1
|
Fountain AJ, Waller NJE, Cheung CY, Jowsey W, Chrisp MT, Troll M, Edelstein PH, Cook GM, McNeil MB, Ramakrishnan L. Verapamil and its metabolite norverapamil inhibit the Mycobacterium tuberculosis MmpS5L5 efflux pump to increase bedaquiline activity. Proc Natl Acad Sci U S A 2025; 122:e2426827122. [PMID: 40244664 PMCID: PMC12036985 DOI: 10.1073/pnas.2426827122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Bedaquiline is the cornerstone of a new regimen for the treatment of drug-resistant tuberculosis. However, its clinical use is threatened by the emergence of bedaquiline-resistant strains of Mycobacterium tuberculosis. Bedaquiline targets mycobacterial ATP synthase but the predominant route to clinical bedaquiline resistance is via upregulation of the MmpS5L5 efflux pump due to mutations that inactivate the transcriptional repressor Rv0678. Here, we show that the MmpS5L5 efflux pump reduces susceptibility to bedaquiline as well as its new, more potent derivative TBAJ-876 and other antimicrobial substrates, including clofazimine and the DprE1 inhibitors PBTZ-169 and OPC-167832. Furthermore, the increased resistance of Rv0678 mutants stems entirely from increased MmpS5L5 expression. These results highlight the potential of a pharmacological MmpS5L5 inhibitor to increase drug efficacy. Verapamil, primarily used as a calcium channel inhibitor, is known to inhibit diverse efflux pumps and to potentiate bedaquiline and clofazimine activity in M. tuberculosis. Here, we show that verapamil potentiates the activity of multiple diverse MmpS5L5 substrates. Using biochemical approaches, we demonstrate that verapamil does not exert this effect by acting as a disruptor of the protonmotive force used to power MmpS5L5, as previously proposed, suggesting that verapamil inhibits the function of the MmpS5L5 pump. Finally, norverapamil, the major verapamil metabolite, which has greatly reduced calcium channel activity, has equal potency in reducing resistance to MmpS5L5 substrates. Our findings highlight verapamil's potential for enhancing bedaquiline TB treatment, for preventing acquired resistance to bedaquiline and other MmpS5L5 substrates, while also providing the impetus to identify additional MmpS5L5 inhibitors.
Collapse
Affiliation(s)
- Adam J. Fountain
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Michael T. Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Mark Troll
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Paul H. Edelstein
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Lalita Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| |
Collapse
|
2
|
Miller ST, Macdonald CB, Raman S. Understanding, inhibiting, and engineering membrane transporters with high-throughput mutational screens. Cell Chem Biol 2025; 32:529-541. [PMID: 40168989 DOI: 10.1016/j.chembiol.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Promiscuous membrane transporters play vital roles across domains of life, mediating the uptake and efflux of structurally and chemically diverse substrates. Although many transporter structures have been solved, the fundamental rules of polyspecific transport remain inscrutable. In recent years, high-throughput genetic screens have solidified as powerful tools for comprehensive, unbiased measurements of variant function and hypothesis generation, but have had infrequent application and limited impact in the transporter field. In this primer, we describe the principles of high-throughput screening methods available for studying polyspecific transporters and comment on the necessity and potential of high-throughput methods for deciphering these transporters in particular. We present several screening approaches which could provide a fundamental understanding of the molecular basis of function and promiscuity in transporters. We further posit how this knowledge can be leveraged to design inhibitors that combat multidrug resistance and engineer transporters as needed tools for synthetic biology and biotechnology applications.
Collapse
Affiliation(s)
- Silas T Miller
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian B Macdonald
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivatsan Raman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
4
|
Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther 2020; 18:741-757. [PMID: 32434397 DOI: 10.1080/14787210.2020.1760845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In 2018, an estimated 377,000 people developed multidrug-resistant tuberculosis (MDR-TB), urging for new effective treatments. In the last years, it has been accepted that efflux pumps play an important role in the evolution of drug resistance. Strategies are required to mitigate the consequences of the activity of efflux pumps. AREAS COVERED Based upon the literature available in PubMed, up to February 2020, on the diversity of efflux pumps in Mycobacterium tuberculosis and their association with drug resistance, studies that identified efflux inhibitors and their effect on restoring the activity of antimicrobials subjected to efflux are reviewed. These support a new strategy for the development of anti-TB drugs, including efflux inhibitors, using in silico drug repurposing. EXPERT OPINION The current literature highlights the contribution of efflux pumps in drug resistance in M. tuberculosis and that efflux inhibitors may help to ensure the effectiveness of anti-TB drugs. However, despite the usefulness of efflux inhibitors in in vitro studies, in most cases their application in vivo is restricted due to toxicity. In a time when new drugs are needed to fight MDR-TB and extensively drug-resistant TB, cost-effective strategies to identify safer efflux inhibitors should be implemented in drug discovery programs.
