1
|
Maxwell SR. Anti-oxidant therapy: does it have a role in the treatment of human disease? Expert Opin Investig Drugs 2005; 6:211-36. [PMID: 15989625 DOI: 10.1517/13543784.6.3.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Free radical oxidative stress has been implicated in the pathogenesis of a variety of human diseases. Natural anti-oxidant defences have also been found to be defective in many of the same diseases. Many researchers have concluded that, if the imbalance between the oxidative stresses and anti-oxidant defence can be corrected by supplementing natural anti-oxidant defences, it may be possible to prevent or retard disease progression. Potential anti-oxidant therapies include natural anti-oxidant enzymes and vitamins or synthetic agents with anti-oxidant activity. Diseases where anti-oxidant therapy may be beneficial can be divided into those involving acute intervention, such as reperfusion injury or inflammation, and those involving chronic preventative therapy, such as atherosclerosis, carcinogenesis and diabetic vascular disease. The pharmaceutical considerations are different in each case. The principles guiding the development, use and assessment of anti-oxidant therapies are discussed in this review.
Collapse
Affiliation(s)
- S R Maxwell
- Division of Clinical Pharmacology, Clinical Sciences Buildings, Liecester Royal Infirmity, Leicester, LE2 7LX, UK.
| |
Collapse
|
2
|
Zika CA, Nicolaou I, Gavalas A, Rekatas GV, Tani E, Demopoulos VJ. Behavioral and antioxidant activity of a tosylbenz[g]indolamine derivative. A proposed better profile for a potential antipsychotic agent. ANNALS OF GENERAL HOSPITAL PSYCHIATRY 2004; 3:1. [PMID: 14711381 PMCID: PMC320490 DOI: 10.1186/1475-2832-3-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 01/07/2004] [Indexed: 11/22/2022]
Abstract
Background Tardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity. Methods Adult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation. Results i) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM. Conclusion TPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent.
Collapse
Affiliation(s)
- Chara A Zika
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Antonis Gavalas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - George V Rekatas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Ekaterini Tani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Vassilis J Demopoulos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| |
Collapse
|
3
|
Götz ME, Riederer P. Advances in Neuroprotection Research for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:1-19. [PMID: 14977205 DOI: 10.1007/978-1-4419-8969-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mario E Götz
- Institute of Pharmacology and Toxicology, 97078 Würzburg, Germany
| | | |
Collapse
|
4
|
Gerlach M, Double K, Reichmann H, Riederer P. Arguments for the use of dopamine receptor agonists in clinical and preclinical Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:167-83. [PMID: 12946055 DOI: 10.1007/978-3-7091-0643-3_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
On the basis of experimental studies which have demonstrated deleterious effects of L-DOPA (L-3,4-dihydroxyphenylalanine) in vivo and in vitro, it has been suggested that L-DOPA itself may contribute to the progression of Parkinson's disease. This hypothesis is, for many clinicians, the rationale for postponing the employment of and reducing the applied dosage of L-DOPA and for beginning therapy with dopamine receptor agonists or the monoamine oxidase type B (MAO-B) inhibitor selegiline. Furthermore, clinical studies have demonstrated that early treatment with dopamine receptor agonists is associated with a lower incidence of motor fluctuations and dyskinesia. Dopamine receptor agonists exert their symptomatic effect by directly activating dopamine receptors, bypassing the presynaptic synthesis of dopamine and the degenerating nigro-striatal dopaminergic system. They can thus also be of benefit late in the therapy of the disorder. In addition, the pharmacological profile of dopamine receptor agonists suggests a possible neuroprotective effect. This paper reviews briefly the pharmacology of dopamine receptor agonists and basic knowledge concerning the dopamine receptor stimulation which underlies their therapeutic effect. Preclinical approaches for demonstrating neuroprotective effects and their clinical relevance are also discussed.
Collapse
Affiliation(s)
- M Gerlach
- Clinical Neurochemistry, Clinic for Child and Youth Psychiatry, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | |
Collapse
|
5
|
Menton K, Spedding M, Gressens P, Villa P, Williamson T, Markham A. Role of spin trapping and P2Y receptor antagonism in the neuroprotective effects of 2,2'-pyridylisatogen tosylate and related compounds. Eur J Pharmacol 2002; 444:53-60. [PMID: 12191582 DOI: 10.1016/s0014-2999(02)01583-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2,2'-Pyridylisatogen tosylate (PIT) is both an allosteric modulator of P2Y receptors, and an immine oxide, acting as a spin trap for free radicals. PIT (10 mg kg(-1), i.p.) was found to be a powerful neuroprotective agent in protecting against the lesions induced by 15 micro g S-bromo-willardiine injected into the cortex or white matter of 5-day-old mice pups. As the multiple effects of PIT may induce both beneficial and deleterious effects, a reanalysis of the structure-activity relationship was undertaken. PIT (50 micro M) and 2,3'-pyridylisatogen were potent antagonists of responses to ATP in the taenia preparation of the guinea-pig caecum, but 2,3'-nitrophenylisatogen was not. The reactive immine oxide group could be substituted by a keto moiety (N-(2'-pyridyl)phthalide) while maintaining antagonism of responses to ATP, equivalent to PIT. Thus, antagonism of P2Y receptors was not restricted to the isatogen nucleus. Other spin traps did not antagonise P2Y receptors, although dimethyl-pyrroline-N-oxide (DMPO) increased the sensitivity of responses to ATP. Both N-(2'-pyridyl)phthalide and 2,3'-nitrophenylisatogen was less neuroprotective than PIT (10 mg kg(-1), i.p.) in protecting against the S-bromo-willardiine-induced lesions in mice, implying that both antagonism of P2Y receptors and the immine oxide moiety may be important for the neuroprotective effects of PIT. However, the usefulness of the neuroprotection was limited because, in motoneurones obtained from rat embryos, PIT (10-100 micro M) exacerbated cell death.
