1
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
2
|
Shpakov AO, Pertseva MN. Use of Peptide Strategy for Study of Molecular Mechanisms of Hormonal Signal Transduction into Cell. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Andrade Ferreira I, Akkerman JWN. IRS-1 and Vascular Complications in Diabetes Mellitus. VITAMINS AND HORMONES 2005; 70:25-67. [PMID: 15727801 DOI: 10.1016/s0083-6729(05)70002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The expected explosive increase in the number of patients with diabetes mellitus will increase the stress on health care. Treatment is focused on preventing vascular complications associated with the disorder. In order to develop better treatment regimens, the field of research has made a great effort in understanding this disorder. This chapter summarizes the current views on the insulin signaling pathway with emphasis on intracellular signaling events associated with insulin resistance, which lead to the prothrombotic condition in the vasculature of patience with diabetes mellitus.
Collapse
Affiliation(s)
- I Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
4
|
Waters C, Pyne S, Pyne NJ. The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol 2004; 15:309-23. [PMID: 15125894 DOI: 10.1016/j.semcdb.2003.12.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that stimulation of G-protein coupled receptors (GPCRs) can activate signalling from receptor tyrosine kinases by a process termed transactivation. Indeed, in recent years, it has become apparent that transactivation is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case the GPCR/G-protein participation is up-stream of the receptor tyrosine kinase. Substantial research has addressed these findings but meanwhile another mechanism of cross talk has been slowly emerging. For over a decade, a growing body of evidence has demonstrated that numerous growth factors use G-proteins and attendant signalling molecules such as beta-arrestins that participate down-stream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This review highlights this novel mechanism of cross talk between receptor tyrosine kinases and GPCRs, which is distinct from growth factor receptor transactivation by GPCRs.
Collapse
Affiliation(s)
- Catherine Waters
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, Scotland, UK
| | | | | |
Collapse
|
5
|
Russ M, Reinauer H, Eckel J. Regulation of cardiac insulin receptor function by guanosine nucleotides. FEBS Lett 2001. [DOI: 10.1016/0014-5793(92)81464-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Russ M, Reinauer H, Eckel J. Regulation of cardiac insulin receptor function by guanosine nucleotides. FEBS Lett 2001. [DOI: 10.1016/0014-5793(93)81518-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Willard FS, Crouch MF. Nuclear and cytoskeletal translocation and localization of heterotrimeric G-proteins. Immunol Cell Biol 2000; 78:387-94. [PMID: 10947863 DOI: 10.1046/j.1440-1711.2000.00927.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric GTP-binding proteins (G-proteins) are involved in a diverse array of signalling pathways. They are generally thought to be membrane-bound proteins, which disassociate on receptor activation and binding of GTP. A model to explain this has been proposed, which is often described as 'the G-protein cycle'. The 'G-protein cycle' is discussed in the present paper in relation to evidence that now exists regarding the non- membranous localization of G-proteins. Specifically, the experimental evidence demonstrating association of G-proteins with the cytoskeleton and the nucleus, and the mechanisms by which G-proteins translocate to these sites are reviewed. Furthermore, the possible effector pathways and the physiological function of G-proteins at these sites are discussed.
