1
|
Yang L, Yi Y, Mei Z, Huang D, Tang S, Hu L, Liu L. Circular RNAs in cancer stem cells: Insights into their roles and mechanisms (Review). Int J Mol Med 2025; 55:50. [PMID: 39930823 PMCID: PMC11781527 DOI: 10.3892/ijmm.2025.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer stem cells (CSCs) represent a small, yet pivotal subpopulation of tumor cells that play significant roles in tumor initiation, progression and therapeutic resistance. Circular RNAs (circRNAs) are a distinct class of RNAs characterized by their closed‑loop structures, lacking 5' to 3'ends. There is growing evidence that circRNAs are integral to the development and regulation of CSCs. Aberrant expression of circRNAs in CSCs can contribute to oncogenic properties and drug resistance. Specifically, oncogenic circRNAs modulate CSC behavior via key signaling pathways, thereby promoting CSC self‑renewal and maintenance, as well as tumor progression. This review summarizes the latest research on the functional roles and regulatory mechanisms of circRNAs in CSC behavior and discusses potential applications and challenges of targeting circRNAs in CSCs. Understanding the intricate interactions between circRNAs and CSCs may lead to novel therapeutic strategies that effectively combat treatment resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lunyu Yang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Yuling Yi
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Zhu Mei
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Dongmei Huang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Sitian Tang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Liyi Hu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Ling Liu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| |
Collapse
|
2
|
Skapinker E, Aucoin EB, Kombargi HL, Yaish AM, Li Y, Baghaie L, Szewczuk MR. Contemporaneous Inflammatory, Angiogenic, Fibrogenic, and Angiostatic Cytokine Profiles of the Time-to-Tumor Development by Cancer Cells to Orchestrate Tumor Neovascularization, Progression, and Metastasis. Cells 2024; 13:1739. [PMID: 39451257 PMCID: PMC11506673 DOI: 10.3390/cells13201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytokines can promote various cancer processes, such as angiogenesis, epithelial to mesenchymal transition (EMT), invasion, and tumor progression, and maintain cancer stem-cell-like (CSCs) cells. The mechanism(s) that continuously promote(s) tumors to progress in the TME still need(s) to be investigated. The data in the present study analyzed the inflammatory, angiogenic, fibrogenic, and angiostatic cytokine profiles in the host serum during tumor development in a mouse model of human pancreatic cancer. Pancreatic MiaPaCa-2-eGFP cancer cells were subcutaneously implanted in RAG2xCγ double mutant mice. Blood samples were collected before cancer cell implantation and every week until the end point of the study. The extracted serum from the blood of each mouse at different time points during tumor development was analyzed using a Bio-Plex microarray analysis and a Bio-Plex 200 system for proinflammatory (IL-1β, IL-10, IFN-γ, and TNF-α) and angiogenic and fibrogenic (IL-15, IL-18, basic FGF, LIF, M-CSF, MIG, MIP-2, PDGF-BB, and VEGF) cytokines. Here, we find that during cancer cell colonization for tumor development, host angiogenic, fibrogenic, and proinflammatory cytokine profiling in the tumor-bearing mice has been shown to significantly reduce host angiostatic and proinflammatory cytokines that restrain tumor development and increase those for tumor growth. The proinflammatory cytokines IL-15, IL-18, and IL-1β profiles reveal a significant host serum increase after day 35 when the tumor began to progress in growth. In contrast, the angiostatic cytokine profiles of TNFα, MIG, M-CSF, IL-10, and IFNγ in the host serum revealed a dramatic and significant decrease after day 5 post-implantation of cancer cells. OP treatment of tumor-bearing mice on day 35 maintained high levels of angiostatic and fibrogenic cytokines. The data suggest an entirely new regulation by cancer cells for tumor development. The findings identify for the first time how pancreatic cancer cells use host cytokine profiling to orchestrate the initiation of tumor development.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Emilyn B. Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Haley L. Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Abdulrahman M. Yaish
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
3
|
Oyama T, Yamamoto T, Nakamura R, Han J, Liu Y, Shioya A, Ooi A, Maeda D, Yamada S. VEGFA locus amplification potentially predicts a favorable prognosis in gastric adenocarcinoma. Pathol Res Pract 2024; 260:155441. [PMID: 38986362 DOI: 10.1016/j.prp.2024.155441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Gastric adenocarcinoma harbors a range of genetic and epigenetic alterations, including alterations in DNA copy number. However, the key genes that promote the development and progression of gastric adenocarcinoma remain unknown. To identify the key genes amplified in gastric adenocarcinoma, we performed array comparative genomic hybridization on formalin-fixed paraffin-embedded samples of surgically resected gastric adenocarcinoma. We detected a relatively wide genomic region of gain containing the vascular endothelial growth factor A (VEGFA) gene locus on chromosome 6p. VEGFA locus amplification in gastric adenocarcinoma was validated by fluorescence in situ hybridization. To assess the frequency of VEGFA locus amplification in gastric adenocarcinoma, we conducted multiplex ligation-dependent probe amplification (MLPA) assays using homemade probes designed to target the VEGFA gene locus. Eleven of 54 (20 %) gastric adenocarcinomas with MLPA values above 1.3 were defined as having VEGFA locus amplification. Next, we investigated the effect of VEGFA locus amplification on the clinicopathological characteristics of gastric adenocarcinomas and patient survival. VEGFA locus amplification demonstrated a significantly close relationship with pathological intestinal type and lower rates of venous invasion Furthermore, a Kaplan-Meier analysis showed that patients with VEGFA locus amplification had significantly better overall survival than those without amplification (p = 0.038), particularly in the long-term follow-up period. In conclusion, VEGFA locus amplification can predict modest aggressiveness and good outcomes, suggesting the possibility that it may predict a favorable prognosis in patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Takeru Oyama
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, School of Medicine, Ishikawa, Japan; Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan.
| | - Toshiyuki Yamamoto
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Ritsuko Nakamura
- Department of Pathology, School of Medicine, Aichi Medical University, Nagoya, Japan
| | - Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, School of Medicine, Ishikawa, Japan
| | - Yao Liu
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, School of Medicine, Ishikawa, Japan; Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, School of Medicine, Ishikawa, Japan; Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Kanazawa University, Grad. School of Medical Science, Ishikawa, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Kanazawa University, Grad. School of Medical Science, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, School of Medicine, Ishikawa, Japan; Department of Pathology, Kanazawa Medical University Hospital, Ishikawa, Japan
| |
Collapse
|
4
|
Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S, Thodeti CK. A TRP to Pathological Angiogenesis and Vascular Normalization. Compr Physiol 2024; 14:5389-5406. [PMID: 39109978 PMCID: PMC11998386 DOI: 10.1002/cphy.c230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Uncontrolled angiogenesis underlies various pathological conditions such as cancer, age-related macular degeneration (AMD), and proliferative diabetic retinopathy (PDR). Hence, targeting pathological angiogenesis has become a promising strategy for the treatment of cancer and neovascular ocular diseases. However, current pharmacological treatments that target VEGF signaling have met with limited success either due to acquiring resistance against anti-VEGF therapies with serious side effects including nephrotoxicity and cardiovascular-related adverse effects in cancer patients or retinal vasculitis and intraocular inflammation after intravitreal injection in patients with AMD or PDR. Therefore, there is an urgent need to develop novel strategies which can control multiple aspects of the pathological microenvironment and regulate the process of abnormal angiogenesis. To this end, vascular normalization has been proposed as an alternative for antiangiogenesis approach; however, these strategies still focus on targeting VEGF or FGF or PDGF which has shown adverse effects. In addition to these growth factors, calcium has been recently implicated as an important modulator of tumor angiogenesis. This article provides an overview on the role of major calcium channels in endothelium, TRP channels, with a special focus on TRPV4 and its downstream signaling pathways in the regulation of pathological angiogenesis and vascular normalization. We also highlight recent findings on the modulation of TRPV4 activity and endothelial phenotypic transformation by tumor microenvironment through Rho/YAP/VEGFR2 mechanotranscriptional pathways. Finally, we provide perspective on endothelial TRPV4 as a novel VEGF alternative therapeutic target for vascular normalization and improved therapy. © 2024 American Physiological Society. Compr Physiol 14:5389-5406, 2024.