Collapse
Affiliation(s)
- Liliana Rodrigues
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
5
|
Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.02107-17. [PMID: 29463541 PMCID: PMC5923092 DOI: 10.1128/aac.02107-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/13/2018] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium tuberculosis kills more people than any other bacterial pathogen and is becoming increasingly untreatable due to the emergence of resistance. Verapamil, an FDA-approved calcium channel blocker, potentiates the effect of several antituberculosis (anti-TB) drugs in vitro and in vivo. This potentiation is widely attributed to inhibition of the efflux pumps of M. tuberculosis, resulting in intrabacterial drug accumulation. Here, we confirmed and quantified verapamil's synergy with several anti-TB drugs, including bedaquiline (BDQ) and clofazimine (CFZ), but found that the effect is not due to increased intrabacterial drug accumulation. We show that, consistent with its in vitro potentiating effects on anti-TB drugs that target or require oxidative phosphorylation, the cationic amphiphile verapamil disrupts membrane function and induces a membrane stress response similar to those seen with other membrane-active agents. We recapitulated these activities in vitro using inverted mycobacterial membrane vesicles, indicating a direct effect of verapamil on membrane energetics. We observed bactericidal activity against nonreplicating “persister” M. tuberculosis that was consistent with such a mechanism of action. In addition, we demonstrated a pharmacokinetic interaction whereby human-equivalent doses of verapamil caused a boost of rifampin exposure in mice, providing a potential explanation for the observed treatment-shortening effect of verapamil in mice receiving first-line drugs. Our findings thus elucidate the mechanistic basis for verapamil's potentiation of anti-TB drugs in vitro and in vivo and highlight a previously unrecognized role for the membrane of M. tuberculosis as a pharmacologic target.
Collapse
|
6
|
Disruption of vitellogenesis and spermatogenesis by triclabendazole (TCBZ) in a TCBZ-resistant isolate of Fasciola hepatica following incubation in vitro with a P-glycoprotein inhibitor. Parasitology 2014; 141:1064-79. [DOI: 10.1017/s0031182014000377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYA study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Sligo TCBZ-resistant fluke isolate was used for these experiments and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. In the first experiment, flukes were initially incubated for 2 h in R(+)-VPL (100 μm), then incubated in R(+)-VPL+triclabendazole sulphoxide (TCBZ.SO) (50 μg mL−1, or 133·1 μm) until flukes ceased movement (at 9 h post-treatment). In a second experiment, flukes were incubated in TCBZ.SO alone and removed from the incubation medium following cessation of motility (after 15 h). In the third experiment, flukes were incubated for 24 h in R(+)-VPL on its own. Changes to the testis tubules and vitelline follicles following drug treatment and following Pgp inhibition were assessed by means of light microscope histology and transmission electron microscopy. Incubation of the Sligo isolate in either R(+)-VPL or TCBZ.SO on their own had a limited impact on the morphology of the two tissues. Greater disruption was observed when the drugs were combined, in terms of the block in development of the spermatogenic and vitelline cells and the apoptotic breakdown of the remaining cells. Sperm formation was severely affected and abnormal. Large spaces appeared in the vitelline follicles and synthesis of shell protein was disrupted. The results of this study support the concept of altered drug efflux in TCBZ-resistant flukes and indicate that drug transporters may play a role in the development of drug resistance.
Collapse
|
7
|
Adams KN, Szumowski JD, Ramakrishnan L. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 2014; 210:456-66. [PMID: 24532601 DOI: 10.1093/infdis/jiu095] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug tolerance likely represents an important barrier to tuberculosis treatment shortening. We previously implicated the Mycobacterium tuberculosis efflux pump Rv1258c as mediating macrophage-induced tolerance to rifampicin and intracellular growth. In this study, we infected the human macrophage-like cell line THP-1 with drug-sensitive and drug-resistant M. tuberculosis strains and found that tolerance developed to most antituberculosis drugs, including the newer agents moxifloxacin, PA-824, linezolid, and bedaquiline. Multiple efflux pump inhibitors in clinical use for other indications reversed tolerance to isoniazid and rifampicin and slowed intracellular growth. Moreover, verapamil reduced tolerance to bedaquiline and moxifloxacin. Verapamil's R isomer and its metabolite norverapamil have substantially less calcium channel blocking activity yet were similarly active as verapamil at inhibiting macrophage-induced drug tolerance. Our finding that verapamil inhibits intracellular M. tuberculosis growth and tolerance suggests its potential for treatment shortening. Norverapamil, R-verapamil, and potentially other derivatives present attractive alternatives that may have improved tolerability.
Collapse
Affiliation(s)
| | | | - Lalita Ramakrishnan
- Department of Microbiology Department of Medicine, Division of Infectious Diseases Department of Immunology, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Ingram WJ, Crowther LM, Little EB, Freeman R, Harliwong I, Veleva D, Hassall TE, Remke M, Taylor MD, Hallahan AR. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Exp Hematol Oncol 2013; 2:26. [PMID: 24219920 PMCID: PMC3851566 DOI: 10.1186/2162-3619-2-26] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/09/2023] Open
Abstract
Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being trialed clinically, with the aim of decreasing chemotherapy resistance. Our findings suggest that the inhibition of ABC transporters could also increase the efficacy of radiation treatment for medulloblastoma patients. Additionally, the finding that certain family members are associated with particular molecular subtypes (most notably high ABCA8 and ABCB4 expression in Sonic Hedgehog pathway driven tumors), along with cell membrane location, suggests ABC transporters are worthy of consideration for the diagnostic classification of medulloblastoma.
