac weight (P <.0001) in the L-NAME (hypertensive) treated group, as compared to an untreated control group. The histological analysis demonstrated wide infarcted myocardial areas in animals with nitric oxide blockade; several vascular changes such as thickening of the muscular tunica with fibrosis; thickening in the wall of small arteries and arterioles; and fibrinoid necrosis in the wall to nearly complete luminal obliteration. Reparative fibrosis involved mainly oxytalan elastic and collagen fibers. CONCLUSION Oxytalan elastic and collagen fibers are of great importance for the postinfarct repair process occurring during experimental nitric oxide inhibition.
Collapse
Affiliation(s)
- Ricardo Xavier-Vidal
- Biological and Ambient Science Institute, Santa Ursula University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
44
|
Chida N, Hirasawa Y, Ohkawa T, Ishii Y, Sudo Y, Tamura K, Mutoh S. Pharmacological profile of FR260330, a novel orally active inducible nitric oxide synthase inhibitor. Eur J Pharmacol 2005; 509:71-6. [PMID: 15713431 DOI: 10.1016/j.ejphar.2004.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 11/26/2022]
Abstract
In this study, we examined effects of a newly synthesized chemical compound, FR260330, (2E)-3-(4-chlorophenyl)-N-[(1S)-2-oxo-2-{[2-oxo-2-(4-{[6-(trifluoromethyl)-4-pyrimidinyl]oxy}-1-piperidinyl)ethyl]amino}-1-(2-pyridinylmethyl)ethyl]acrylamide on nitric oxide (NO) production in rat splenocytes and human colon cancer cell line, DLD-1 cells. FR260330 inhibited NOx production dose dependently in both cells. In lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) treated murine macrophage cell line, RAW264.7, Western blot analysis with gel filtration chromatography revealed FR260330 might prevent dimerization of inducible nitric oxide synthase (iNOS), but had no effect on the expression of iNOS protein. Furthermore, oral administration of FR260330 reduced NOx production dose dependently in plasma from rats exposed to LPS (IC50=1.6 mg/kg). Meanwhile, higher dose (100 mg/kg) of oral administration of FR260330 did not change mean arterial blood pressure in rats. These results suggest that FR260330 might be a useful therapeutical approach to various inflammatory diseases, in which superoxide or peroxynitrite formed from iNOS-derived NO are involved.
Collapse
Affiliation(s)
- Noboru Chida
- Department of Immunology, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, Kashima 2-chome, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kamei KI, Haruyama T, Mie M, Yanagida Y, Aizawa M, Kobatake E. The construction of endothelial cellular biosensing system for the control of blood pressure drugs. Biosens Bioelectron 2004; 19:1121-4. [PMID: 15018968 DOI: 10.1016/j.bios.2003.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 04/09/2003] [Accepted: 06/25/2003] [Indexed: 11/16/2022]
Abstract
In order to assess blood pressure control drugs, the endothelial cellular biosensing system for assessing blood pressure control drugs was constructed. This system consists of human umbilical vein endothelial cells (HUVEC) on a polyion-coated gold electrode, a platinum counter electrode and an Ag/AgCl reference electrode. Nitric oxide (NO) as an indicator of blood vessel relaxation was detected with a polyion-coated electrode in the system. The NO detection limit of this electrode was 8.4 nM by differential pulse voltammetry (DPV). The drugs of blood pressure control (acetylcholine chloride (AcChCl), NOC 7 and NG-monomethyl-L-arginine (L-NMMA)) were assessed with this endothelial cellular biosensing system. One milli molar of AcChCl make NO released from HUVEC stimulated by activating endothelial nitric oxide synthase (eNOS) in HUVEC. In the case of 5 mM of L-NMMA, NO releasing was inhibited by inhibiting eNOS activation by 1 mM of AcChCl. NOC 7 immediately released NO regardless of eNOS activation in endothelial cells.