Collapse
Affiliation(s)
- Kevin Menton
- Institute of Pharmacy, Chemistry and Biomedical Sciences, School of Sciences, University of Sunderland, Sunderland, SR1 3SD, UK
| | | | | | | | | | | |
Collapse
|
6
|
Yu X, An L. A serum- and antioxidant-free primary culture model of mouse cortical neurons for pharmacological screen and studies of neurotrophic and neuroprotective agents. Cell Mol Neurobiol 2002; 22:197-206. [PMID: 12363202 PMCID: PMC11533761 DOI: 10.1023/a:1019870022977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Morphologically developmental properties of fetal mouse cortical neurons in the chemically defined serum- and antioxidant-free culture condition were observed. Also, cellular composition in cultures was identified by immunostaining with anti-NSE and anti-GFAP. 2. Various cell densities ranging from 1 x 10(3) to 1 x 10(6) cells/cm2 were prepared to further assess the effect of cell density on time-course of neuronal survival by counting the number of remaining attached neurons after 3 and 7 days in culture. 3. Neuronal responses to neurotrophic effect of NGF on neurite outgrowth and neuroprotective effect of MK-801 against glutamate-induced excitotoxity were evaluated by image analysis and MTT assay, respectively. 4. Results showed that this culture system was neuronal-enriched with a neuronal lifetime more than 35 days. Neurons survived best when seeded at a density > or =1.5 x 10(5) cells/cm2. Cultured neurons were capable of exhibiting sensitive responses to the effects of NGF and MK-801. 5. These findings suggest that this primary culture system provides a sensitive and powerful in vitro model for pharmacological screen and studies of neurotrophic and neuroprotective agents.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Bioengineering, Dalian University of Technology, People's Republic of China
| | | |
Collapse
|
7
|
De La Cruz JP, Villalobos MA, Cuerda MA, Guerrero A, González-Correa JA, Sánchez De La Cuesta F. Effects of S-adenosyl-L-methionine on lipid peroxidation and glutathione levels in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. Neurosci Lett 2002; 318:103-7. [PMID: 11796196 DOI: 10.1016/s0304-3940(01)02475-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We analyzed the effects of S-adenosyl-L-methionine (AdoMet) on tissue oxidative stress in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. The thiobarbituric acid reactive substances (TBARS), total and oxidized glutathione, and lactate-dehydrogenase efflux (LDH) from tissue to the incubation medium, were measured. Brain slices were incubated without glucose and with N2, then glucose was added and O2 was perfused. After the anoxic-reoxygenation period, increase in TBARS, oxidized glutathione and LDH efflux, and decrease in total glutathione levels, were observed. The incubation with AdoMet before the anoxic period reduced TBARS (31-1000 micromol/l), glutathione production was increased (31-1000 micromol/l), LDH efflux decreased 6.41% with 15 micromol/l and 61.5% with 500 micromol/l). In the ex vivo experiments, we administered 50 mg/kg per day p.o., AdoMet for 3 days, then brain slices were collected and the anoxia-reoxygenation experiment was carried out. AdoMet led to the inhibition of brain lipid peroxidation and increased total glutathione production, after 3 h-reoxygenation. The increase of LDH efflux in non-treated rats was reduced by 77%. We conclude that AdoMet exerts citoprotective effects in an experimental model of brain slices reoxygenation after oxygen-glucose deprivation.
Collapse
Affiliation(s)
- J P De La Cruz
- Department of Pharmacology and Therapeutics, School of Medicine, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Largeron M, Mesples B, Gressens P, Cecchelli R, Spedding M, Le Ridant A, Fleury M. The neuroprotective activity of 8-alkylamino-1,4-benzoxazine antioxidants. Eur J Pharmacol 2001; 424:189-94. [PMID: 11672561 DOI: 10.1016/s0014-2999(01)01152-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antioxidant 8-alkylamino-1,4-benzoxazines, (R,S)-(3-tert-butyl-8-phenylethylamino-3,4-dihydro-2H-1,4-benzoxazin-5-yl) (phenyl) methanone (S 24429) and (R,S)-(3-cyclopentyl-8-benzylamino-3,4-dihydro-2H-1,4-benzoxazin-5-yl) (phenyl) methanone (S 24718), were prepared according to a two-step one-pot electrochemical procedure. These compounds had been selected from a previous study of structure/activity. Both compounds (1-100 microM) prevented the fall in ATP levels caused by 24 h of hypoxia in astrocytes. Both compounds (1 and 10 mg/kg i.p.) were powerful neuroprotective agents in protecting against the lesions induced by 15 microg S-bromo-willardiine injected into the cortex or white matter of 5-day old mice pups. In contrast, exifone, an antioxidant compound, was inactive at these doses. S 24429 and S 24718 appear to be novel neuroprotective agents, which are effective in a model of brain damage mimicking the lesions underlying cerebral palsy.