Collapse
|
9
|
Increased susceptibility of a triclabendazole (TCBZ)-resistant isolate of Fasciola hepatica to TCBZ following co-incubation in vitro with the P-glycoprotein inhibitor, R(+)-verapamil. Parasitology 2013; 140:1287-303. [PMID: 23756576 DOI: 10.1017/s0031182013000759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 μg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 μg mL-1), TCBZ.SO (50 μg mL-1) on its own, or a combination of TCBZ.SO (50 μg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 μg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 μg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 μg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 μg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.
Collapse
|
10
|
Overcoming multidrug-resistance in vitro and in vivo using the novel P-glycoprotein inhibitor 1416. Biosci Rep 2013; 32:559-66. [PMID: 22757751 PMCID: PMC3497725 DOI: 10.1042/bsr20120020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MDR (multidrug-resistance) represents a major obstacle to successful cancer chemotherapy and is usually accomplished by overexpression of P-gp (P-glycoprotein). Much effort has been devoted to developing P-gp inhibitors to modulate MDR. However, none of the inhibitors on the market have been successful. 1416 [1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (phenoprolamine hydrochloride)] is a new VER (verapamil) analogue with a higher IC50 for blocking calcium channel currents than VER. In the present paper, we examined the inhibition effect of 1416 on P-gp both in vitro and in vivo. 1416 significantly enhanced cytotoxicity of VBL (vinblastine) in P-gp-overexpressed human multidrug-resistant K562/ADM (adriamycin) and KBV cells, but had no such effect on the parent K562 and KB cells. The MDR-modulating function of 1416 was further confirmed by increasing intracellular Rh123 (rhodanmine123) content in MDR cells. Human K562/ADM xenograft-nude mice model verified that 1416 potentiates the antitumour activity of VBL in vivo. RT-PCR (reverse transcriptase-PCR) and FACS analysis demonstrated that the expression of MDR1/P-gp was not affected by 1416 treatment. All these observations suggest that 1416 could be a promising agent for overcoming MDR in cancer chemotherapy.
Collapse
|
11
|
Mamot C, Ritschard R, Wicki A, Küng W, Schuller J, Herrmann R, Rochlitz C. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells. J Drug Target 2012; 20:422-32. [DOI: 10.3109/1061186x.2012.680960] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Barattin R, Perrotton T, Trompier D, Lorendeau D, Di Pietro A, d'Hardemare ADM, Baubichon-Cortay H. Iodination of verapamil for a stronger induction of death, through GSH efflux, of cancer cells overexpressing MRP1. Bioorg Med Chem 2010; 18:6265-74. [PMID: 20691599 DOI: 10.1016/j.bmc.2010.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/27/2022]
Abstract
The multidrug resistance protein 1 (MRP1), involved in multidrug resistance (MDR) of cancer cells, was found to be modulated by verapamil, through stimulation of GSH transport, leading to apoptosis of MRP1-overexpressing cells. In this study, various iodinated derivatives of verapamil were synthesized, including iodination on the B ring, known to be involved in verapamil cardiotoxicity, and assayed for the stimulation of GSH efflux by MRP1. The iodination, for nearly all compounds, led to a higher stimulation of GSH efflux. However, determination of concomitant cytotoxicity is also important for selecting the best compound, which was found to be 10-fold more potent than verapamil. This will then allow us to design original anti-cancer compounds which could specifically kill the resistant cancer cells.
Collapse
Affiliation(s)
- Régis Barattin
- Département de Chimie Moléculaire, UMR 5250, CNRS/Université Joseph Fourier-Grenoble I, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sabatini S, Kaatz GW, Rossolini GM, Brandini D, Fravolini A. From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J Med Chem 2008; 51:4321-30. [PMID: 18578473 DOI: 10.1021/jm701623q] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Overexpression of efflux pumps is an important mechanism by which bacteria evade effects of substrate antimicrobial agents and inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus multidrug efflux pump, the activity of which confers decreased susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 1,4-benzothiazine derivatives were designed and synthesized as a minimized structural template of phenothiazine MDR efflux pump inhibitors (EPIs) in an effort to identify more potent S. aureus NorA EPIs. Almost all derivatives evaluated showed good activity in combination with ciprofloxacin against S. aureus ATCC 25923; some were capable of completely restoring ciprofloxacin activity in a norA-overexpressing strain (SA-K2378). Compounds 6k and 7j displayed good activity against SA-1199B, a strain that also overexpresses norA, in an ethidium bromide (EtBr) efflux inhibition assay.