Collapse
Affiliation(s)
- F S Willard
- Molecular Signalling Group, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
8
|
Dai LJ, Ritchie G, Bapty BW, Kerstan D, Quamme GA. Insulin stimulates Mg2+ uptake in mouse distal convoluted tubule cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F907-13. [PMID: 10600938 DOI: 10.1152/ajprenal.1999.277.6.f907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin has been shown to be a magnesium-conserving hormone acting, in part, through stimulation of magnesium absorption within the thick ascending limb. Although the distal convoluted tubule possesses the most insulin receptors, it is unclear what, if any, actions insulin has in the distal tubule. The effects of insulin were studied on immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg2+ uptake with fluorescence techniques using mag-fura 2. To assess Mg2+ uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by culturing in Mg2+-free media for 16 h and then placed in 1.5 mM MgCl2, and the changes in intracellular Mg2+ concentration ([Mg2+]i) were measured with microfluorescence. [Mg2+]i returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg2+]i)/dt, of 164 +/- 5 nM/s. Insulin stimulated Mg2+ entry in a concentration-dependent manner with maximal response of 214 +/- 12 nM/s, which represented a 30 +/- 5% increase in the mean uptake rate above control values. This was associated with a 2.5-fold increase in insulin-mediated cAMP generation (52 +/- 3 pmol. mg protein(-1). 5 min(-1)). Genistein, a tyrosine kinase inhibitor, diminished insulin-stimulated Mg2+ uptake (169 +/- 11 nM/s), but did not change insulin-mediated cAMP formation (47 +/- 5 pmol. mg protein(-1). 5 min(-1)). PTH stimulates Mg2+ entry, in part, through increases in cAMP formation. Insulin and PTH increase Mg2+ uptake in an additive fashion. In conclusion, insulin mediates Mg2+ entry, in part, by a genistein-sensitive mechanism and by modifying hormone-responsive transport. These studies demonstrate that insulin stimulates Mg2+ uptake in MDCT cells and suggest that insulin acts in concert with other peptide and steroid hormones to control magnesium conservation in the distal convoluted tubule.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Koerner Pavilion, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
9
|
An Intimate Biochemistry: Egg-Regulated Acrosome Reactions of Mammalian Sperm. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1064-2722(08)60021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Kahn NN. Insulin-induced expression of prostacyclin receptors on platelets is mediated through ADP-ribosylation of Gi alpha protein. Life Sci 1998; 63:2031-8. [PMID: 9839547 DOI: 10.1016/s0024-3205(98)00481-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding of insulin in physiological amounts to human blood platelets, which increases adenylate cyclase-linked prostacyclin receptor numbers on the cell surface, was found to be directly related to the ADP-ribosylation of the Gi alpha. Conversely, resuspension of the insulin-treated platelets in the hormone-free medium decreased both the prostaglandin receptor numbers and ADP-ribosylation of Gi alpha. Furthermore, incubation of platelets with pertussis toxin or its A-protomer, which ADP-ribosylates Gi alpha, also stimulated the binding of the prostanoid. These results suggest that the increase of prostacyclin receptor numbers in platelets is mediated through the ADP-ribosylation of Gi alpha.
Collapse
Affiliation(s)
- N N Kahn
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
11
|
Ramalingam TS, Chakrabarti A, Edidin M. Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Mol Biol Cell 1997; 8:2463-74. [PMID: 9398668 PMCID: PMC25720 DOI: 10.1091/mbc.8.12.2463] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1997] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
Insulin receptor (IR) and class I major histocompatibility complex molecules associate with one another in cell membranes, but the functional consequences of this association are not defined. We found that IR and human class I molecules (HLA-I) associate in liposome membranes and that the affinity of IR for insulin and its tyrosine kinase activity increase as the HLA:IR ratio increases over the range 1:1 to 20:1. The same relationship between HLA:IR and IR function was found in a series of B-LCL cell lines. The association of HLA-I and IR depends upon the presence of free HLA heavy chains. All of the effects noted were reduced or abrogated if liposomes or cells were incubated with excess HLA-I light chain, beta2-microglobulin. Increasing HLA:IR also enhanced phosphorylation of insulin receptor substrate-1 and the activation of phosphoinositide 3-kinase. HLA-I molecules themselves were phosphorylated on tyrosine and associated with phosphoinositide 3-kinase when B-LCL were stimulated with insulin.