Collapse
Affiliation(s)
- M Largeron
- Laboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8638 CNRS-Université René Descartes, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim SD, Oh SK, Kim HS, Seong YH. Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells. Arch Pharm Res 2001; 24:164-70. [PMID: 11339637 DOI: 10.1007/bf02976485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.
Collapse
Affiliation(s)
- S D Kim
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | | | | | | |
Collapse
|
10
|
Villalobos MA, De La Cruz JP, Cuerda MA, Ortiz P, Smith-Agreda JM, Sánchez De La Cuesta F. Effect of S-adenosyl-L-methionine on rat brain oxidative stress damage in a combined model of permanent focal ischemia and global ischemia-reperfusion. Brain Res 2000; 883:31-40. [PMID: 11063985 DOI: 10.1016/s0006-8993(00)02873-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the effects of S-adenosyl-L-methionine (SAM) on tissue oxidative status in a combined model of permanent focal ischemia and global reperfusion in the rat brain. The production of thiobarbituric acid reactive substances (TBARS) was measured under basal conditions and after induction with ferrous salt as an indicator of brain lipid peroxidation. Total, oxidized and reduced glutathione were measured as indicators of the antioxidant defense capacity of brain tissue. Mitochondrial reduction of tetraphenyl tetrazolium (TPT) was quantified morphometrically. Results obtained in vitro showed that incubation with SAM reduced lipid peroxidation, with a maximum inhibition of 65.12+/-5.99% after incubation with 1 mmol/l; glutathione production was not significantly modified. In the brain ischemia-reperfusion model, TBARS production increased and glutathione content decreased, and mitochondrial reduction of TPT decreased significantly after ischemia-reperfusion in areas dependent on carotid circulation. The administration of 50 mg/kg SAM per day for 3 days led to the inhibition of brain lipid peroxidation and increased total glutathione production. These changes were accompanied by an increase in mitochondrial capacity to reduce TPT. We conclude that SAM reduces oxidative damage in the rat brain in an experimental model of ischemia-reperfusion.
Collapse
Affiliation(s)
- M A Villalobos
- Department of Anatomy, School of Medicine, University of Málaga, 29071, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Krasnova IN, Bychkov ER, Lioudyno VI, Zubareva OE, Dambinova SA. Intracerebroventricular administration of substance P increases dopamine content in the brain of 6-hydroxydopamine-lesioned rats. Neuroscience 2000; 95:113-7. [PMID: 10619467 DOI: 10.1016/s0306-4522(99)00400-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions existing between substance P- and dopamine-positive neurons, notably in the basal ganglia, suggest that substance P may have therapeutic use in treatment of Parkinson's disease characterized by impaired dopaminergic transmission. The effects of intracerebroventricularly administered substance P were tested on the levels of dopamine and its metabolites in the striatum, nucleus accumbens and frontal cortex of 6-hydroxydopamine-lesioned rats. Intracerebroventricular injection of 6-hydroxydopamine decreased the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the brain structures under investigation. Administration of substance P in low dose (0.35 nmol/kg) had no effect on the 6-hydroxydopamine-induced reduction of the dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid contents in the brain. However, treatment with substance P in higher dose (3.5 nmol/kg) increased the concentrations of dopamine and its metabolites in the striatum, nucleus accumbens and frontal cortex relative to saline-treated group. Additionally, 6-hydroxydopamine lesions significantly increased 3,4-dihydroxyphenylacetic acid/dopamine and homovanillic acid/dopamine ratios in the striatum and nucleus accumbens. Substance P (3.5 nmol/kg) partially reversed lesion-induced increases in 3,4-dihydroxyphenylacetic acid/dopamine and homovanillic acid/dopamine ratios in the striatum, but did not alter these ratios in nucleus accumbens. To test whether substance P fragmentation is responsible for this phenomenon, substance P(5-11), which is one of the main substance P fragments in rat CNS, was administered in equimolar dose. Substance P(5-11) was found to have no effect on the content of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the striatum and nucleus accumbens. In the frontal cortex, substance P(5-11) produced decreases in dopamine levels and increases in homovanillic acid/dopamine ratio. The results of this study suggest that substance P helps to restore dopamine deficit in the brain in an animal model of Parkinson's disease, with the positive effects being more prominent on the nigrostriatal than on the mesocorticolimbic dopaminergic system, but substance P(5-11) is not responsible for this effect.
Collapse
Affiliation(s)
- I N Krasnova
- Laboratory of Molecular Neurobiology, Institute of the Human Brain, Russian Academy of Sciences, St Petersburg.