Collapse
Affiliation(s)
- Stefano Sabatini
- Dipartimento di Chimica e Tecnologia del Farmaco, Universita di Perugia, 06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
14
|
Perrotton T, Trompier D, Chang XB, Di Pietro A, Baubichon-Cortay H. (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. J Biol Chem 2007; 282:31542-8. [PMID: 17646169 DOI: 10.1074/jbc.m703964200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug-resistant protein MRP1 (involved in the cancer cell multidrug resistance phenotype) has been found to be modulated by racemic verapamil (through stimulation of glutathione transport), inducing apoptosis of human MRP1 cDNA-transfected baby hamster kidney 21 (BHK-21) cells and not of control BHK-21 cells. In this study, we show that the two enantiomers of verapamil have different effects on MRP1 activity. Only the S-isomer (not the R-isomer) potently induced the death of MRP1-transfected BHK-21 cells. The decrease in cellular glutathione content induced by the S-isomer, which was not observed with the R-isomer, was stronger than that induced by the racemic mixture, indicating that the R-isomer antagonized the S-isomer effect. Both enantiomers altered leukotriene C(4) and calcein transport by MRP1. Thus, the R-isomer behaved as an inhibitor, which was confirmed by its ability to revert the multidrug resistance phenotype toward vincristine. Molecular studies on purified MRP1 using fluorescence spectroscopy showed that both enantiomers bound to MRP1 with high affinity, with the binding being prevented by glutathione. Furthermore, conformational changes induced by the two enantiomers (monitored by sodium iodide accessibility of MRP1 tryptophan residues) were quite different, correlating with their distinct effects. (S)-Verapamil induces the death of potentially resistant tumor cells, whereas (R)-verapamil sensitizes MRP1-overexpressing cells to chemotherapeutics. These results might be of great potential interest in the design of new compounds able to modulate MRP1 in chemotherapy.
Collapse
Affiliation(s)
- Thomas Perrotton
- Laboratoire des Protéines de Résistance aux Agents Chimiothérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086, IFR 128 BioSciences Lyon-Gerland, CNRS/Université de Lyon, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
15
|
Ho YC, Tai KW, Chang YC. Synergistic effects of verapamil on pingyangmycin-induced cytotoxicity and apoptosis in KB cells. Oral Dis 2007; 13:40-4. [PMID: 17241428 DOI: 10.1111/j.1601-0825.2006.01242.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Previous studies have shown that pingyangmycin (PYM; bleomycin A5) can induce two distinct modes of cell death (necrosis, apoptosis). At high concentrations, PYM can be considered as an apoptosis mimetic drug. In this study, we explored the possibility that the membrane-modifying agent verapamil might affect the transport function of PYM through the plasma membrane, resulting in inducing apoptosis of tumor cells at low concentration of PYM. METHODS Cytotoxicity, flow cytometry and DNA fragmentation assays were used to detect the interaction of verapamil and PYM in human oral carcinoma cell line KB cells. RESULTS Our results indicated that verapamil can enhance the cytotoxicity of PYM against KB cells with the non-toxic doses (P<0.05). The cell viability at a concentration of 500 microg ml-1 of PYM was 35+/-2% compared with control and 10 microg ml-1 verapamil decreased the cell viability lower to 28+/-1%. In addition, because of the synergistic effect of verapamil, KB cells apoptosis was found to be induced when treated with a lower concentration of PYM (50 microg ml-1) for 24 h by flow cytometry and DNA fragmentation assays. CONCLUSIONS Verapamil was found to enhance PYM-induced cytotoxicity and apoptosis in KB cells. The responsiveness of PYM might be explained by the effective accumulation of PYM by verapamil in KB cells mediated by the inhibition of PYM efflux function of the cells.
Collapse
Affiliation(s)
- Y-C Ho
- School of Applied Chemistry, Department of Oral and Maxillofacial Surgery, Institute of Stomatology, Chung Shan Medical University, Taichungt, Taiwan
| | | | | |
Collapse
|
16
|
Crowe A, Ilett KF, Karunajeewa HA, Batty KT, Davis TME. Role of P glycoprotein in absorption of novel antimalarial drugs. Antimicrob Agents Chemother 2006; 50:3504-6. [PMID: 16917012 PMCID: PMC1610088 DOI: 10.1128/aac.00708-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bidirectional transport of four novel antimalarial compounds was determined using Caco-2 cell monolayers. P glycoprotein-mediated efflux was greatest for pyronaridine (5 to 20 microM) and low for naphthoquine (5 microM). With 20 microM naphthoquine, net efflux was blocked, suggesting saturation of the transporter. Piperaquine and dihydroartemisinin were not transported by the system.