Collapse
Affiliation(s)
- Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kesha Dalal
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ravi K. Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Brianna D. Guarino
- Vascular Research Lab, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Narendrababu Kondapalli
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
5
|
Zhou R, Lu P, He M, Chen J, Shi Y, Han F, Cai Y. A real-world disproportionality analysis of anti-VEGF drugs from the FDA Adverse Event Reporting System. Expert Opin Drug Saf 2024; 23:363-371. [PMID: 37665052 DOI: 10.1080/14740338.2023.2250717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The association between anti-vascular endothelial growth factor (VEGF) drugs and ocular adverse events (AEs) has been reported, but large real-world studies of their association with systemic AEs are still lacking. METHODS A disproportionality analysis of reports from the FDA Adverse Event Reporting System from January 2004 to September 2021 was conducted to detect the significant ADR signals with anti-VEGF drugs (including aflibercept, bevacizumab, brolucizumab, pegaptanib, and ranibizumab). RESULTS A total of 2980 reported cases with 7125 drug-AEs were included. Five drugs were all associated with eye disorders, and pegaptanib and ranibizumab were also associated with cardiac disorders. For ranibizumab, pegaptanib, bevacizumab and aflibercept, the proportions of cardiac AEs were 8.57%, 5.62%, 3.43% and 3.20%, respectively, and the proportions of central nervous AEs were 8.81%, 7.41, 5.86% and 5.68%, respectively. In multiple comparisons, ranibizumab was significantly higher than bevacizumab and aflibercept in the proportion of cardiac AEs (P < 0.001), and ranibizumab was significantly higher than aflibercept in central nervous AEs (P < 0.001). CONCLUSIONS Our findings support the associations between anti-VEGF drugs and ocular AEs, cardiac AEs, and central nervous AEs. After intravitreal injection, attention should not only be paid to ocular symptoms, but also to systemic symptoms.
Collapse
Affiliation(s)
- Ruishan Zhou
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiwen Lu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingxiu He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junheng Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyang Shi
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangfang Han
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
6
|
Chantiri M, Nammour S, El Toum S, Zeinoun T. Effect of rh-BMP-2 in the Initiation of Neovascularization in Human Gingival Tissue: A Split-Mouth Clinical Study. Life (Basel) 2023; 13:2298. [PMID: 38137899 PMCID: PMC10744365 DOI: 10.3390/life13122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study is to evaluate the effect on the initiation of new blood vessel formation of rh-BMP-2 administration in the human gingival tissue during bone regeneration surgery. MATERIAL AND METHODS The randomized controlled clinical trial included twenty patients with bilateral partial edentulous of the mandibular premolar and molar region. Each patient received one implants on each side. Only one side received a 0.25 µg injection of rhBMP-2 into the gingival flap and grafted material during guided bone regeneration (GBR) for dental implantation. And the other side received GBR without injection. Three samples were collected from each patient as follows: one from the anterior area of the mandible (control group #1) collected at the time of all implant surgeries, and the two other samples during the placement of healing abutments at 4 months of follow-up, from treated side with rh-BMP-2 (test group) and untreated ones (control group #2). A total of 60 gingival samples were collected. Samples were stained with hematoxylin-eosin, and immunohistochemistry was performed with a vascular endothelial growth factor marker. The number of new vessels in each sample was counted. RESULT Statistical analyses showed a significantly higher number of new vessels in the gingival tissue of the test group. CONCLUSIONS Rh-BMP-2 injections into the gingival flap significantly improved new blood vessel formation.
Collapse
Affiliation(s)
- Mansour Chantiri
- Department of Periodontology, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon;
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium
| | - Sami El Toum
- Department of Oral Medicine and Maxillofacial Radiology, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon;
| | - Toni Zeinoun
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut 27798, Lebanon;
| |
Collapse
|
7
|
Zhu M, Chen D, Ruan C, Yang P, Zhu J, Zhang R, Li Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14194. [PMID: 37762497 PMCID: PMC10532269 DOI: 10.3390/ijms241814194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC. OSCC is one of the most severe and frequent forms of head and neck cancer today, with a poor prognosis and low overall survival rate. Due to its prevalence, OSCC is a global health concern, characterized by genetic and epigenomic changes. However, the mechanism remains vague. With the advancement of biotechnology, a large number of circRNAs have been discovered in mammalian cells. CircRNAs are dysregulated in OSCC tissues and thus associated with the clinicopathological characteristics and prognosis of OSCC patients. Research studies have demonstrated that circRNAs can serve as biomarkers for OSCC diagnosis and treatment. Here, we summarized the properties, functions, and biogenesis of circRNAs, focusing on the progress of current research on circRNAs in OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| |
Collapse
|
8
|
Otsu S, Hironaka S. Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer. Cancers (Basel) 2023; 15:4564. [PMID: 37760533 PMCID: PMC10526327 DOI: 10.3390/cancers15184564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is the third most common disease and the second most common cause of death around the world. The drug for second-line treatment depends on the drugs used in first-line treatment and the biomarker status. As biomarkers, the RAS gene, BRAF gene, and dMMR/MSI-H, TMB-H, and HER2 statuses have been established in clinical practice, and the corresponding molecularly targeted therapeutic agents are selected based on the biomarker status. Given the frequency of biomarkers, it is assumed that when patients move on to second-line treatment, an angiogenesis inhibitor is selected in many cases. For second-line treatment, three angiogenesis inhibitors, bevacizumab (BEV), ramucirumab (RAM), and aflibercept (AFL), are available, and one of them is combined with cytotoxic agents. These three angiogenesis inhibitors are known to inhibit angiogenesis through different mechanisms of action. Although no useful biomarkers have been established for the selection of angiogenesis inhibitors, previous biomarker studies have suggested that angiogenesis-related factors such as VEGF-A and VEGF-D might be predictors of the therapeutic efficacy of angiogenesis inhibitors. These biomarkers are measured as protein levels in plasma and are considered to be promising biomarkers. We consider that the rationale for selecting among these three angiogenesis inhibitors should be clarified to benefit patients.
Collapse
Affiliation(s)
- Satoshi Otsu
- Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu City 879-5593, Oita, Japan
| | - Shuichi Hironaka
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
9
|
Cancer-associated fibroblasts-derived exosomes from chemoresistant patients regulate cisplatin resistance and angiogenesis by delivering VEGFA in colorectal cancer. Anticancer Drugs 2023; 34:422-430. [PMID: 36730310 PMCID: PMC9891287 DOI: 10.1097/cad.0000000000001445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate the effect of chemoresistant cancer-associated fibroblasts (R-CAFs) against cisplatin (DDP) on colorectal cancer (CRC) progression. First, clinical tissue samples of chemoresistant or chemosensitive CRC patients were collected to isolate R-CAFs or chemosensitive CAFs (S-CAFs), respectively. HT29 cells or HUVECs were co-cultured with R-CAFs by transwell device. Then the proliferation and apoptosis of HT29 cells were detected with Cell Counting Kit-8 (CCK-8) and flow cytometry. Transwell assay and tube formation assay was used to detect the migration and angiogenesis of HUVECs. In addition, a colorectal cancer transplantation model was established subcutaneously in nude mice by injecting stably transfected HT29 cells and exosomes from different CAF groups, and then the tumor volume and weight were measured and recorded. Hematoxylin and eosin staining, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) staining were performed to characterize the histopathological characteristics and apoptosis level of tumor tissues, respectively. S-CAFs and R-CAFs were isolated successfully. HT29 cell co-culture with R-CAFs significantly affected the proliferation and apoptosis of HT29 cells. Exosomes derived from R-CAFs (R-CAFs-Exo) were delivered to HT29 cells, which could induce viability, suppress apoptosis and accelerate the angiogenesis of CRC. In addition, VEGFA was highly expressed in R-CAFs-Exo, which might indicate that R-CAFs could transmit VEGFA through exosomes. Overexpressed VEGFA in R-CAFs apparently regulates the viability, apoptosis, DDP resistance, and angiogenesis of CRC. In-vivo experiments confirmed that R-CAFs-Exo promoted the progression of CRC and DDP resistance by delivering VEGFA . R-CAFs-derived exosomes promote the viability, apoptosis, DDP resistance, and angiogenesis of CRC by delivering VEGFA .