| | | | | | | | | |
Collapse
|
12
|
Gerlach M, Double KL, Youdim MB, Riederer P. Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotox Res 2000; 2:99-114. [PMID: 16787835 DOI: 10.1007/bf03033788] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Degenerative diseases of the central nervous system (CNS) frequently have a predilection for specific cell populations. An explanation for the selective vulnerability of particular neuronal populations and the mechanisms of cell death remains, as yet, elusive. Partial elucidation of the processes underlying the selective action of neurotoxic substances such as iron, 6-hydroxydopamine (6-OHDA), glutamate, kainic acid, quinolinic acid or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has revealed possible molecular mechanisms for neurodegeneration. Hypotheses regarding the neurotoxic mechanisms of these substances have evolved based on our understanding of the pathogenesis of cell death in neurodegenerative disorders and have been the rationale for neuroprotective approaches. Various experimental models have demonstrated that monoamine oxidase type B (MAO-B) inhibitors and dopamine agonists exert a neuroprotective effect at the cellular, neurochemical and functional levels, however as yet it has not been possible to demonstrate an unequivocal neuroprotective effect of these substances in clinical studies. This does not suggest, however, that the pathogenetic processes underlying neurodegenerative disorders are not amenable to neuroprotective treatment. This chapter briefly reviews the mechanisms underlying dopaminergic cell death in Parkinson's disease (PD) as an example of a neurodegenerative disorder and discusses preclinical approaches which attempt to demonstrate the neuroprotective effects of representative drugs in experimental models of this disorder. The problems associated with carrying out clinical neuroprotective studies aimed to demonstrate neuroprotection in PD are also discussed.
Collapse
Affiliation(s)
- M Gerlach
- Division of Clinical Neurochemistry, Department of Psychiatry and Psychotherapy, University of Würzburg, D-97980 Würzburg, Fuchsleinstrasse 15, Germany.
| | | | | | | |
Collapse
|
13
|
Pisu MB, Conforti E, Fenoglio C, Necchi D, Scherini E, Bernocchi G. Nitric oxide-containing neurons in the nervous ganglia of Helix aspersa during rest and activity: immunocytochemical and enzyme histochemical detection. J Comp Neurol 1999; 409:274-84. [PMID: 10379920 DOI: 10.1002/(sici)1096-9861(19990628)409:2<274::aid-cne8>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nitric oxide synthase (NOS) immunoreactivity and staining for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) activity are two cytochemical markers for nitric oxide (NO)-containing neurons. The authors examined the changes in the distribution of NOS immunolabeling and NADPH-diaphorase reactivity in the cerebral and buccal ganglia of the terrestrial snail Helix aspersa during resting and active phases. During inactivity and after 1 day of activity, in the mesocerebrum and metacerebrum of the snails, there were several reactive neurons for both markers; after 7 days of activity, the number of reactive neurons was lower. Opposite results were obtained in the buccal ganglia, in which increased staining and numbers of reactive neurons were present in the active snails (after 1 day and 7 days of activity). Although the staining patterns for the two reactions were similar, colocalization was not always observed. The comparison between inactive and active animals provided a more precise survey of NOS-containing neurons in the snail cerebral ganglia than previously described. Moreover, it suggested that not only is NO involved in distinct nervous circuits, but, as a ubiquitous molecule, it also plays a role in neuroprotection and neuropeptide release.
Collapse
Affiliation(s)
- M B Pisu
- Dipartimento di Biologia Animale Centro di Studio per l'Istochimica del C.N.R., Università di Pavia, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Shimojo M, Takasugi K, Yamamoto I, Funato H, Mochizuki H, Kohsaka S. Neuroprotective action of a novel compound--M50463--in primary cultured neurons. Brain Res 1999; 815:131-9. [PMID: 9974133 DOI: 10.1016/s0006-8993(98)01157-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuroprotective effects of a novel synthetic compound, M50463, have been determined by using embryonic rat neocortical neurons in various culture conditions. M50463 was initially characterized as a potent specific ligand for a voltage-dependent sodium channel by radioligand binding studies. In fact, M50463 inhibited neuronal cell death induced by veratrine and inhibited an increase of the intracellular calcium level in neurons evoked by veratrine. In addition to such expected effects, M50463 had the ability to prevent glutamate neurotoxicity, to promote the neuronal survival in serum-deprived medium and to prevent nitric oxide-induced neurotoxicity. These results suggested that M50463 is not a simple sodium channel blocker, but a neuroprotective agent which has some crucial mechanism of action on neuronal death occurring in various situations, and it is a novel, innovative candidate for neuroprotective therapy for various neurodegenerative disorders.
Collapse
Affiliation(s)
- M Shimojo
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Rösler M, Retz W, Thome J, Riederer P. Free radicals in Alzheimer's dementia: currently available therapeutic strategies. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:211-9. [PMID: 9850930 DOI: 10.1007/978-3-7091-7508-8_21] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substantial evidence now exists that oxidative stress may play an important role in the etiopathogenesis of DAT. The different sources of oxidative stress in DAT are suggesting several pharmacological opportunities for influencing the disease. It is possible to distinguish 2 major types of possible therapeutic agents according to their pharmacological point of attack. 1. Radical scavengers, agents directly interacting with free radicals. Candidates of this type are gingko biloba, vitamins A, C, E and estrogen. 2. Antioxidants, which are able to prevent or decrease the production of free radicals by use of specific neuropharmacological properties. Candidates are selegiline, a MAO-B inhibitor well established in the therapy of Parkinson's disease, and tenilsetam, which is believed to be an AGE-inhibitor. Recent in vitro studies have demonstrated the efficacy of both types of therapeutic agents by preventing or delaying oxidative neural damage. Some clinical data exist regarding the antidementive properties particularly in terms of gingko biloba, selegiline and vitamin E. The efficacy studies about these compounds seem to indicate a promising future strategy in the therapy of DAT. But it is too early to draw definite conclusions since it is well known that all of our candidate substances do not act specifically as radical scavengers or antioxidants.