Collapse
Affiliation(s)
- Ken-ichiro Kamei
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
An increasing number of reports in the literature indicate that endogenously produced inhibitors of nitric oxide synthase (NOS), particularly asymmetric dimethylarginine (ADMA) regulate nitric oxide generation in numerous disease states. Two dimethylarginine dimethylaminohydrolase (DDAH) enzymes metabolise ADMA. We and others have postulated that activity of DDAH is a key determinant of ADMA levels in vivo. This review summarises recent advances in the regulation and function of DDAH enzymes and its role in the regulation of nitric oxide generation.
Collapse
Affiliation(s)
- Cam T L Tran
- Centre for Clinical Pharmacology and Therapeutics, BHF Laboratories, Division of Medicine, University College London, 5 University Street, London, WC1E 6JJ, UK
| | | | | |
Collapse
|
47
|
Bretscher LE, Li H, Poulos TL, Griffith OW. Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(iminoalkyl)- and N5-(iminoalkenyl)-ornithines. J Biol Chem 2003; 278:46789-97. [PMID: 12960153 DOI: 10.1074/jbc.m306787200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoform-specific nitric-oxide synthase (NOS) inhibitors may prove clinically useful in reducing the pathophysiological effects associated with increased neuronal NOS (nNOS) or inducible NOS (iNOS) activity in a variety of neurological and inflammatory disorders. Analogs of the NOS substrate L-arginine are pharmacologically attractive inhibitors because of their stability, reliable cell uptake, and good selectivity for NOS over other heme proteins. Some inhibitory arginine analogs show significant isoform selectivity although the structural or mechanistic basis of such selectivity is generally poorly understood. In the present studies, we determined by x-ray crystallography the binding interactions between rat nNOS and N5-(1-imino-3-butenyl)-L-ornithine (L-VNIO), a previously identified mechanism-based, irreversible inactivator with moderate nNOS selectivity. We have also synthesized and mechanistically characterized several L-VNIO analogs and find, surprisingly, that even relatively minor structural changes produce inhibitors that are either iNOS-selective or non-selective. Furthermore, derivatives having a methyl group added to the butenyl moiety of L-VNIO and L-VNIO derivatives that are analogs of homoarginine rather than arginine display slow-on, slow-off kinetics rather than irreversible inactivation. These results elucidate some of the structural requirements for isoform-selective inhibition by L-VNIO and its related alkyl- and alkenyl-imino ornithine and lysine derivatives and may provide information useful in the ongoing rational design of isoform-selective inhibitors.
Collapse
Affiliation(s)
- Lynn E Bretscher
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
48
|
Cui J, Zhang R, Wilson TE, Witkowski S, Crandall CG, Levine BD. Nitric oxide synthase inhibition does not affect regulation of muscle sympathetic nerve activity during head-up tilt. Am J Physiol Heart Circ Physiol 2003; 285:H2105-10. [PMID: 12842819 DOI: 10.1152/ajpheart.01076.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60 degrees head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 +/- 4 bursts/min; change in total activity: 209 +/- 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 +/- 4 bursts/min; change in total activity: 251 +/- 52 U/min, n = 6, all P > 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans.
Collapse
Affiliation(s)
- Jian Cui
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | | | | | | | | | | |
Collapse
|
49
|
Li X, Benjamin IS, Alexander B. The role of nitric oxide in systemic and hepatic haemodynamics in the rat in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 368:142-9. [PMID: 12898126 DOI: 10.1007/s00210-003-0774-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 05/26/2003] [Indexed: 02/07/2023]
Abstract
The physiological role of nitric oxide (NO) in portal venous and hepatic arterial haemodynamics in the rat in vivo during healthy and diseased conditions remains unclear. The present study determined the physiological role of nitric oxide in hepatic haemodynamics in the rat in vivo during healthy conditions as a basis for future pharmacological work. Male Wistar rats (300-350 g) were anaesthetised with fentany/fluanisone (0.3 mg/kg s.c.) and midazolam (0.3 mg/kg s.c.) and heparinised (30 U/100 g i.v.) via a cannulated left carotid artery for measurement of heart rate, mean arterial pressure, and the difference between systolic and diastolic blood pressures (P(S-D)). Following laparotomy, two distal ileocolic