Collapse
Affiliation(s)
- Andrew Crowe
- Curtin University of Technology, School of Pharmacy, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
17
|
Biscardi M, Teodori E, Caporale R, Budriesi R, Balestri F, Scappini B, Gavazzi S, Grossi A. Multidrug reverting activity toward leukemia cells in a group of new verapamil analogues with low cardiovascular activity. Leuk Res 2006; 30:1-8. [PMID: 16061283 DOI: 10.1016/j.leukres.2005.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 06/14/2005] [Indexed: 11/16/2022]
Abstract
The development of refractory disease is often associated with the overexpression of multidrug resistance (MDR) proteins, especially in several hematological malignancies, such as acute myeloid leukemias (AML), multiple myeloma (MM) and non-Hodgkin's lymphomas (NHL). Since the recognition of these proteins, several attempts have been made to modulate their expression and activity (protein kinase C inhibitors, anti-MDR-1 oligonucleotides, pharmacological competitors and transcriptional inhibitors). Six new compounds (MM 36, CTS 4, CTS 9, CTS 12, CTS 27 and CTS 41), derived from verapamil (VRP), were designed and synthesized to improve their MDR-reverting activity and reduce cardiovascular effects. Cytotoxicity (WST-1 methods) and functional (calcein-acetoxymethyl (Calcein-AM)) assays were performed on a resistant cell line K-562/doxR and on the mononuclear cells (MNCs) of patients with AML. Furthermore, the six molecules were tested for their vasodilator, inotropic and chronotropic activity on guinea pig aortic strip and isolated atrium preparations, respectively. Comparison between survival plots and relative ID50, obtained from the K-562/doxR cells treated with Idarubicin (IDA), in the presence or absence of inhibitors, showed that these compounds function well. All the resistance modifying agents potentiated IDA activity inducing a significant reduction (P<0.01) in ID(50) values in comparison to VRP at each of the concentrations tested, but MM 36, CTS 27 and CTS 41 demonstrated the strongest activity. Results obtained from the MNCs were superimposible to K-562/doxR. Further studies on pump functional analysis confirmed the cytotoxic test results: MM 36, CTS 27 and CTS 41 showed a striking inhibition of P-glycoprotein (Pgp) efflux in K-562/doxR and MNCs. Cardiovascular activity of MM 36, CTS 27 and CTS 41, that are the most interesting compounds as MDR inhibitors, followed this course: MM 36>CTS 27>CTS 41, the last one presenting no cardiovascular activity. Chemosensivity to IDA in K-562/doxR cells and AML blasts could be enhanced in vitro by the adjuvant use of the six new VRP analogues. Compared to VRP, all the new compounds presented good MDR-reverting- and reduced cardiovascular activities along with no vasorelaxant effects. The particularly favourable results in some cases (MM 36, CTS 27 and CTS 41) suggests that anti-MDR activity should be further evaluated in clinical trials in patients with myeloid malignancies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/therapeutic use
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Antibiotics, Antineoplastic/toxicity
- Aorta/drug effects
- Aorta/metabolism
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/drug effects
- Female
- Guinea Pigs
- Heart Atria/drug effects
- Heart Atria/metabolism
- Humans
- Idarubicin/pharmacology
- Idarubicin/therapeutic use
- Idarubicin/toxicity
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Male
- Middle Aged
- Multiple Myeloma/drug therapy
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Organ Culture Techniques
- Verapamil/analogs & derivatives
- Verapamil/pharmacology
- Verapamil/therapeutic use
- Verapamil/toxicity
Collapse
Affiliation(s)
- Monica Biscardi
- U.O. Hematology, Azienda Ospedaliera Careggi, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dei S, Budriesi R, Sudwan P, Ferraroni M, Chiarini A, Garnier-Suillerot A, Manetti D, Martelli C, Scapecchi S, Teodori E. Diphenylcyclohexylamine derivatives as new potent multidrug resistance (MDR) modulators. Bioorg Med Chem 2005; 13:985-98. [PMID: 15670906 DOI: 10.1016/j.bmc.2004.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/23/2004] [Indexed: 10/26/2022]
Abstract
A series of compounds with a diphenylmethyl cyclohexyl skeleton, loosely related to verapamil, has been synthesized and tested as MDR modulators on anthracycline-resistant erythroleukemia K 562 cells. Their residual cardiovascular action (negative inotropic and chronotropic activity as well as vasorelaxant activity) was evaluated on guinea-pig isolated atria preparations and on guinea-pig aortic strip preparations. Most compounds of the series possess a good MDR-reverting activity together with a low cardiovascular action. Among them, compounds 3a1, 7a, and 8a are more potent than verapamil as MDR reverters and lack any cardiovascular action; they can represent useful leads for the development of new safe MDR reversing drugs.
Collapse
Affiliation(s)
- Silvia Dei
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, via U. Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Alberto Grossi
- U.O. Hematology, Azienda Ospedaliera Careggi, University of Florence, Italy.
| | | |
Collapse
|
20
|
Teodori E, Dei S, Scapecchi S, Gualtieri F. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2002; 57:385-415. [PMID: 12058813 DOI: 10.1016/s0014-827x(02)01229-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistance (MDR) is a kind of resistance of cancer cells to multiple classes of chemotherapic drugs that can be structurally and mechanistically unrelated. Classical MDR regards altered membrane transport that results in lower cell concentrations of cytotoxic drug and is related to the over expression of a variety of proteins that act as ATP-dependent extrusion pumps. P-glycoprotein (Pgp) and multidrug resistance protein (MRP1) are the most important and widely studied members of the family that belongs to the ABC superfamily of transporters. It is apparent that, besides their role in cancer cell resistance, these proteins have multiple physiological functions as well, since they are expressed also in many important non-tumoural tissues and are largely present in prokaryotic organisms. A number of drugs have been identified which are able to reverse the effects of Pgp, MRPI and sister proteins, on multidrug resistance. The first MDR modulators discovered and studied in clinical trials were endowed with definite pharmacological actions so that the doses required to overcome MDR were associated with unacceptably high side effects. As a consequence, much attention has been focused on developing more potent and selective modulators with proper potency, selectivity and pharmacokinetics that can be used at lower doses. Several novel MDR reversing agents (also known as chemosensitisers) are currently undergoing clinical evaluation for the treatment of resistant tumours. This review is concerned with the medicinal chemistry of MDR reversers, with particular attention to the drugs that are presently in development.