Collapse
Affiliation(s)
- M Rösler
- Psychiatric Department, University of Würzburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
16
|
Abstract
Flupirtine is a triaminopyridine-derived centrally acting analgesic, which interacts with mechanisms of noradrenergic pain modulation. Recently, it has been found to display neuroprotective effects in various models of excitotoxic cell damage, global and focal ischemia. Although this profile suggests that flupirtine acts as an antagonist of the N-methyl-D-aspartate (NMDA) and glutamate-triggered Ca2+ channel, there is no direct interaction with the receptor. In this paper, we examined whether flupirtine can act as an antioxidant and prevent free radical-mediated structural damage. Flupirtine at 5-30 microM inhibited ascorbate/ Fe2+ (1-10 microM)-stimulated formation of thiobarbituric reactive substances, an indicator of lipid peroxidation, in rat brain mitochondria. Interestingly, we found an increasing effectiveness of the drug at higher iron concentrations. Additionally, higher concentrations of flupirtine also provided protection against protein oxidation, as demonstrated by a decrease in protein carbonyls formed after treatment of rat brain homogenates with ascorbate/Fe2+. In PC12 cell culture, flupirtine at 10-100 microM was able to attenuate H2O2-stimulated cell death and improve the survival by 33%.
Collapse
Affiliation(s)
- M Gassen
- Department of Pharmacology, Eve Topf Center, Bruce Rappaport Family Research Institute, Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
17
|
Bezard E, Imbert C, Gross CE. Experimental models of Parkinson's disease: from the static to the dynamic. Rev Neurosci 1998; 9:71-90. [PMID: 9711900 DOI: 10.1515/revneuro.1998.9.2.71] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The experimental models of Parkinson's disease (PD) available today can be divided into two categories according to the mode of action of the compound used: transient pharmacological impairment of dopaminergic transmission along the nigrostriatal pathway or selective destruction by a neurotoxic agent of the dopaminergic neurons of the substantia nigra pars compacta. The present article looks at the relative merits of each model, the clinical symptoms and neuronal impairment it induces, and the contribution it could make to the development of a truly dynamic model. It is becoming more and more clear that there is an urgent need for a chronic model integrating all the clinical features of PD including resting tremor, and reproducing the gradual but continuous nigral degeneration observed in the human pathology. Discrepancies have been reported several times between results obtained in classic animal models and those described in PD, and it would seem probable that such contradictions can be ascribed to the fact that animal models do not, as yet, reproduce the continuous evolution of the human disease. Dynamic experimental models which come closer to the progressive neurodegeneration and gradual intensification of motor disability so characteristic of human PD will enable us to investigate crucial aspects of the disease, such as compensatory mechanisms and dyskinesia.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, Laboratoire de Neurophysiologie, Université de Bordeaux II, France
| | | | | |
Collapse
|
18
|
De La Cruz JP, Villalobos MA, Sedeño G, Sánchez De La Cuesta F. Effect of propofol on oxidative stress in an in vitro model of anoxia-reoxygenation in the rat brain. Brain Res 1998; 800:136-44. [PMID: 9685615 DOI: 10.1016/s0006-8993(98)00516-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Propofol, an intravenous anaesthetic, is similar in chemical structure to the active nucleus of antioxidant substances such as alpha-tocopherol (vitamin E). The present study was designed to test whether propofol had antioxidant effects in an in vitro model of anoxia-reoxygenation in slices of rat brain. We used seven experimental groups: (1) control oxygenated tissue; (2) tissue subjected to anoxia for 20 min and reoxygenation for 3 h; and tissues processed as described and incubated with (3) Intralipid (commercial solvent for propofol), or propofol at a concentration of (4) 10 micromol/l, (5) 50 micromol/l, (6) 150 micromol/l or (7) 300 micromol/l. The production of lipid peroxides was quantified as thiobarbituric acid reactive substances (TBARS); tissular glutathione production and the activities of glutathione peroxidase (GSHpx), glutathione reductase (GSSGrd) and glutathione transferase (GSHtf) were also measured. Reoxygenation led to tissular oxidative stress, which was curtailed by propofol. The anaesthetic led to a 47% reduction in TBARS, a 165% increase in the reperfusion-inhibiting glutathione content, a 47% decrease in GSHpx activity, and an 87% increase in GSHtf activity. Intralipid had no effect on any of the parameters studied here. We conclude that propofol has a clear antioxidant effect in rat brain tissue subjected to anoxia-reoxygenation.