Collapse
|
10
|
Zhang L, Liu J, Deng M, Chen X, Jiang L, Zhang J, Tao L, Yu W, Qiu Y. Enterococcus faecalis promotes the progression of colorectal cancer via its metabolite: biliverdin. J Transl Med 2023; 21:72. [PMID: 36732757 PMCID: PMC9896694 DOI: 10.1186/s12967-023-03929-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Enterococcus faecalis (Efa) has been shown to be a "driver bacteria" in the occurrence and development of colorectal cancer (CRC). This study aims to explore the effect of specific metabolites of Efa on CRC. METHODS The pro-tumor effects of Efa were assessed in colonic epithelial cells. The tumor-stimulating molecule produced by Efa was identified using liquid chromatography mass spectrometry (LC-MS). The proliferative effect of metabolites on CRC cells in vitro was assayed as well. The concentration of vascular endothelial growth factor A (VEGFA) and interleukin-8 (IL-8) was determined using enzyme-linked immunosorbent assay (ELISA). Tubular formation assay of human umbilical vein endothelial cells (HUVEC) and cell migration assay were applied to study angiogenesis. Additionally, western blot analysis was used to investigate key regulatory proteins involved in the angiogenesis pathway. Tumor growth was assessed using mouse models with two CRC cells and human colon cancer organoid. RESULTS Co-incubation with the conditioned medium of Efa increased the proliferation of cultured CRC cells. Biliverdin (BV) was determined as the key metabolite produced by Efa using LC-MS screening. BV promoted colony formation and cell proliferation and inhibited cell cycle arrest of cultured CRC cells. BV significantly increased the expression level of IL-8 and VEGFA by regulating the PI3K/AKT/mTOR signaling pathway, leading to the acceleration of angiogenesis in CRC. The up-regulation of proliferation and angiogenesis by BV were also confirmed in mice. CONCLUSION In conclusion, BV, as the tumor-stimulating metabolite of Efa, generates proliferative and angiogenic effects on CRC, which is mainly mediated by the activation of PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Li Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Liu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingxia Deng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangliu Chen
- grid.417397.f0000 0004 1808 0985Department of Gastric Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lushun Jiang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Zhang
- grid.417401.70000 0004 1798 6507Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lisheng Tao
- grid.452247.2Department of Gastroenterology, The People’s Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Ma J, Chen J, Wang H, Lu D, Liang K. AhR regulates VEGF expression by promoting STAT1 transcriptional activity, thereby affecting endothelial angiogenesis in acute limb ischemia. Chem Biol Interact 2023; 369:110253. [PMID: 36347318 DOI: 10.1016/j.cbi.2022.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Angiogenesis has great potential in the treatment of acute limb ischemia (ALI). Here, we aimed to investigate the effect and mechanism of Aryl hydrocarbon receptor (AhR) on angiogenesis in ALI. METHODS The ALI mouse model was constructed by femoral artery ligation, and the cell ischemia injury was induced by Hypoxia/serum deprivation. The laser doppler perfusion imaging was executed to detect the limb blood flow velocity. The tube formation assay was performed to evaluate angiogenesis. The cell viability was measured by 3-(45)-dimethylthiahiazo(-z-y1)-35-di-phenytetrazoliumromide. The cell migration was detected by wound healing assay. Hematoxylin-eosin, immunohistochemistry, immunofluorescence, dual-luciferase reporter gene assay, and Chromatin immunoprecipitation assay were conducted. RESULTS In ALI models, AhR expression was increased and translocated from cytoplasm to nucleus. Besides, necrosis and inflammatory infiltration were also increased in gastrocnemius tissues of model mice. In addition, AhR loss (LV-sh-AhR) promoted cell viability, angiogenesis, and migration, and also elevated the levels of vascular endothelial growth factor (VEGF), Tie2, and Ang2 in HUVEC models with Hypoxia/serum deprivation injury. Meanwhile, the interaction between AhR and signal transducer and activator of transcription 1 (STAT1), as well as STAT1 and VEGF, has also been confirmed. Co-transfection of LV-sh-AhR and LV-STAT1 suppressed cell viability, angiogenesis, and migration of injured HUVECs. Furthermore, injection of AAV2/9-shAhR in vivo also promoted angiogenesis, which was consistent with the in vitro experimental results. CONCLUSIONS In ALI models, activated AhR was translocated to the nucleus and down-regulated VEGF expression by promoting the transcriptional activity of STAT1, thereby inhibiting endothelial angiogenesis.
Collapse
Affiliation(s)
- Jinhui Ma
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China.
| | - Jiangbo Chen
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Heng Wang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Danghui Lu
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Kai Liang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| |
Collapse
|
12
|
Comprehensive Computational Analysis of Honokiol Targets for Cell Cycle Inhibition and Immunotherapy in Metastatic Breast Cancer Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4172531. [PMID: 35845599 PMCID: PMC9286982 DOI: 10.1155/2022/4172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer stem cells (BCSCs) play a critical role in chemoresistance, metastasis, and poor prognosis of breast cancer. BCSCs are mostly dormant, and therefore, activating them and modulating the cell cycle are important for successful therapy against BCSCs. The tumor microenvironment (TME) promotes BCSC survival and cancer progression, and targeting the TME can aid in successful immunotherapy. Honokiol (HNK), a bioactive polyphenol isolated from the bark and seed pods of Magnolia spp., is known to exert anticancer effects, such as inducing cell cycle arrest, inhibiting metastasis, and overcoming immunotherapy resistance in breast cancer cells. However, the molecular mechanisms of action of HNK in BCSCs, as well as its effects on the cell cycle, remain unclear. This study aimed to explore the potential targets and molecular mechanisms of HNK on metastatic BCSC (mBCSC)-cell cycle arrest and the impact of the TME. Using bioinformatics analyses, we predicted HNK protein targets from several databases and retrieved the genes differentially expressed in mBCSCs from the GEO database. The intersection between the differentially expressed genes (DEGs) and the HNK-targets was determined using a Venn diagram, and the results were analyzed using a protein-protein interaction network, hub gene selection, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, genetic alteration analysis, survival rate, and immune cell infiltration levels. Finally, the interaction between HNK and two HNK-targets regulating the cell cycle was analyzed using molecular docking analysis. The identified potential therapeutic targets of HNK (PTTH) included CCND1, SIRT2, AURKB, VEGFA, HDAC1, CASP9, HSP90AA1, and HSP90AB1, which can potentially inhibit the cell cycle of mBCSCs. Moreover, our results showed that PTTH could modulate the PI3K/Akt/mTOR and HIF1/NFkB/pathways. Overall, these findings highlight the potential of HNK as an immunotherapeutic agent for mBCSCs by modulating the tumor immune environment.