veins were cannulated, one catheter introduced to a distance of 1 cm and used for intraportal drug injections and the other to the main trunk of the portal vein for continuous measurement of portal venous pressure. The portal venous trunk and hepatic artery were carefully isolated and electromagnetic probes placed around each of them for measurement of portal venous flow and hepatic arterial flow. Augmentation of NO production was achieved by intraportal injection of 0.2, 0.4, 0.6 and 0.8 g/kg L-arginine and the NO donor, 3-morpholinosydnonimine (SIN-1), was injected intraportally at 0.2, 0.4, 0.6 and 0.8 mg/kg. L-NAME, the non-selective NOS inhibitor, was injected intraportally in increasing doses of 5, 10, 15 and 20 mg/kg in the absence or presence of L-arginine in doses of 0.2 and 0.5 g/kg. L-arginine increased portal blood flow by 25% without significant changes in systemic haemodynamics. SIN-1 decreased mean arterial pressure by 33% with no effect on portal blood flow. Both L-arginine and SIN-1 reduced portal venous pressure by 25% in a dose-dependent manner. L-NAME had no effect on portal haemodynamics despite a significant increase in systemic arterial pressure of 60% that was reduced dose-dependently by L-arginine. Hepatic arterial flow increased by 88% and 49% at the second and third doses of L-arginine and by 68% and 27% at the first two doses of L-NAME. No significant changes in hepatic arterial flow were found when L-NAME and L-arginine were given together. It is concluded that augmented endogenous NO production increased portal flow. Inhibition of endogenous NO had no effect on portal haemodynamics. Endogenous NO may not play a major role in regulation of portal haemodynamics in the rat in vivo.
Collapse
Affiliation(s)
- Xiangnong Li
- St Thomas's Hospital, Guy's, King's and St Thomas' School of Medicine, Lambeth Palace Road, SE1 7EH, London, UK
| | | | | |
Collapse
|
50
|
Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, Yamauchi H, Itoh K, Yamamoto M, Sun G, Waalkes MP, Kumagai Y. A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med 2003; 35:102-13. [PMID: 12826260 DOI: 10.1016/s0891-5849(03)00269-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently found evidence for impairment of nitric oxide (NO) formation and induction of oxidative stress in residents of an endemic area of chronic arsenic poisoning in Inner Mongolia, China. To investigate the underlying mechanisms responsible for these phenomena, a subchronic animal experiment was conducted using male New Zealand White rabbits. After 18 weeks of continuous exposure of rabbits to 5 mg/l of arsenate in drinking water, a significant decrease in systemic NO production occurred, as shown by significantly reduced plasma NO metabolites levels (76% of control) and a tendency towards decreased serum cGMP levels (81.4% of control). On the other hand, increased oxidative stress, as shown by significantly increased urinary hydrogen peroxide (H(2)O(2)) (120% of control), was observed in arsenate-exposed rabbits. In additional experiments measuring aortic tension, the addition of either the calcium ionophore A23187 or acethylcholine (ACh) induced a transient vasoconstriction of aortic rings prepared from arsenate-exposed rabbits, but not in those prepared from control animals. This calcium-dependent contractility action observed in aorta rings from arsenate-exposed rabbits was markedly attenuated by the superoxide (O2(.-)) scavenging enzyme Cu, Zn-SOD, as well as diphenyleneiodonium (DPI) or N(G)-nitro-L-arginine methyl ester (L-NAME), which are inhibitors for nitric oxide synthase (NOS). However, the cyclooxygenase inhibitor indomethacin or the xanthine oxidase blocker allopurinol had no effect on this vasoconstriction. These results suggest that arsenate-mediated reduction of systemic NO may be associated with the enzymatic uncoupling reaction of NOS with a subsequent enhancement of reactive oxygen species such as O2(.-), an endothelium-derived vasoconstricting factor. Furthermore, hepatic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)), a cofactor for NOS, were markedly reduced in arsenate-exposed rabbits to 62% of control, while no significant change occurred in cardiac L-arginine levels. These results suggest that prolonged exposure of rabbits to oral arsenate may impair the bioavailability of BH(4) in endothelial cells and, as a consequence, disrupt the balance between NO and O2(.-) produced from endothelial NOS, such that enhanced free radicals are produced at the expense of NO.
Collapse
Affiliation(s)
- Jingbo Pi
- Graduate School Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|