Collapse
Affiliation(s)
- J P De La Cruz
- Departments of Pharmacology and Therapeutics, School of Medicine, University of Málaga, 29071 Málaga, Spain
| | | | | | | |
Collapse
|
19
|
Müller T, Kuhn W, Krüger R, Przuntek H. Selegiline as immunostimulant--a novel mechanism of action? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:321-8. [PMID: 9564633 DOI: 10.1007/978-3-7091-6499-0_33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In clinical studies the MAO-B inhibitor selegiline appears to slow the progression of neurological deficits in Parkinson's disease (PD) and the cognitive decline in Alzheimer's disease (AD). The mechanisms of action remain unclear. Several lines of evidence indicate an immune-mediated pathophysiology of PD and AD. According to animal trials, selegiline increases the survival rate of immune suppressed mice. Stimulation of the immune response to bacterial or viral infection or in chronic inflammatory processes in managed by an increased synthesis of the cytokines interleukin-1 beta (IL-1 beta) and subsequent interleukin-6 (IL-6). Outcome of viral or bacterial infections in the brain highly correlates with levels of the cytotoxic cytokine tumor-necrosis-factor-alpha (TNF). The aim of our study was to characterize the influence of selegiline on the biosynthesis of IL-1 beta, IL-6 and TNF in human peripheral blood mononuclear cells (PBMC) from healthy blood donors. After isolation and washing PBMC were cultured without and with selegiline in three different concentrations (0.01 mumol/l, 0.001 mumol/l, 0.0001 mumol/l) in a humidified atmosphere (7% CO2). Then cultures were centrifuged and supernatants were collected for IL-1 beta, IL-6 and TNF ELISA-assays. Treatment of cultured PBMC with various concentrations induced an increased synthesis of IL-1 beta (ANOVA F = 9.703, p = 0.0007), IL-6 (ANOVA F = 20.648, p = 0.0001) and a reduced production of TNF (ANOVA F = 3.770, p = 0.040). These results indicate, that the influence of selegiline on the cytokine biosynthesis may also contribute to its putative neuroprotective properties.
Collapse
Affiliation(s)
- T Müller
- Department of Neurology, St. Josef-Hospital, University of Bochum, Federal Republic of Germany
| | | | | | | |
Collapse
|
20
|
Ferreira IL, Duarte CB, Neves AR, Carvalho AP. Culture medium components modulate retina cell damage induced by glutamate, kainate or "chemical ischemia". Neurochem Int 1998; 32:387-96. [PMID: 9596563 DOI: 10.1016/s0197-0186(97)00099-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to determine whether culture-conditioned medium (CCM) can prevent neuronal damage caused by excitotoxicity or by "chemical ischemia" in cultured chick retina cells. Excitotoxic conditions were obtained by incubating retina cells with glutamate or kainate and "chemical ischemia" was induced by metabolic inhibition. In this case, cultures were briefly exposed to sodium cyanide, to block oxidative phosphorylation and iodoacetic acid, to block glycolysis. The assessment of neuronal injury was made spectrophotometrically by quantification of cellularly reduced MTT. Stimulation of retina cells with glutamate or kainate in serum deprived culture medium (BME-FCS), lead to a decrease in the MTT metabolism that was dependent on the time of exposure to the toxic agents. CCM prevented cell damage, either when present during the stimulation period or during the recovery period. This protection was more prominent in the case of kainate-induced neuronal death. "Chemical ischemia" also lead to a decrease of the MTT metabolism in a time-dependent manner and CCM protected retina cells from "ischemia"-induced lesions when present during the stimulation period and during the recovery period. The protective effect of CCM was partially decreased by the tyrosine kinase inhibitor, genistein, when the cells were stimulated with kainate, but not with glutamate, or when the cells were subjected to "chemical ischemia". CCM protected retina cells against both the acute and the delayed toxicity induced by either glutamate or kainate, or by "chemical ischemia", when present during both the insult and the recovery period. The presence of survival factors in the media may effectively inhibit the cell death signals generated by glutamate receptor activation or by "chemical ischemia".
Collapse
Affiliation(s)
- I L Ferreira
- Center for Neuroscience of Coimbra, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
21
|
Kim YB, Hur GH, Lee YS, Han BG, Shin S. A role of nitric oxide in organophosphate-induced convulsions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 3:53-56. [PMID: 21781758 DOI: 10.1016/s1382-6689(96)00139-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/1995] [Revised: 10/13/1996] [Accepted: 11/08/1996] [Indexed: 05/31/2023]
Abstract
The effects of nitric oxide-regulating compounds on convulsions and mortality of rats administered i.p. with diisopropylfluorophosphate was investigated. l-N(G)-nitroarginine methyl ester, a nitric oxide synthase inhibitor possessing an anticholinergic action, markedly attenuated the intensity of convulsions and significantly reduced the mortality rate. A similar result was obtained with anticholinergic procyclidine, an N-methyl-d-aspartate receptor antagonist. Noteworthy, l-N(G)-nitroarginine, another inhibitor of nitric oxide synthase, significantly attenuated the seizure intensity when administered in combination with atropine sulfate (5 mg/kg), though either l-N(G)-nitroarginine or atropine sulfate was inactive alone. It is suggested that nitric oxide may be a proconvulsant or a convulsion-promoting factor in anticholinesterase poisoning, and both the reduction of nitric oxide level and blockade of cholinergic systems may be required for more effective protection of seizures.