Collapse
|
13
|
Li Q, Zhang L, Zhang Z, Wang Y, Zuo C, Bo S. A Shorter-Bout of HIIT Is More Effective to Promote Serum BDNF and VEGF-A Levels and Improve Cognitive Function in Healthy Young Men. Front Physiol 2022; 13:898603. [PMID: 35846013 PMCID: PMC9277476 DOI: 10.3389/fphys.2022.898603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to investigate the effects of single bouts of high-intensity interval training (HIIT) with different duration on serum brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor-A (VEGF-A) levels and cognitive function in healthy young men. Methods: Twelve healthy young men were participated in two HIIT treatments (20 min HIIT and 30 min HIIT) in a random order. BDNF, VEGF-A, cortisol, testosterone, blood lactic acid were measured and cognitive function was assessed by Stroop test (CWST) and Digital Span test (DST) before, immediately after, and 30 min after HIIT. Results: 20 and 30 min HIIT increased BLa (both p < 0.01), cortisol (20 min HIIT: p < 0.05; 30 min HIIT: p < 0.01), and testosterone (both p < 0.05) levels immediately when compared with their baselines. While BLa and cortisol were significantly higher in 30 min HIIT group than in 20 min HIIT group. Moreover, BDNF concentration (p < 0.01), DST-F (p < 0.01) and DST-B (p < 0.05) were increased and response time of Stroop was decreased immediately after HIIT only in 20 min HIIT group. VEGF-A concentration was increased immediately after HIIT in both groups (p < 0.01), but after 30 min recovery, it was returned to the baseline in the 20 min HIIT group and was lower than the baseline in 30 min HIIT group (p < 0.05). Conclusion: Twenty minutes HIIT is more effective than 30 minutes HIIT for promoting serum levels of BDNF and VEGF-A as well as cognitive function in healthy young men.
Collapse
Affiliation(s)
- Qing Li
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Li Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Zhengguo Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuhan Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chongwen Zuo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Shumin Bo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Shumin Bo,
| |
Collapse
|
14
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
16
|
Meena R, Nangia A, Sharma S, Chandra J. Serum Levels of Vascular Endothelial Growth Factor and Its Receptor in Newly Diagnosed Paediatric Acute Lymphoblastic Leukemia. Indian J Hematol Blood Transfus 2021; 37:586-592. [PMID: 34744342 PMCID: PMC8523739 DOI: 10.1007/s12288-021-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022] Open
Abstract
Autocrine and paracrine loop involving vascular endothelial growth factor (VEGF) and its receptor have been described in haematological malignancies. However, scarce literature is present on angiogenesis in paediatric acute lymphoblastic leukemia (ALL) with studies showing controversial results. The aim was to study serum levels of VEGF and its receptors in paediatric ALL at the time of diagnosis and at the end of induction phase and to compare these levels with clinico-haematological parameters in these patients. Serum VEGF, VEGFR-1 and VEGFR-2 levels were measured by enzyme-linked immunoabsorbant assay at diagnosis (day 0) and at the end of induction phase (day 35) in 30 newly diagnosed paediatric ALL patients and in 10 healthy controls. Median s-VEGF was significantly lower at day 0 as compared to day 35 (196.15 vs. 606.75 pg/ml: p < 0.001). s-VEGFR-1 levels were detectable only in 7 patients at day 0 and were below detection level at day 35 in all patients. Median s-VEGFR-2 at day 0 was significantly lower as compared to day 35 (17,577.5 vs. 20,507.5 pg/ml; p = 0.005). Median VEGF-R1 showed an inverse relationship with VEGF-R2 but was statistically insignificant. All patients were in remission at the end of induction. Thus, leukemic infiltration of bone marrow affects angiogenesis and reduces pro-angiogenic markers VEGF and VEGFR-2 in serum possibly due to increased local consumption by blasts. A successful induction leads to clearing of blasts causing restoration of normal hematopoiesis with normalization of VEGF and VEGFR-2 levels.
Collapse
Affiliation(s)
- Rachana Meena
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Anita Nangia
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Sunita Sharma
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Jagdish Chandra
- Department of Paediatrics, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
17
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer 2021; 20:4. [PMID: 33397425 PMCID: PMC7780637 DOI: 10.1186/s12943-020-01300-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5′ caps and 3′ poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and development of various diseases. With the rapid development of high-throughput sequencing technologies, increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration, metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongyan Lu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J Cancer 2020; 11:4474-4494. [PMID: 32489466 PMCID: PMC7255381 DOI: 10.7150/jca.44313] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is a significant event in a wide range of healthy and diseased conditions. This process frequently involves vasodilation and an increase in vascular permeability. Numerous players referred to as angiogenic factors, work in tandem to facilitate the outgrowth of endothelial cells (EC) and the consequent vascularity. Conversely, angiogenic factors could also feature in pathological conditions. Angiogenesis is a critical factor in the development of tumors and metastases in numerous cancers. An increased level of angiogenesis is associated with decreased survival in breast cancer patients. Therefore, a good understanding of the angiogenic mechanism holds a promise of providing effective treatments for breast cancer progression, thereby enhancing patients' survival. Disrupting the initiation and progression of this process by targeting angiogenic factors such as vascular endothelial growth factor (Vegf)-one of the most potent member of the VEGF family- or by targeting transcription factors, such as Hypoxia-Inducible Factors (HIFs) that act as angiogenic regulators, have been considered potential treatment options for several types of cancers. The objective of this review is to highlight the mechanism of angiogenesis in diseases, specifically its role in the progression of malignancy in breast cancer, as well as to highlight the undergoing research in the development of angiogenesis-targeting therapies.
Collapse
Affiliation(s)
- Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Stephanie Wang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Chinua O. Madu
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117. USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163. USA
| |
Collapse
|
20
|
Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T, Chen W. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis 2020; 11:55. [PMID: 31974361 PMCID: PMC6978425 DOI: 10.1038/s41419-020-2252-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Tumor angiogenesis is a hallmark of cancer and is involved in the tumorigenesis of solid tumors. B7-H3, an immune checkpoint molecule, plays critical roles in proliferation, metastasis and tumorigenesis in diverse tumors; however, little is known about the biological functions and molecular mechanism underlying B7-H3 in regulating colorectal cancer (CRC) angiogenesis. In this study, we first demonstrated that the expression of B7-H3 was significantly upregulated and was positively associated with platelet endothelial cell adhesion molecule-1 (CD31) level in tissue samples from patients with CRC. In addition, a series of in vitro and in vivo experiments showed that conditioned medium from B7-H3 knockdown CRC cells significantly inhibited the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs), whereas overexpression of B7-H3 had the opposite effect. Furthermore, B7-H3 promoted tumor angiogenesis by upregulating VEGFA expression. Recombinant VEGFA abolished the inhibitory effects of conditioned medium from shB7-H3 CRC cells on HUVEC angiogenesis, while VEGFA siRNA or a VEGFA-neutralizing antibody reversed the effects of conditioned medium from B7-H3-overexpressing CRC cells on HUVEC angiogenesis. Moreover, we verified that B7-H3 upregulated VEGFA expression and angiogenesis by activating the NF-κB pathway. Collectively, our findings identify the B7-H3/NF-κB/VEGFA axis in promoting CRC angiogenesis, which serves as a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Ruoqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanchao Ma
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Shenghua Zhan
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Lei Cao
- Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China. .,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
21
|
Elaimy AL, Amante JJ, Zhu LJ, Wang M, Walmsley CS, FitzGerald TJ, Goel HL, Mercurio AM. The VEGF receptor neuropilin 2 promotes homologous recombination by stimulating YAP/TAZ-mediated Rad51 expression. Proc Natl Acad Sci U S A 2019; 116:14174-14180. [PMID: 31235595 PMCID: PMC6628806 DOI: 10.1073/pnas.1821194116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling in tumor cells mediated by neuropilins (NRPs) contributes to the aggressive nature of several cancers, including triple-negative breast cancer (TNBC), independently of its role in angiogenesis. Understanding the mechanisms by which VEGF-NRP signaling contributes to the phenotype of such cancers is a significant and timely problem. We report that VEGF-NRP2 promote homologous recombination (HR) in BRCA1 wild-type TNBC cells by contributing to the expression and function of Rad51, an essential enzyme in the HR pathway that mediates efficient DNA double-strand break repair. Mechanistically, we provide evidence that VEGF-NRP2 stimulates YAP/TAZ-dependent Rad51 expression and that Rad51 is a direct YAP/TAZ-TEAD transcriptional target. We also discovered that VEGF-NRP2-YAP/TAZ signaling contributes to the resistance of TNBC cells to cisplatin and that Rad51 rescues the defects in DNA repair upon inhibition of either VEGF-NRP2 or YAP/TAZ. These findings reveal roles for VEGF-NRP2 and YAP/TAZ in DNA repair, and they indicate a unified mechanism involving VEGF-NRP2, YAP/TAZ, and Rad51 that contributes to resistance to platinum chemotherapy.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Charlotte S Walmsley
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Thomas J FitzGerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
22
|
Hebisz P, Hebisz R, Murawska-Ciałowicz E, Zatoń M. Changes in exercise capacity and serum BDNF following long-term sprint interval training in well-trained cyclists. Appl Physiol Nutr Metab 2018; 44:499-506. [PMID: 30286300 DOI: 10.1139/apnm-2018-0427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The study determined the effects of sprint interval training on the acute and chronic changes of serum brain-derived neurotrophic factor (BDNF) and aerobic capacity. Twenty-six cyclists were divided into experimental (E) and control groups. Both groups executed a 6-month exercise intervention involving high-intensity interval training (HIIT) and continuous endurance training (CET) with group E replacing HIIT and CET sessions with sprint interval training (SIT) that was executed twice a week. Two exercise tests were administered prior to the intervention and at 2 and 6 months after study outset. Incremental exercise test assessed aerobic capacity by measuring maximal oxygen uptake and work output; the sprint interval exercise test (SIXT) comprises 3 sets of four 30-s all-out repetitions interspersed with 90 s of rest with sets separated by 25-40 min of active recovery. Oxygen uptake, work output, BDNF, and vascular endothelial growth factor A (VEGF-A) concentrations (baseline, 10 min after first set, and 10 and 60 min after third SIXT set) were taken during the SIXT. Significant decreases in BDNF relative to baseline values were observed 10 min after the first set and 60 min after the third set in group E at the 2- and 6-month assessments. Increases in baseline VEGF-A after 2 and 6 months of training and increases in maximal oxygen uptake after 2 months of training were also observed only in group E. The inclusion of SIT with HIIT and CET shows positive long-term effects, including increased maximal oxygen uptake and baseline VEGF-A and a reduction in BDNF below baseline levels during and after SIXT.