Collapse
Affiliation(s)
- T S Ramalingam
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
12
|
Stryjek-Kaminska D, Piiper A, Zeuzem S. Epidermal growth factor regulates adenylate cyclase activity via Gs and Gi1-2 proteins in pancreatic acinar membranes. Biochem J 1996; 316 ( Pt 1):87-91. [PMID: 8645237 PMCID: PMC1217354 DOI: 10.1042/bj3160087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, Western-blot and radioreceptor analyses have revealed the presence of the epidermal growth factor (EGF) receptor in pancreatic acinar membranes. Isolated pancreatic acinar membranes, which allow access of functional antibodies to individual components of the signal transduction cascade, were used to examine EGF-induced regulation of adenylate cyclase activity. Forskolin, vasoactive intestinal peptide (VIP) and to a smaller extent EGF increased cAMP production in pancreatic acinar membranes. Preincubation of the membranes with anti-GS alpha antibody abolished EGF- and VIP-induced cAMP production, but had no effect on forskolin-induced cAMP accumulation. In the presence of either VIP or forskolin, EGF inhibited the VIP- and forskolin-induced cAMP production with an IC50 of 5 nM. Anti-G alpha i1-2 protein antibody, but not anti-G alpha i3 antibody, increased basal cAMP production, indicating that Gi proteins exert an inhibitory influence on basal adenylate cyclase activity. Anti-G alpha i1-2 antibody, but not anti-G alpha i3 antibody, abolished the inhibitory effect of EGF on the forskolin- and VIP-induced cAMP accumulation. A peptide corresponding to the juxtamembrane region in the cytosolic domain of the rat EGF receptor increased cAMP production in pancreatic acinar membranes in an anti-G alpha s antibody-sensitive fashion, whereas the EGF receptor peptide did not mimic the inhibitory effect of the native EGF receptor. The tyrosine kinase inhibitors genistein and pp60v-src (137-157) inhibited both the stimulatory and the inhibitory effects of EGF on cAMP production. Thus the data of the present study show that EGF regulates adenylate cyclase via activation of Gs and Gi proteins by a tyrosine phosphorylation-dependent mechanism in pancreatic acinar membranes. This leads to stimulation of basal and inhibition of forskolin- and VIP-induced adenylate cyclase activity respectively.
Collapse
Affiliation(s)
- D Stryjek-Kaminska
- II. Medical Department, University of Frankfurt, Frankfurt/Main, Federal Republic of Germany
| | | | | |
Collapse
|
13
|
Lajas AI, Pozo MJ, Salido GM, Singh J, Pariente JA. Secretory activity and trophic effects of epidermal growth factor in the rat pancreas. Arch Physiol Biochem 1996; 104:293-9. [PMID: 8793020 DOI: 10.1076/apab.104.3.293.12909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was to investigate whether epidermal growth factor (EGF) may induce any long-term effect on pancreatic exocrine function in vivo as well to evaluate the chronic effects of EGF on pancreatic growth in rats. Rats were treated with EGF (10 micrograms/kg) for 5 or 7 days. EGF infused intravenously (2 micrograms/kg/h) in anaesthetized and pretreated rats for 5 or 7 days with EGF caused a slight decline flow rate after 1 h of EGF infusion compared to control values. In contrast, EGF evoked a increase in amylase secretion. This stimulatory effect was much larger in EGF-pretreated rats for 7 days, whereas the total protein output was unchanged. The trophic parameters which include pancreatic weight, total protein and total contents of DNA and RNA relative to body weight were not significantly different in any treated group. Only the pancreatic amylase content was increased significantly after 7 days of treatment with EGF. The present study fails to observe a stimulatory role of EGF on pancreatic growth in rats, but may participate in the regulation of pancreatic exocrine function in vivo.