Collapse
Affiliation(s)
- Y B Kim
- Biomedical Assessment Laboratory (1-4-4), Agency for Defense Development, P.O. Box 35 Yuseong, Taejon 305-600, South Korea
| | | | | | | | | |
Collapse
|
22
|
van Rhee AM, Jiang JL, Melman N, Olah ME, Stiles GL, Jacobson KA. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A3 receptors. J Med Chem 1996; 39:2980-9. [PMID: 8709132 PMCID: PMC10792444 DOI: 10.1021/jm9600205] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1,4-Dihydropyridine and pyridine derivatives bound to three subtypes of adenosine receptors in the micromolar range. Affinity was determined in radioligand binding assays at rat brain A1 and A2A receptors using [3H]-(R)-PIA [[3H]-(R)-N6-(phenylisopropyl)adenosine] and [3H]CGS 21680 [[3H]-2-[[4-(2-carboxyethyl)phenyl]ethylamino]-5'-(N-ethylcarbamoyl++ +) adenosine], respectively. Affinity was determined at cloned human and rat A3 receptors using [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine]. Structure-activity analysis at adenosine receptors indicated that sterically bulky groups at the 4-, 5-, and 6-positions are tolerated. (R,S)-Nicardipine, 12, displayed Ki values of 19.6 and 63.8 microM at rat A1 and A2A receptors, respectively, and 3.25 microM at human A3 receptors. Similarly, (R)-niguldipine, 14, displayed Ki values of 41.3 and 1.90 microM at A1 and A3 receptors, respectively, and was inactive at A2A receptors. A preference for the R- vs the S-enantiomer was observed for several dihydropyridines at adenosine receptors, in contrast with the selectivity at L-type Ca2+ channels. A 4-trans-beta-styryl derivative, 24, with a Ki value of 0.670 microM at A3 receptors, was 24-fold selective vs A1 receptors (Ki = 16.1 microM) and 74-fold vs A2A receptors (Ki = 49.3 microM). The affinity of 24 at L-type Ca2+ channels, measured in rat brain membranes using [3H]isradipine, indicated a Ki value of 0.694 microM, and the compound is thus nonselective between A3 receptors and L-type Ca2+ channels. Inclusion of a 6-phenyl group enhanced A3 receptor selectivity: Compound 28 (MRS1097; 3,5-diethyl 2-methyl-6-phenyl-4-(trans-2-phenylvinyl)-1,4(R,S)-dihydro-pyridin e-3, 5-dicarboxylate) was 55-fold selective vs A1 receptors, 44-fold selective vs A2A receptors, and over 1000-fold selective vs L-type Ca2+ channels. In addition, compound 28 attenuated the A3 agonist-elicited inhibitory effect on adenylyl cyclase. Furthermore, whereas nicardipine, 12, displaced radioligand from the Na(+)-independent adenosine transporter with an apparent affinity of 5.36 +/- 1.51 microM, compound 28 displaced less than 10% of total binding at a concentration of 100 microM. Pyridine derivatives, when bearing a 4-alkyl but not a 4-phenyl group, maintained affinity for adenosine receptors. These findings indicate that the dihydropyridines may provide leads for the development of novel, selective A3 adenosine antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth A. Jacobson
- Address correspondence to: Dr. K. A. Jacobson, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810. Tel: (301) 496-9024. Fax: (301) 480-8422.
| |
Collapse
|
23
|
Contin M, Riva R, Albani F, Baruzzi A. Pharmacokinetic optimisation in the treatment of Parkinson's disease. Clin Pharmacokinet 1996; 30:463-81. [PMID: 8792058 DOI: 10.2165/00003088-199630060-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current symptomatic treatment of Parkinson's disease mainly relies on agents which are able to restore dopaminergic transmission in the nigrostriatal pathway, such as the dopamine precursor levodopa or direct agonists of dopamine receptors. Ancillary strategies include the use of anticholinergic and antiglutamatergic agents or inhibitors of cerebral dopamine catabolism, such as monoamine oxidase type B inhibitors. Levodopa is the most widely used and effective drug. Its peculiar pharmacokinetics are characterised by an extensive presystemic metabolism, overcome by the combined use of extracerebral inhibitors of the enzyme aromatic-amino acid decarboxylase and rapid adsorption in the proximal small bowel by a saturable facilitated transport system shared with other large neutral amino acids. Drug transport from plasma to the brain is mediated by the same carriers operating in the intestinal mucosa. The main strategies to assure reproducibility of both drug intestinal absorption and delivery to the brain and clinical effect include standardisation of levodopa administration with respect to meal times and a controlled dietary protein intake. The levodopa plasma half-life is very short, resulting in marked plasma drug concentration fluctuations which are matched, as the disease progresses, with swings in the therapeutic response ('wearing-off' phenomena). 'Wearing-off' phenomena can be also associated, at the more advanced disease stages with a 'negative', both parkinsonism-exacerbating and dyskinetic effect of levodopa at subtherapeutic plasma concentrations. Dyskinesias may be also related to high-levodopa, excessive plasma concentrations. Recognition of the different levodopa toxic response patterns can be difficult on a clinical basis alone, and simultaneous monitoring of levodopa concentration-effect relationships may prove useful to disclose the underlying mechanism and in planning the correct pharmacokinetic management. Controlled-release levodopa formulations have been developed in an attempt to smooth out fluctuations in plasma profiles and matched therapeutic responses. The delayed levodopa absorption and lower plasma concentrations which characterise controlled-release formulations compared with standard forms must be taken into account when prescribing dosage regimens and can be complicating factors in the management of the advanced disease stages. The pharmacokinetic and pharmacodynamic characterisation of the other antiparkinsonian agents is hampered by the lack of sensitive and specific analytical methods to measure their very low plasma drug concentrations and by the difficulty in quantitatively assessing overall moderate drug clinical effects. In clinical practice an optimal dosage schedule is still generally found for each patient on an empirical basis. Future strategies should focus on the search for pharmacological agents with a better kinetic profile, particularly a higher and reproducible bioavailability and a predictable relationship between plasma drug concentration and clinical response. Treatments aimed not only at controlling the symptoms, but also at slowing the neurodegenerative process, are currently under intensive investigation.