Collapse
Affiliation(s)
- E Teodori
- Dipartimento di Scienze Farmaceutiche, Universita' di Firenze, Florence, Italy
| | | | | | | |
Collapse
|
21
|
Guns ES, Denyssevych T, Dixon R, Bally MB, Mayer L. Drug interaction studies between paclitaxel (Taxol) and OC144-093--a new modulator of MDR in cancer chemotherapy. Eur J Drug Metab Pharmacokinet 2002; 27:119-26. [PMID: 12064370 DOI: 10.1007/bf03190426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The MDR modulator, OC144-093, is a potential candidate for use in cancer therapy and exhibits potent biological activity in vitro and in vivo when combined with anticancer agents such as paclitaxel. Its inhibitory interaction with P-glycoprotein (Pgp), the mdr1 gene product and a mechanistic participant in multidrug resistance, underlies its activity as a modulator of MDR. Having previously shown that OC144-093 is not a substrate for CYP3A we first examined the effects of OC144-093 on paclitaxel metabolism in vitro. Using human liver microsomes, we have demonstrated that OC144-093 inhibited the CYP3A mediated metabolism of paclitaxel at high concentrations only (Ki = 39.8 +/- 5.1 microM, n=3). Pharmacokinetic results also show that an oral dose of OC144-093, co-administered with paclitaxel caused negligible disturbance of the pharmacokinetic profile for paclitaxel when injected intravenously. In contrast, AUC values were elevated approximately 1.5-fold in all groups treated orally with paclitaxel and OC144-093. Cmax was enhanced approximately 2-fold in the co-dosed group. These characteristics are consistent with Pgp blockade in the gut enhancing oral bioavailability. Elimination properties of paclitaxel were affected only upon multiple dosing of OC 144-093. These results warrant the further clinical assessment of OC144-093 as an MDR reversing agent.
Collapse
Affiliation(s)
- Emma S Guns
- Dept. of Advanced Therapeutics, BC Cancer Agency, Vancouver, Canada
| | | | | | | | | |
Collapse
|
22
|
Guns ES, Bullock PL, Reimer ML, Dixon R, Bally M, Mayer LD. Assessment of the involvement of CYP3A in the vitro metabolism of a new modulator of MDR in cancer chemotherapy, OC144-193, by human liver microsomes. Eur J Drug Metab Pharmacokinet 2001; 26:273-82. [PMID: 11808870 DOI: 10.1007/bf03226382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The novel substituted imidazole compound, OC144-093 exhibits potent biological activity in vitro and in vivo for reversal of P-glycoprotein (PgP) based resistance to cancer chemotherapy. Its mechanism of action relies upon its inhibitory interaction with the mdr1 gene product, a known mediator of multidrug resistance (MDR). Overlapping substrate specificities and tissue distribution of cytochrome P450 3A (CYP3A) and PgP indicate the potential for drug-drug interactions when modulator and anticancer agent are co-administered. We have examined the metabolism of OC144-093 in vitro using human liver microsomes to determine if CYP3A is involved. Our results show that OC144-093 is converted to one major metabolite (M1) in human liver microsomes which was identified by LCMS to be the O-deethylated derivative. Km and Vmax for O-deethylation were determined as 3.96+/-0.67 microM and 32.08+/-9.73 pmol/mg protein/min, respectively (n=3). Correlation studies conducted in a panel of human livers phenotyped for specific P450 enzyme activity showed a significant relationship between M1 formation and the activity of CYP2C9, CYP2B6, CYP2E1 and CYP3A4. Treatment of microsomes with carbon monoxide gas inhibited M1 formation and diethyldithiocarbamate and ketoconazole (>3 microM), non-specific CYP inhibitors, gave IC50 values of 124.4+/-21.6 microM and 25.3+/-3.2 microM respectively for the inhibition of O-deethylation, also implicating the involvement of CYP enzymes. Specific CYP inhibitors of CYP3A4 were essentially non-inhibitory to M1 formation. We can conclude therefore that OC144-093 is not extensively metabolised in human liver microsomes although conversion to its O-deethylated derivative does occur. Our data indicates that this conversion is not mediated by CYP3A4.