Collapse
Affiliation(s)
- A I Lajas
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
14
|
Stryjek-Kaminska D, Piiper A, Caspary WF, Zeuzem S. Epidermal growth factor inhibits hormone- and fibroblast growth factor-induced activation of phospholipase C in rat pancreatic acini. Peptides 1995; 16:123-8. [PMID: 7536322 DOI: 10.1016/0196-9781(94)00164-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epidermal growth factor (EGF) inhibits cholecystokinin-octapeptide-stimulated amylase release and inositol 1,4,5-trisphosphate (1,4,5-IP3) production in isolated rat pancreatic acini. In the present study, pancreatic acini were used to investigate the effect of EGF on amylase release and 1,4,5-IP3 production induced by secretagogues that activate either phospholipase C-beta (carbachol, bombesin) or phospholipase C-gamma [basic fibroblast growth factor (bFGF)]. The results show that EGF (100 ng/ml) inhibited bombesin (0.1 nM-1 microM)-induced amylase release almost completely. Similarly, the effect of EGF on carbachol-stimulated amylase release was substantial at submaximal (0.1 microM: 44% inhibition), maximal (1 microM: 75% inhibition), and supramaximal (100 microM: 33% inhibition) carbachol concentrations. EGF reduced amylase release at submaximal bFGF concentrations (0.1 nM: 40% inhibition), but not at supramaximal bFGF concentrations (1 and 10 nM). EGF decreased the peak increase of 1,4,5-IP3 in response to bombesin and carbachol (5 s after beginning of the incubation) and bFGF (15 s after beginning of the incubation) by 81 +/- 19%, 65 +/- 15%, and 56 +/- 18%, respectively. Receptor binding characteristics for secretagogues that activate phospholipase C were not influenced by coincubation with EGF excluding heterologous transmembrane receptor modulation. These results suggest that EGF inhibits the action of phospholipase C-beta- and gamma-isoenzyme-activating secretagogues in the exocrine pancreas by a postreceptor mechanism.
Collapse
|
15
|
Basson MD, Beidler DR, Turowski G, Zarif A, Modlin IM, Jena BP, Madri JA. Effect of tyrosine kinase inhibition on basal and epidermal growth factor-stimulated human Caco-2 enterocyte sheet migration and proliferation. J Cell Physiol 1994; 160:491-501. [PMID: 8077287 DOI: 10.1002/jcp.1041600312] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mucosal healing requires enterocyte migration (restitution) supplemented by proliferation. Proliferation and migration may be studied independently by thymidine uptake and proliferation-blocked cell migration using human Caco-2 enterocyte monolayers in culture. Since epidermal growth factor (EGF) promotes mucosal healing and the EGF receptor is a tyrosine kinase, we hypothesized that tyrosine kinases might therefore modulate enterocyte migration and proliferation. The tyrosine kinase inhibitors genistein and 2,5-dihydroxymethylcinnamate, which block kinase ATP-binding and substrate-binding sites, respectively, were studied alone and with EGF. Proliferation was blocked with mitomycin. Although each inhibitor decreased basal and EGF-stimulated monolayer expansion when cell proliferation occurred, neither genistein nor 2,5-dihydroxymethylcinnamate decreased migration when proliferation was blocked. However, each inhibitor prevented EGF stimulation of proliferation-blocked migration and thymidine uptake. More substantial inhibition of basal proliferation by genistein correlated with increased protein-linked DNA breaks, which may reflect nonspecific inhibition of DNA topoisomerase activity by genistein. The more specific 2,5-dihydroxymethylcinnamate blocked changes in the alpha 2 integrin subunit organization which may modulate EGF-stimulated migration. Antiproliferative effects of tyrosine kinase inhibitors decrease basal monolayer expansion but true basal enterocyte migration appears independent of tyrosine kinase regulation. However, a specific tyrosine kinase-dependent modulation of cell-matrix interaction inhibits EGF-stimulated migration.