Collapse
Affiliation(s)
- Paulina Hebisz
- Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland.,Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| | - Rafał Hebisz
- Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland.,Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland.,Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| | - Marek Zatoń
- Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland.,Department of Physiology and Biochemistry, University School of Physical Education in Wroclaw, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| |
Collapse
|
23
|
Zhong M, Zhang Y, Yuan F, Peng Y, Wu J, Yuan J, Zhu W, Zhang Y. High FNDC1 expression correlates with poor prognosis in gastric cancer. Exp Ther Med 2018; 16:3847-3854. [PMID: 30402143 DOI: 10.3892/etm.2018.6731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a common human cancer worldwide. Fibronectin is an important extracellular matrix protein that has been implicated in many cancers and is known to be associated with proliferation and migration. Fibronectin type III domain containing 1 (FNDC1) contains a major component of the structural domain of fibronectin. The objectives of the present study were to measure FNDC1 expression in gastric cancer tissues and evaluate its value as a potential prognostic marker for gastric cancer. FNDC1 protein expression was analyzed by immunohistochemistry in 98 samples of gastric cancer tissue and 25 adjacent normal tissues. The associations between FNDC1 level and various clinicopathological characteristics were assessed, and the correlation between FNDC1 expression levels and prognosis of patients with gastric cancer was analyzed using a Kaplan-Meier analysis. It was demonstrated that FNDC1 expression in gastric cancer tissues and adjacent tissues was significantly different. FNDC1 expression levels were significantly higher in gastric cancer tissues compared with normal gastric tissues (P<0.001). Among the clinicopathological characteristics evaluated, clinical stage (P<0.001), T classification (P<0.001), N classification (P<0.001) and pathological differentiation (P=0.044) were significantly associated with high FNDC1 expression. Higher FNDC1 expression level was significantly correlated with poorer survival. The present findings suggest that FNDC1 expression levels may be a promising prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Muxiao Zhong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijie Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fangfang Yuan
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yao Peng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jingjing Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiawei Yuan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
24
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
25
|
Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, Zhu LJ, Goel HL, Mercurio AM. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP β2-chimaerin. Sci Signal 2018; 11:11/528/eaao6897. [PMID: 29717062 DOI: 10.1126/scisignal.aao6897] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of vascular endothelial growth factor (VEGF) signaling in cancer is not only well known in the context of angiogenesis but also important in the functional regulation of tumor cells. Autocrine VEGF signaling mediated by its co-receptors called neuropilins (NRPs) appears to be essential for sustaining the proliferation and survival of cancer stem cells (CSCs), which are implicated in mediating tumor growth, progression, and drug resistance. Therefore, understanding the mechanisms involved in VEGF-mediated support of CSCs is critical to successfully treating cancer patients. The expression of the Hippo effector TAZ is associated with breast CSCs and confers stem cell-like properties. We found that VEGF-NRP2 signaling contributed to the activation of TAZ in various breast cancer cells, which mediated a positive feedback loop that promoted mammosphere formation. VEGF-NRP2 signaling activated the GTPase Rac1, which inhibited the Hippo kinase LATS, thus leading to TAZ activity. In a complex with the transcription factor TEAD, TAZ then bound and repressed the promoter of the gene encoding the Rac GTPase-activating protein (Rac GAP) β2-chimaerin. By activating GTP hydrolysis, Rac GAPs effectively turn off Rac signaling; hence, the TAZ-mediated repression of β2-chimaerin resulted in sustained Rac1 activity in CSCs. Depletion of β2-chimaerin in non-CSCs increased Rac1 activity, TAZ abundance, and mammosphere formation. Analysis of a breast cancer patient database revealed an inverse correlation between β2-chimaerin and TAZ expression in tumors. Our findings highlight an unexpected role for β2-chimaerin in a feed-forward loop of TAZ activation and the acquisition of CSC properties.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| | - Santosh Guru
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Lei CS, Hou YC, Pai MH, Lin MT, Yeh SL. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. J Nutr Biochem 2018; 51:105-113. [DOI: 10.1016/j.jnutbio.2017.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
|
27
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
28
|
Kim M, Jang K, Miller P, Picon-Ruiz M, Yeasky TM, El-Ashry D, Slingerland JM. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36:5199-5211. [PMID: 28504716 PMCID: PMC5596211 DOI: 10.1038/onc.2017.4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3'-untranslated region (3'-UTR). VEGFA stimulates Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression. Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also governs the metastatic process.
Collapse
Affiliation(s)
- M Kim
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K Jang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - P Miller
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Picon-Ruiz
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T M Yeasky
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D El-Ashry
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J M Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Cheung CY. Vascular Endothelial Growth Factor: Possible Role in Fetal Development and Placental Function. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769700400401] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Cecilia Y. Cheung
- Division of Perinatal Medicine, Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
30
|
Yuan X, Smith RJ, Guan H, Ionita CN, Khobragade P, Dziak R, Liu Z, Pang M, Wang C, Guan G, Andreadis S, Yang S. Hybrid Biomaterial with Conjugated Growth Factors and Mesenchymal Stem Cells for Ectopic Bone Formation. Tissue Eng Part A 2016; 22:928-39. [PMID: 27269204 DOI: 10.1089/ten.tea.2016.0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone is a highly vascularized tissue and efficient bone regeneration requires neovascularization, especially for critical-sized bone defects. We developed a novel hybrid biomaterial comprising nanocalcium sulfate (nCS) and fibrin hydrogel to deliver mesenchymal stem cells (MSCs) and angiogenic factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor 9 (FGF9), to promote neovascularization and bone formation. MSC and growth factor(s)-loaded scaffolds were implanted subcutaneously into mice to examine their angiogenic and osteogenic potential. Micro CT, alkaline phosphatase activity assay, and histological analysis were used to evaluate bone formation, while immunohistochemistry was employed to assess neovessel formation. The presence of fibrin preserved the nCS scaffold structure and promoted de novo bone formation. In addition, the presence of bone morphogenic protein 2-expressing MSC in nCS and fibrin hydrogels improved bone regeneration significantly. While FGF9 alone had no significant effect, the combination FGF9 and VEGF conjugated in fibrin enhanced neovascularization and bone formation more than 4-fold compared to nCS with MSC. Overall, our results suggested that the combination of nCS (to support bone formation) with a fibrin-based VEGF/FGF9 release system (support vascular formation) is an innovative and effective strategy that significantly enhanced ectopic bone formation in vivo.