Collapse
Affiliation(s)
- E S Guns
- Dept of Advanced Therapeutics, BC Cancer Agency, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Nelson MA, Frishman WH, Seiter K, Keefe D, Dutcher J. Cardiovascular considerations with anthracycline use in patients with cancer. HEART DISEASE (HAGERSTOWN, MD.) 2001; 3:157-68. [PMID: 11975787 DOI: 10.1097/00132580-200105000-00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracyclines are important chemotherapeutic agents that are used for the treatment of various malignancies in both adults and children, but their usefulness has been limited by cardiotoxicity that is usually dose related. Oxidative injury appears to be the cause of myocardial dysfunction when using these drugs. Screening for early myocardial injury with troponin testing, echocardiography, and radionuclide examinations has reduced the incidence of chronic cardiac dysfunction. Various anthracycline analogues have been developed that have less cardiotoxicity. Dexrazoxane, an iron chelator, and the radioprotective agent amifostine protect against cardiac injury, thus allowing the use of higher doses of anthracyclines. Other strategies that have been evaluated are dietary glutamine supplementation and the use of the antioxidant probucol.
Collapse
Affiliation(s)
- M A Nelson
- Department of Medicine, the Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
24
|
Loe DW, Oleschuk CJ, Deeley RG, Cole SP. Structure-activity studies of verapamil analogs that modulate transport of leukotriene C(4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun 2000; 275:795-803. [PMID: 10973801 DOI: 10.1006/bbrc.2000.3384] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 190-kDa multidrug resistance protein MRP1 is an ATP-binding cassette protein that confers resistance to multiple antineoplastic agents and actively transports conjugated organic anions. We have previously shown that MRP1-mediated GSH transport is stimulated by verapamil but transport of verapamil in the presence or absence of GSH is not observed. We have now examined 20 sulfur-containing verapamil analogs for their ability to inhibit MRP1-mediated leukotriene C(4) (LTC(4)) transport and stimulate GSH uptake into inside-out membrane vesicles. All of the derivatives were poor inhibitors of LTC(4) uptake. However, the inhibitory potency of the more lipophilic dithiane compounds could be enhanced by coincubation with GSH whereas this was not the case for the more hydrophilic dithiane tetraoxides. The dithiane derivatives stimulated GSH transport whereas, with one exception, the dithiane tetraoxides did not. One pair of dithiane stereoisomers differed significantly in their ability to stimulate GSH transport although their ability to inhibit LTC(4) uptake in the presence of GSH was comparable. Our findings indicate that the GSH transport activity of MRP1 can be dissociated from its conjugated organic anion transport activity.
Collapse
Affiliation(s)
- D W Loe
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | |
Collapse
|
25
|
Teodori E, Ettori D, Garnier-Suillerot A, Gualtieri F, Manetti D, Romanelli MN, Scapecchi S. Synthesis and binding properties of photoactivable biotin-conjugated verapamil derivatives for the study of P-170 glycoprotein. Bioorg Med Chem 1999; 7:1873-80. [PMID: 10530935 DOI: 10.1016/s0968-0896(99)00104-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The design and synthesis of two photoactivable biotin-labeled analogues of verapamil (6 and 7) is reported. Preliminary evaluation of the biological profile of 6 (EDP 137) and 7 (EDP 141) shows that they have comparable affinities to that of verapamil for P-170, the protein responsible for multidrug resistance (MDR). Since both appear to bind irreversibly to the protein and the presence of biotin in their structure makes them easily detectable by avidin, they promise to be of great help in studying the protein and its mechanism of action.
Collapse
Affiliation(s)
- E Teodori
- Dipartimento di Scienze Farmaceutiche, Universita' di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Mankhetkorn S, Teodori E, Garnier-Suillerot A. Partial inhibition of the P-glycoprotein-mediated transport of anthracyclines in viable resistant K562 cells after irradiation in the presence of a verapamil analogue. Chem Biol Interact 1999; 121:125-40. [PMID: 10418960 DOI: 10.1016/s0009-2797(99)00095-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
P-glycoprotein (P-gp) is a membranous ATPase responsible for the multidrug resistance phenotype. The effect on P-gp-mediated transport of anthracyclines of cell irradiation in the presence of 2,2-diphenyl-5-[N-1-(o-azidophenyl)ethylamino]valeronitrile (VP*), a photoactivable analogue of verapamil was studied in viable K562/ADR cells. The derivatives were daunorubicin (DNR), idarubicin (IDA), 8-(S)-fluoro-idarubicin (F-IDA), 2'-bromo-4'-epidaunorubicin (Br-DNR) and pirarubicin (PIRA). It was observed that the irradiation in the presence of the verapamil analogue was unable to completely inhibit the P-gp-mediated efflux of anthracyclines and we estimated that P-gp retained 10-20% of its ability to pump these toxins. The ability of verapamil, DNR, IDA, F-IDA, Br-DNR and PIRA to inhibit the effect of VP* was studied. For this purpose, cells were irradiated in the presence of VP* and various concentrations of either verapamil or of one of the anthracyclines and then the P-gp functionality was checked by its ability to pump pirarubicin. It was observed that (i) the effect observed, when cells were irradiated in the presence of VP*, was completely blocked by the presence of verapamil; (ii) that anthracyclines are able to partially inhibit the VP* effect. This inhibition occurs at low concentration of anthracycline and depends on the nature of the derivative used. With those used in that study, after the photoirradiation of K562 ADR cells in the presence of VP* and anthracycline, P-gp has retained 50 +/- 5% of its functionality. The anthracycline concentration required for this inhibition is rather low, the total drug concentration yielding 50% of the effect ranged from 0.5 (Br-DNR) to 4 microM (F-IDA). The corresponding cytosolic concentrations are highly correlated with the values of Km determined previously.