Collapse
Affiliation(s)
- M D Basson
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | |
Collapse
|
16
|
Kuryshev YA, Naumov AP, Avdonin PV, Mozhayeva GN. Evidence for involvement of a GTP-binding protein in activation of Ca2+ influx by epidermal growth factor in A431 cells: effects of fluoride and bacterial toxins. Cell Signal 1993; 5:555-64. [PMID: 8312133 DOI: 10.1016/0898-6568(93)90051-m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aluminium fluoride (AlF4-), a G protein activator, was used to study a possible role of G protein in the control of the pathways for Ca2+ influx through plasma membrane of human carcinoma A431 cells. Fluorimetric measurements with the Ca2+ indicator Indo-1 have shown that addition of fluoride induces an increase in concentration of cytosolic free calcium ([Ca2+]in) due to both release of Ca2+ from intracellular stores and Ca2+ influx from the extracellular medium. The cells stimulated by fluoride became unresponsive to subsequent addition of epidermal growth factor (EGF), histamine and bradykinin. The Ca2+ signal induced by fluoride as well as one induced by EGF was inhibited by the pretreatment of cells with protein kinase C activator, phorbol myristate acetate (PMA). The pretreatment of the cells with pertussis toxin produced no effect on EGF-induced calcium response. In contrast, the pretreatment with cholera toxin (CTX) increased the basal level of [Ca2+]in and abolished the effect of EGF. The effects of CTX could not be reproduced by treating the cells with forskolin or IBMX, agents known to elevate cAMP content in the cell. Patch clamp experiments have shown that fluoride increases the activity of Ca(2+)-permeable channels identical to those activated by EGF from the extracellular side of the membrane [Mozhayeva et al. (1991) J. Membr. Biol. 124, 113-126]. The results obtained suggest the involvement of GTP-binding protein in signal transduction from the EGF receptor to Ca(2+)-permeable channel of plasma membrane in A431 cells.
Collapse
Affiliation(s)
- Y A Kuryshev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg
| | | | | | | |
Collapse
|
17
|
Soler C, Galan X, Peinado-Onsurbe J, Quintana I, Llobera M, Soley M, Ramírez I. Epidermal growth factor interferes with the effect of adrenaline on glucose production and on hepatic lipase secretion in rat hepatocytes. REGULATORY PEPTIDES 1993; 44:11-6. [PMID: 8484015 DOI: 10.1016/0167-0115(93)90125-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied the interaction of epidermal growth factor (EGF) and adrenaline in the control of several metabolic functions in isolated hepatocytes from fed rats. EGF did not modulate glucose release, urea production or hepatic lipase secretion, but interfered with the stimulatory effect of adrenaline on both glucose and urea production and also with the inhibitory effect of this hormone on hepatic lipase secretion. EGF also interfered with the effect of both angiotensin II and vasopressin on glucose release and on hepatic lipase secretion. While the effect of EGF interfering with the action of adrenaline on glucose release was potentiated in the absence of extracellular calcium, the effect on the inhibition of hepatic lipase secretion was abolished. These results suggest that EGF interfered with catecholamine actions in the liver at a site distal from the generation of the calcium signal.
Collapse
Affiliation(s)
- C Soler
- Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- E Kilgour
- Hannah Research Institute, Ayr, Scotland, U.K
| |
Collapse
|
19
|
Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992; 90:1352-60. [PMID: 1401070 PMCID: PMC443180 DOI: 10.1172/jci116001] [Citation(s) in RCA: 386] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor (EGF) receptor is activated by both EGF and transforming growth factor-alpha (TGF-alpha). Using immunohistochemical and immunoblotting techniques we now report that the EGF receptor, EGF, and TGF-alpha are found in both pancreatic acini and ducts in the normal human pancreas, and that all three proteins are expressed at higher levels in human pancreatic cancer tissues. Using in situ hybridization techniques, we also report that the mRNA encoding the EGF receptor, EGF, and TGF-alpha colocalize with their respective proteins. Northern blot analysis of total RNA indicates that, by comparison with the normal pancreas, the pancreatic tumors exhibit a 3-, 15-, and 10-fold increase in the mRNA levels encoding the EGF receptor, EGF, and TGF-alpha, respectively. Furthermore, by in situ hybridization, there is a marked increase in these mRNA moieties within the tumor mass. These findings suggest that EGF and TGF-alpha may participate in the regulation of normal pancreatic exocrine function, and that overexpression of the EGF receptor and its two principal ligands may contribute to the pathophysiological processes that occur in human pancreatic cancer.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
20
|
Incerpi S, Baldini P, Lo Bello M, Luly P. Insulin-dependent release of 5'-nucleotidase and alkaline phosphatase from liver plasma membranes. Biosci Rep 1992; 12:101-8. [PMID: 1330052 DOI: 10.1007/bf02351214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin treatment of isolated liver plasma membranes induced the release of 5'-nucleotidase and alkaline phosphatase. This effect was maximal at physiological hormone concentrations, being 36% and 17% for 5'-nucleotidase and alkaline phosphatase respectively, and was fully mimicked by the phosphatidylinositol specific phospholipase C (PI-PLC), thus confirming the presence of a glycosylphosphatidylinositol anchoring-system for these exofacial enzymatic proteins. The complete inhibition of insulin dependent enzyme release by neomycin is strongly supportive of an involvement of membrane-located PI-PLC activity. In addition, the insulin-like effect on enzyme release induced by the GTP non-hydrolysable analog, GTP-gamma-S, and its sensitivity to the pertussis toxin are in favour of a mediatory role exerted by the G proteins system, in the transduction of some actions of insulin.