Collapse
Affiliation(s)
- Xue Yuan
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Randall J Smith
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York
| | - Huiyan Guan
- 1 Department of Oral Biology, State University of New York , Buffalo, New York.,3 Department of Orthodontics, State University of New York , Buffalo, New York
| | - Ciprian N Ionita
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,4 Toshiba Stroke and Vascular Research Center, State University of New York , Buffalo, New York
| | - Parag Khobragade
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,4 Toshiba Stroke and Vascular Research Center, State University of New York , Buffalo, New York
| | - Rosemary Dziak
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Zunpeng Liu
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Manhui Pang
- 5 Clinical and Translational Research Center, State University of New York , Buffalo, New York
| | - Changdong Wang
- 1 Department of Oral Biology, State University of New York , Buffalo, New York
| | - Guoqiang Guan
- 3 Department of Orthodontics, State University of New York , Buffalo, New York
| | - Stelios Andreadis
- 2 Department of Biomedical Engineering, State University of New York , Buffalo, New York.,6 Department of Chemical and Biological Engineering, State University of New York , Buffalo, New York.,7 Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo, New York
| | - Shuying Yang
- 1 Department of Oral Biology, State University of New York , Buffalo, New York.,7 Center of Excellence in Bioinformatics and Life Sciences, State University of New York , Buffalo, New York
| |
Collapse
|
31
|
Liu XQ, Kiefl R, Roskopf C, Tian F, Huber RM. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression. PLoS One 2016; 11:e0156268. [PMID: 27232698 PMCID: PMC4883750 DOI: 10.1371/journal.pone.0156268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- Division of Respiratory Medicine and Thoracic Oncology, Medizinische Klinik V, Ludwig-Maximilians University (LMU), Thoracic Oncology Centre Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany.,Department of medical oncology, First people's hospital of Lianyungang city, Lianyungang, Jiangsu, China
| | - Rosemarie Kiefl
- Division of Respiratory Medicine and Thoracic Oncology, Medizinische Klinik V, Ludwig-Maximilians University (LMU), Thoracic Oncology Centre Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Claudia Roskopf
- Division of Hematooncology, Medizinische Klinik-Innenstadt, Ludwig-Maximilians University (LMU), Munich, Bavaria, Germany
| | - Fei Tian
- Division of Respiratory Medicine and Thoracic Oncology, Medizinische Klinik V, Ludwig-Maximilians University (LMU), Thoracic Oncology Centre Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Rudolf M Huber
- Division of Respiratory Medicine and Thoracic Oncology, Medizinische Klinik V, Ludwig-Maximilians University (LMU), Thoracic Oncology Centre Munich, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
32
|
Woad KJ, Robinson RS. Luteal angiogenesis and its control. Theriogenology 2016; 86:221-8. [PMID: 27177965 DOI: 10.1016/j.theriogenology.2016.04.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is critical to luteal structure and function. In addition, it is a complex and tightly regulated process. Not only does rapid and extensive angiogenesis occur to provide the corpus luteum with an unusually high blood flow and support its high metabolic rate, but in the absence of pregnancy, the luteal vasculature must rapidly regress to enable the next cycle of ovarian activity. This review describes a number of key endogenous stimulatory and inhibitory factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, although other factors such as vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor were important modulators in the control of luteal angiogenesis. Post-transcriptional regulation by small non-coding microRNAs is also likely to play a central role in the regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated activity of numerous factors expressed by several cell types at different times, and this review will also describe the role of perivascular pericytes and the importance of vascular maturation and stability. It is hoped that a better understanding of the critical processes underlying the transition from follicle to corpus luteum and subsequent luteal development will benefit the management of luteal function in the future.
Collapse
Affiliation(s)
- Kathryn J Woad
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
| | - Robert S Robinson
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
33
|
Sales CBS, Buim MEC, de Souza RO, de Faro Valverde L, Mathias Machado MC, Reis MG, Soares FA, Ramos EAG, Gurgel Rocha CA. Elevated VEGFA mRNA levels in oral squamous cell carcinomas and tumor margins: a preliminary study. J Oral Pathol Med 2016; 45:481-5. [PMID: 26861159 DOI: 10.1111/jop.12398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND New blood vessel formation events are essential for tumor clonal expansion and progression. Despite the importance of vascular endothelial growth factor A (VEGFA) for tumor angiogenesis, few studies have evaluated the expression profile of this gene in oral squamous cell carcinoma (OSCC) and tumor margins (TM). This study aimed to evaluate the expression of the VEGFA gene and its protein in OSCC and TM. METHODS Gene expression was evaluated in cryopreserved samples of OSCCs (n = 44), TM (n = 7), and normal mucosa from healthy patients (n = 3; NM). Quantitative PCRs were performed using the TaqMan system for the VEGFA gene, and gene expression was determined using the 2(-∆∆CQ) method. For immunohistochemical evaluation, 27 OSCC samples were embedded in a tissue microarray (TMA) block and reactions were performed using the Advance system. RESULTS VEGFA transcript levels were 1.7-fold higher in OSCC than in NM samples. VEGFA mRNA was overexpressed in TM samples compared to NM (3.4-fold) and OSCC (2.0-fold) samples. VEGFA transcript level was overexpressed in T3-T4 tumors, metastatic lymph nodes, and stage III-IV OSCCs. Immunoreactivity of the VEGFA protein was detected in the cytoplasm of parenchymal and stromal cells, mainly in endothelial cells and fibroblasts. CONCLUSION Our results show that VEGFA was overexpressed in aggressive OSCCs and that VEGFA expression may be an important prognostic factor in this type of cancer. Finally, tumor margins may be involved in the production of angiogenic molecules.
Collapse
Affiliation(s)
| | | | | | - Ludmila de Faro Valverde
- Oswaldo Cruz Foudation, Gonçalo Moniz Research Center, Laboratory of Pathology and Molecular Biology, Salvador, Brazil
| | - Maria Cecília Mathias Machado
- Oswaldo Cruz Foudation, Gonçalo Moniz Research Center, Laboratory of Pathology and Molecular Biology, Salvador, Brazil
| | - Mitermayer Galvão Reis
- Federal University of Bahia, Salvador, Brazil.,Oswaldo Cruz Foudation, Gonçalo Moniz Research Center, Laboratory of Pathology and Molecular Biology, Salvador, Brazil
| | | | - Eduardo Antônio Gonçalves Ramos
- Federal University of Bahia, Salvador, Brazil.,Oswaldo Cruz Foudation, Gonçalo Moniz Research Center, Laboratory of Pathology and Molecular Biology, Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Federal University of Bahia, Salvador, Brazil.,Oswaldo Cruz Foudation, Gonçalo Moniz Research Center, Laboratory of Pathology and Molecular Biology, Salvador, Brazil
| |
Collapse
|
34
|
Drolet DW, Green LS, Gold L, Janjic N. Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Ther 2016; 26:127-46. [PMID: 26757406 PMCID: PMC4900223 DOI: 10.1089/nat.2015.0573] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For any new class of therapeutics, there are certain types of indications that represent a natural fit. For nucleic acid ligands in general, and aptamers in particular, the eye has historically been an attractive site for therapeutic intervention. In this review, we recount the discovery and early development of three aptamers designated for use in ophthalmology, one approved (Macugen), and two in late-stage development (Fovista and Zimura). Every one of these molecules was originally intended for other indications. Key improvements in technology, specifically with regard to libraries used for in vitro selection and subsequent chemical optimization of aptamers, have played an important role in allowing the identification of development candidates with suitable properties. The lessons learned from the selection of these molecules are valuable for informing us about the many remaining opportunities for aptamer-based therapeutics in ophthalmology as well as for identifying additional indications for which aptamers as a class of therapeutics have distinct advantages.