Collapse
Affiliation(s)
- M Contin
- Laboratory of Neuropharmacology, University of Bologna, Italy
| | | | | | | |
Collapse
|
24
|
Przuntek H, Welzel D, Gerlach M, Blümner E, Danielczyk W, Kaiser HJ, Kraus PH, Letzel H, Riederer P, Uberla K. Early institution of bromocriptine in Parkinson's disease inhibits the emergence of levodopa-associated motor side effects. Long-term results of the PRADO study. J Neural Transm (Vienna) 1996; 103:699-715. [PMID: 8836932 DOI: 10.1007/bf01271230] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term levodopa treatment in Parkinson's disease is typically associated with "motor side effects" consisting in dyskinesias and/or fluctuations in motility referred to as the on-off phenomena. The main objective of this prospective, randomized, multi-centre study was to determine to what extent the development of such complications could be prevented by partial substitution of levodopa monotherapy (L-DOPA/benserazide) by bromocriptine in patients with early symptoms of the disease. The basic trial population included 674 newly diagnosed Parkinsonian patients that were randomly allocated to monotherapy with levodopa or a combination therapy based upon a nearly 40% replacement of levodopa by bromocriptine. The two target regimens had to be consistently maintained for 42 months. Parkinsonian symptoms were assessed by means of the Webster rating scale, the Hoehn and Yahr scale, and the Zung Self-Rating Depression scale. Motor side effects and adverse events were recorded at each regular clinic visit. Neurological symptoms improved and stabilized in a similar manner during treatment with both regimens throughout the study period. Motor side effects were observed in more patients on levodopa alone than on combination therapy (28.8 vs 20%; p = 0.008). According to Kaplan-Meier estimates the cumulative probability of experiencing motor side effects was 0.43 on monotherapy, compared to 0.28 on combination therapy, which was equal to a one third reduction of risk (p = 0.025). In regard to motor side effects, the degree of substitution of levodopa proved relevant: patients with > 50% substitution by bromocriptine exhibited half the risk observed in those with < 30% (p = 0.045). The overall burden of motor side effects, as reflected by a sum score based upon the relevance, the severity and the extent of motor dysfunction, was also significantly less on combination therapy (p = 0.046). In conclusion, partial substitution of levodopa by bromocriptine (> 30%) as first-line treatment of Parkinson's disease proves active in the prophylaxis of levodopa associated motor side effects. Early combination therapy therefore extends the period of optimal disease control.
Collapse
Affiliation(s)
- H Przuntek
- Neurologische Klinik, Ruhr-Universität, St. Josef-Hospital, Bochum, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Early Diagnosis of Parkinson’s Disease in New Neurological Patients by Testing of Visuo-Manual Coordination. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-1-4899-0194-1_51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Abstract
There is growing interest in the evaluation of drugs (prescription only medicines and over-the-counter medicines) as antioxidant prophylactics. Although free radical mechanism in human degenerative diseases is now generally recognised, the mechanisms of tissue injury in humans are very complex and it may not be possible to clearly identify the role played by free radicals in the process. This review examines the current evidence to support the notion that drugs for a particular therapeutic category might possess useful antioxidant capacity hence minimising tissue injury due to free radicals.
Collapse
Affiliation(s)
- O I Aruoma
- Pharmacology Group, University of London King's College, UK
| |
Collapse
|
27
|
Oubidar M, Boquillon M, Marie C, Bouvier C, Beley A, Bralet J. Effect of intracellular iron loading on lipid peroxidation of brain slices. Free Radic Biol Med 1996; 21:763-9. [PMID: 8902522 DOI: 10.1016/0891-5849(96)00173-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of artificially elevated cell iron content on oxygen-derived free radical production was assessed in brain slices by use of an iron ligand, 8-hydroxyquinoline (HQ). The iron complex Fe(3+)-HQ exhibited a high lipid solubility evidenced by n-octanol/water partition coefficient and was avidely taken up by brain slices. The catalytically active form of Fe3+ within the complex was evidenced by measuring the rate of ascorbate oxidation. Lipid peroxidation was assessed by measuring the thiobarbituric acid-reactive substances (TBARS) in brain homogenates or slices exposed to two doses of Fe(3+)-HQ (10 microM/20 microM, 100 microM/200 microM) or Fe(3+)-citrate (10 microM, 100 microM). Addition of the iron complexes to homogenates or slices resulted in a dose-dependent increase in lipid peroxidation. In homogenates, the effects were grossly similar with both complexes, whereas in slices the effects of Fe-HQ were significantly higher than those of Fe-citrate. Lipid peroxidation persisted in washed slices preexposed to Fe-HQ, but not in slices preexposed to the hydrophilic iron complex Fe-citrate. Fe-HQ-induced lipid peroxidation in slices was enhanced in the presence of H2O2, an effect that was not seen using Fe-citrate. Addition of Fe-HQ to brain homogenates in the presence of salicylic acid resulted in the production of 2,3-dihydroxybenzoic acid and the effect was potentiated in the presence of H2O2. This model of iron cell loading may be useful for evaluating the efficacy of antioxidant drugs.
Collapse
Affiliation(s)
- M Oubidar
- Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|