Collapse
Affiliation(s)
- S Incerpi
- Department of Biology, University of Rome, Tor Vergata, Italy
| | | | | | | |
Collapse
|
21
|
Piiper A, Pröfrock A, Schulz I. Effects of epidermal growth factor and calcium omission on cholecystokinin-stimulated Cl- conductance in rat pancreatic zymogen granules. Biochem Biophys Res Commun 1991; 181:827-32. [PMID: 1755862 DOI: 10.1016/0006-291x(91)91264-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.
Collapse
Affiliation(s)
- A Piiper
- Max-Planck-Institut für Biopyhsik, Frankfurt am Main, FRG
| | | | | |
Collapse
|
22
|
Pröfrock A, Piiper A, Eckhardt L, Schulz I. Epidermal growth factor inhibits both cholecystokinin octapeptide-induced inositol 1,4,5-trisphosphate production and [CA2+]i increase in rat pancreatic acinar cells. Biochem Biophys Res Commun 1991; 180:900-6. [PMID: 1953760 DOI: 10.1016/s0006-291x(05)81150-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have studied the effects of epidermal growth factor (EGF) on both cholecystokinin octapeptide (CCK-OP)-induced inositol-1,4,5 trisphosphate (IP3) production and on cytosolic free calcium concentrations [Ca2+]i by fluorescence measurements in fura-2-loaded pancreatic acini. Our data show that EGF inhibits CCK-OP induced IP3 production by 40 +/- 9% and decreases CCK-OP induced rise in cytosolic Ca2+ by 41 +/- 9%. These data indicate that activation of EGF receptors leads to inhibition of CCK-OP induced stimulation of phospholipase C (PLC).
Collapse
Affiliation(s)
- A Pröfrock
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Fed. Rep. of Germany
| | | | | | | |
Collapse
|
23
|
Conway BR, Laychock SG, Rubin RP. Comparative effects of epidermal growth factor and carbachol on phosphoinositide synthesis and breakdown in pancreatic acinar cells. Biochem Biophys Res Commun 1991; 178:780-5. [PMID: 1650199 DOI: 10.1016/0006-291x(91)90176-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbachol (CCh) and epidermal growth factor (EGF) elicited a concentration-dependent increase in [32P]phosphatidyl-inositol-4-phosphate (PtdIns-4P) formation in homogenates derived from agonist-stimulated rat pancreatic acini. The combination of CCh and EGF produced a response which was not synergistic or additive. EGF, unlike CCh, failed to cause [32P]PtdIns-4,5P2 breakdown, suggesting different mechanisms involved in the stimulation of [32P]PtdIns-4P formation induced by EGF and CCh. We conclude that PtdIns kinase represents a key component of the signaling pathways utilized by EGF and CCh in exocrine pancreas.
Collapse
Affiliation(s)
- B R Conway
- Department of Pharmacology and Toxicology, Medical College of Virginia, Richmond 23298
| | | | | |
Collapse
|