Collapse
|
35
|
Lin LX, Wang P, Wang YT, Huang Y, Jiang L, Wang XM. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model. Mol Med Rep 2015; 13:1070-6. [PMID: 26677006 DOI: 10.3892/mmr.2015.4681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.
Collapse
Affiliation(s)
- Li-Xin Lin
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Peng Wang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yu-Ting Wang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yong Huang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Lei Jiang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xue-Ming Wang
- Department of Plastic and Aesthetic Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
36
|
Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015; 80:115-125. [PMID: 26453501 PMCID: PMC4657151 DOI: 10.1016/j.bone.2015.02.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 12/29/2022]
Abstract
An active lifestyle is crucial to maintain health into old age; inversely, sedentariness has been linked to an elevated risk for many chronic diseases. The discovery of myokines, hormones produced by skeletal muscle tissue, suggests the possibility that these might be molecular mediators of the whole body effects of exercise originating from contracting muscle fibers. Even though less is known about the sedentary state, the lack of contraction-induced myokines or the production of a distinct set of hormones in the inactive muscle could likewise contribute to pathological consequences in this context. In this review, we try to summarize the most recent developments in the study of muscle as an endocrine organ and speculate about the potential impact on our understanding of exercise and sedentary physiology, respectively. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Svenia Schnyder
- Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015; 20:660-73. [PMID: 26001391 DOI: 10.1634/theoncologist.2014-0465] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. IMPLICATIONS FOR PRACTICE Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Collapse
Affiliation(s)
- Yujie Zhao
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
38
|
Kipryushina YO, Yakovlev KV, Odintsova NA. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates. Cytokine Growth Factor Rev 2015; 26:687-95. [PMID: 26066416 DOI: 10.1016/j.cytogfr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia.
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia
| |
Collapse
|
39
|
Zarezade N, Saboori Darabi S, Ramezanali F, Amirchaghmaghi E, Khalili G, Moini A, Aflatoonian R. mRNA expression of VEGF and its receptors in fallopian tubes of women with ectopic pregnancies. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 9:55-64. [PMID: 25918593 PMCID: PMC4410038 DOI: 10.22074/ijfs.2015.4209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/11/2014] [Indexed: 11/06/2022]
Abstract
BACKGROUND Establishment of viable pregnancy requires embryo implantation and placentation. Ectopic pregnancy (EP) is a pregnancy complication which occurs when an embryo implants outside of the uterine cavity, most often in a fallopian tube. On the other hand, an important aspect of successful implantation is angiogenesis. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor responsible for vascular development that acts through its receptors, VEGF receptor 1 (VEGFR1) and VEGFR2. This study aims to investigate mRNA expression of VEGF and its receptors in fallopian tubes of women who have EP compared with fallopian tubes of pseudo-pregnant women. We hypothesize that expression of VEGF and its receptors in human fallopian tubes may change during EP. MATERIALS AND METHODS This was a case-control study. The case group consisted of women who underwent salpingectomy because of EP. The control group consisted of women with normal fallopian tubes that underwent hysterectomy. Prior to tubal sampling, each control subject received an injection of human chorionic gonadotropin (hCG) to produce a state of pseudo-pregnancy. Fallopian tubes from both groups were procured. We investigated VEGF, VEGFR1 and VEGFR2 mRNA expressions in different sections of these tubes (infundibulum, ampulla and isthmus) by reverse transcription polymerase chain reaction (RT-PCR) and quantitative PCR (Q-PCR). RESULTS RT-PCR showed expressions of these genes in all sections of the fallopian tubes in both groups. Q-PCR analysis revealed that expressions of VEGF, VEGFR1 and VEGFR2 were lower in all sections of the fallopian tubes from the case group compared to the controls. Only VEGFR2 had higher expression in the ampulla of the case group. CONCLUSION Decreased expressions of VEGF, VEGFR1 and VEGFR2 in the EP group may have a role in the pathogenesis of embryo implantation in fallopian tubes.
Collapse
Affiliation(s)
- Nafise Zarezade
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Payame Noor University, Tehran, Iran
| | - Samane Saboori Darabi
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Payame Noor University, Tehran, Iran
| | - Fariba Ramezanali
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Amirchaghmaghi
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Gholamreza Khalili
- Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for
Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
40
|
Kim SK, Park SG, Kim KW. Expression of vascular endothelial growth factor in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2015; 41:11-8. [PMID: 25741463 PMCID: PMC4347029 DOI: 10.5125/jkaoms.2015.41.1.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The goal of this study was to determine the correlation of clinicopathological factors and the up-regulation of vascular endothelial growth factor (VEGF) expression in oral squamous cell carcinoma. MATERIALS AND METHODS Immunohistochemical staining of VEGF and quantitative real-time polymerase chain reaction (RT-PCR) of VEGF mRNA were performed in 20 specimens from 20 patients with oral squamous cell carcinoma and another 20 specimens from 20 patients with carcinoma in situ as a controlled group. RESULTS The results were as follows: 1) In immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, high-level staining of VEGF was observed. Significant correlation was observed between immunohistochemical VEGF expression and histologic differentiation, tumor size of specimens (Pearson correlation analysis, significance r>0.6, P<0.05). 2) In VEGF quantitative RT-PCR analysis, progressive cancer showed more VEGF expression than carcinoma in situ. Paired-samples analysis determined the difference of VEGF mRNA expression level between cancer tissue and carcinoma in situ tissue, between T1 and T2-4 (Student's t-test, P<0.05). CONCLUSION These findings suggest that up-regulation of VEGF may play a role in the angiogenesis and progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Seok-Kon Kim
- Department of Anesthesiology and Pain Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Seung-Goo Park
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea
| | - Kyung-Wook Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea
| |
Collapse
|
41
|
Smith RJ, Koobatian MT, Shahini A, Swartz DD, Andreadis ST. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials 2015; 51:303-312. [PMID: 25771020 PMCID: PMC4361797 DOI: 10.1016/j.biomaterials.2015.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 02/09/2023]
Abstract
We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-L-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm2) to physiological (15 dyne/cm2). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Maxwell T Koobatian
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Daniel D Swartz
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Department of Pediatrics, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA.
| |
Collapse
|
42
|
Abdel-Rahman O, Fouad M. Bevacizumab-based combination therapy for advanced gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a systematic review of the literature. J Cancer Res Clin Oncol 2015; 141:295-305. [PMID: 24990591 DOI: 10.1007/s00432-014-1757-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) consist of a large heterogeneous group of epithelial tumors with neuroendocrine differentiation that arises in gastrointestinal tract and pancreatic tissues. Advanced GEP-NENs are considered distinct disease entity with limited approved treatment options and poor prognosis. So, we will explore in this systematic review the value of using bevacizumab-based combination in this subset of NENs. METHODS PubMed, Medline, the Cochrane Library, trip database and Google Scholar were searched using the terms "GEP-NENs" OR "Gastroenteropancreatic neuroendocrine tumors" AND "systemic anticancer therapy" AND "Bevacizumab" and selecting only the English literature. Outcomes of interest included progression-free survival and overall survival (PFS and OS), tumor response and toxicities. RESULTS A total of 17 potentially relevant trials were identified, of which eight studies were excluded. Hence, nine trials involving 320 patients were included. Median PFS was reported in eight out of the nine studies ranging from 8.2 to 16.5 months. Median OS was reported in one study, and it was 33.3 months for the whole group. The disease control rate was reported in the seven studies, and it ranged from 80 to 96%. The overall response rate was reported in eight studies, and it ranged from 0 to 64%. Frequently reported grade 3/4 toxicities were gastrointestinal toxicities, mucocutaneous toxicities and hematologic toxicities (particularly leucopenia). CONCLUSIONS The current evidence from the available clinical trials suggests that bevacizumab in combination with some other anticancer agents (especially mTOR inhibitors and interferons) could be a more effective and tolerable treatment for advanced GEP-NENs in the future. However, such bevacizumab-based combination cannot be recommended outside the setting of clinical trials.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Lotfy Elsayed Street, 11665, Cairo, Egypt,
| | | |
Collapse
|
43
|
Abdel-Rahman O. Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects. Crit Rev Oncol Hematol 2015; 93:18-27. [PMID: 24970311 DOI: 10.1016/j.critrevonc.2014.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
The prognosis of advanced gastric cancer has been dreadful with the majority of patients dying of their disease within 1 year of the diagnosis. In the advanced stage several therapeutic options can be discussed, including molecular targeted agents, but biological predicting factors are lacking. A number of molecular targets have been studied over the last decade bringing to several phase II studies; however very few agents moved into phase III clinical trials. The VEGFR-2 inhibitor monoclonal antibody ramucirumab has been recently approved in advanced progressing gastric cancer. This article reviews the basic science as well as clinical data of VEGF signaling in advanced gastric cancer with special emphasis on the different VEGF targeting agents tested previously in this disease.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
44
|
Abdel-Rahman O. Vascular endothelial growth factor (VEGF) pathway and neuroendocrine neoplasms (NENs): prognostic and therapeutic considerations. Tumour Biol 2014; 35:10615-25. [PMID: 25230786 DOI: 10.1007/s13277-014-2612-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) consist of a large heterogeneous group of epithelial tumors with neuroendocrine differentiation, as proved by immune reactivity for neuroendocrine markers. From the very first studies of vascular endothelial growth factor (VEGF) pathway, VEGF has been considered an important prognostic marker in NENs. Consequently, a number of preclinical experiences and clinical trials have examined the efficacy of VEGF-targeted therapeutics in NENs. Bevacizumab and sorafenib were clinically tested in NENs and they showed modest activity, while on the other hand, they present significant toxicity problems. More interesting in gastroenteropancreatic (GEP)-NENs seems to be the demonstrated efficacy of sunitinib. Preclinical as well as clinical sunitinib data in this regard provide a new hope in that direction. The use of other novel VEGF-targeted agents like aflibercept as well as VEGFR-TKI is being investigated in a number of phase II studies; the results of which are greatly awaited. Additionally, the use of potential biomarkers to select patients for VEGF-targeted therapy may be considered for further clinical evaluation. Thus, this article reviews the basic science as well as clinical data of VEGF signaling in advanced NENs with special emphasis on the different VEGF-targeting agents tested previously in this disease and the future prospective in that field.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Lotfy Elsayed street, Cairo, 113331, Egypt,
| |
Collapse
|
45
|
Terashima J, Tachikawa C, Kudo K, Habano W, Ozawa S. An aryl hydrocarbon receptor induces VEGF expression through ATF4 under glucose deprivation in HepG2. BMC Mol Biol 2013; 14:27. [PMID: 24330582 PMCID: PMC3866938 DOI: 10.1186/1471-2199-14-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/06/2013] [Indexed: 01/22/2023] Open
Abstract
Background Aryl hydrocarbon receptor (AhR) not only regulates drug-metabolizing enzyme expression but also regulates cancer malignancy. The steps to the development of malignancy include angiogenesis that is induced by tumor microenvironments, hypoxia, and nutrient deprivation. Vascular endothelial growth factor (VEGF) plays a central role in the angiogenesis of cancer cells, and it is induced by activating transcription factor 4 (ATF4). Results Recently, we identified that glucose deprivation induces AhR translocation into the nucleus and increases CYP1A1 and 1A2 expression in HepG2 cells. Here, we report that the AhR pathway induces VEGF expression in human hepatoblastoma HepG2 cells under glucose deprivation, which involves ATF4. ATF4 knockdown suppressed VEGF expression under glucose deprivation. Moreover, AhR knockdown suppressed VEGF and ATF4 expression under glucose deprivation at genetic and protein levels. Conclusions The AhR-VEGF pathway through ATF4 is a novel pathway in glucose-deprived liver cancer cells that is related to the microenvironment within a cancer tissue affecting liver cancer malignancy.
Collapse
Affiliation(s)
- Jun Terashima
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun 028-3694, Iwate, Japan.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The function of vascular endothelial growth factor (VEGF) in cancer is not limited to angiogenesis and vascular permeability. VEGF-mediated signalling occurs in tumour cells, and this signalling contributes to key aspects of tumorigenesis, including the function of cancer stem cells and tumour initiation. In addition to VEGF receptor tyrosine kinases, the neuropilins are crucial for mediating the effects of VEGF on tumour cells, primarily because of their ability to regulate the function and the trafficking of growth factor receptors and integrins. This has important implications for our understanding of tumour biology and for the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
47
|
Gammons MVR, Dick AD, Harper SJ, Bates DO. SRPK1 inhibition modulates VEGF splicing to reduce pathological neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2013; 54:5797-806. [PMID: 23761094 PMCID: PMC6485497 DOI: 10.1167/iovs.13-11634] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We tested the hypothesis that recombinant human VEGF-A165b and the serine arginine protein kinase (SRPK) inhibitor, SRPIN340, which controls splicing of the VEGF-A pre-mRNA, prevent neovascularization in a rodent model of retinopathy of prematurity (ROP). METHODS In the 50/10 oxygen-induced retinopathy (50/10 OIR) model that exposes newborn rats to repeated cycles of 24 hours of 50% oxygen alternating with 24 hours of 10% oxygen, pups received intraocular injections of SRPIN340, vehicle, VEGF165b, anti-VEGF antibody, or saline. Whole mounts of retinas were prepared for isolectin immunohistochemistry, and preretinal or intravitreal neovascularization (PRNV) determined by clock hour analysis. RESULTS The anti-VEGF antibody (P < 0.04), rhVEGF165b (P < 0.001), and SRPIN340 (P < 0.05) significantly reduced PRNV compared with control eyes. SRPIN340 reduced the expression of proangiogenic VEGF165 without affecting VEGF165b expression. CONCLUSIONS These results suggest that splicing regulation through selective downregulation of proangiogenic VEGF isoforms (via SRPK1 inhibition) or competitive inhibition of VEGF signaling by rhVEGF165b has the potential to be an effective alternative to potential cyto- and neurotoxic anti-VEGF agents in the treatment of pathological neovascularization in the eye.
Collapse
Affiliation(s)
- Melissa V R Gammons
- Microvascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
48
|
Douglas TE, Pamula E, Leeuwenburgh SC. Biomimetic Mineralization of Hydrogel Biomaterials for Bone Tissue Engineering. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Douglas TE, Skwarczynska A, Modrzejewska Z, Balcaen L, Schaubroeck D, Lycke S, Vanhaecke F, Vandenabeele P, Dubruel P, Jansen JA, Leeuwenburgh SC. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase. Int J Biol Macromol 2013; 56:122-32. [DOI: 10.1016/j.ijbiomac.2013.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/17/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
|
50
|
Chouhan VS, Panda RP, Yadav VP, Babitha V, Khan FA, Das GK, Gupta M, Dangi SS, Singh G, Bag S, Sharma GT, Berisha B, Schams D, Sarkar M. Expression and Localization of Vascular Endothelial Growth Factor and its Receptors in the Corpus Luteum During Oestrous Cycle in Water Buffaloes(Bubalus bubalis). Reprod Domest Anim 2013; 48:810-8. [DOI: 10.1111/rda.12168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
- VS Chouhan
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - RP Panda
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - VP Yadav
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - V Babitha
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - FA Khan
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program; University of Florida; Gainesville; FL; USA
| | - GK Das
- Animal Reproduction Division; Indian Veterinary Research Institute; Bareilly; India
| | - M Gupta
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - SS Dangi
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - G Singh
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - S Bag
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - GT Sharma
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| | - B Berisha
- Faculty of Agriculture and Veterinary; University of Prishtina; Prishtinë; Kosovo
| | - D Schams
- Physiology Weihenstephan; Technical University Munich; Freising; Germany
| | - M Sarkar
- Physiology & Climatology; Indian Veterinary Research Institute; Bareilly; India
| |
Collapse
|