Collapse
Affiliation(s)
- S Mankhetkorn
- Laboratoire de Physicochimie Biomoléculaire et Cellulaire, (UPRES-A 7033) Université Paris Nord, Bobigny, France
| | | | | |
Collapse
|
27
|
Pohl EE, Krylov AV, Block M, Pohl P. Changes of the membrane potential profile induced by verapamil and propranolol. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:170-8. [PMID: 9733961 DOI: 10.1016/s0005-2736(98)00098-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of the organic calcium channel blocker verapamil and the beta-receptor blocker propranolol on dipole (phi(d)) and surface (phi(s)) potentials of bilayer lipid membranes were studied. The boundary potentials (phi(b)= phi(d) + phi(s)) of black lipid membranes, monitored by conductance measurements in the presence of nonactin and by capacitive current measurements were compared with phi(s) calculated from the electrophoretic mobility of lipid vesicles. It was shown that the increase of boundary potential, induced by the adsorption of the positively charged propranolol, was caused solely by an increase in surface potential. Although phi(s) also increases due to the adsorption of verapamil, phi(b) diminishes. A sharp decrease of the dipole potential was shown to be responsible for this effect. From Langmuir adsorption isotherm the dissociation constant Kd of verapamil was estimated. The uncharged form of verapamil (Kd=(0.061+/-0.01) mM at pH 10.5) has a tenfold higher affinity to a neutral bilayer membrane than the positively charged form. The alteration of membrane dipole potential due to verapamil adsorption may have important implications for both membrane translocation and partitioning of small or hydrophobic ions and charged groups of membrane proteins.
Collapse
Affiliation(s)
- E E Pohl
- Department of Medical Physics and Biophysics, Martin-Luther University, 06097 Halle/Saale, Germany.
| | | | | | | |
Collapse
|
28
|
Fakata KL, Elmquist WF, Swanson SA, Vorce RL, Prince C, Stemmer PM. Cyclosporin A has low potency as a calcineurin inhibitor in cells expressing high levels of P-glycoprotein. Life Sci 1998; 62:2441-8. [PMID: 9651111 DOI: 10.1016/s0024-3205(98)00227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cyclosporin A (CsA) is a widely-used immunosuppressant drug whose therapeutic and toxic actions are mediated through inhibition of calcineurin (CN), a calcium- and calmodulin-dependent phosphatase. Inhibition of CN by CsA requires drug binding to its protein cofactor in the inhibition, cyclophilin. Because cyclophilin is a high affinity target for CsA it is expected that this protein can act as a reservoir for the drug in the cell and may be able to inhibit cellular efflux of CsA. P-glycoprotein (P-gp) is known to increase the rate of CsA efflux from CsA loaded cells but it is not clear if the P-gp drug efflux pump can compete effectively with cyclophilin at therapeutically relevant concentrations of CsA. To test the hypothesis that increased expression of P-gp confers protection against CsA-dependent inhibition of CN phosphatase activity, KB-V cells expressing varying levels of P-gp were analyzed to determine the potency of CsA as a CN inhibitor. When intact cells were treated with CsA, a positive correlation was observed between P-gp expression and resistance to CsA-dependent inhibition of CN: the IC50 is approximately 20-fold higher in the multidrug resistant epidermal carcinoma cell line, KB-V, which expresses P-gp at a high level than in the parental, KB, cell line expressing very low levels of P-gp. The resistance displayed by KB-V cells is abrogated by co-administration of the P-gp inhibitor verapamil, whereas verapamil has no effect on CsA potency in control KB cells. In cell lysates from KB-V cells with different amounts of P-gp CsA exhibits equivalent potency, indicating that the difference in sensitivity to CsA among the cell types requires maintenance of cell integrity. These observations support the view that resistance to CN inhibition by CsA occurs in cells with moderately elevated P-gp activity. Therefore, P-gp activity appears to be an important determinant of CsA cellular specificity for both therapeutic and toxic effects.
Collapse
Affiliation(s)
- K L Fakata
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha 68198-6055, USA
| | | | | | | | | | | |
Collapse
|
29
|
Takagi Y, Kobayashi N, Chang MS, Lim GJ, Tsuchiya T. Synthesis and antitumor activity of 7-O-(2,6-dideoxy-2-fluoro-alpha-L-talopyranosyl) daunomycinone derivatives modified at C-3' or C-4'. Carbohydr Res 1998; 307:217-32. [PMID: 9675364 DOI: 10.1016/s0008-6215(98)00026-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a part of a study to exploit anthracycline glycosides effective against resistant tumor cells, the 3'-O-methyl (3), 4'-O-methyl (4), 3'-deoxy (6), 3'-deoxy-3'-fluoro (7), and 3'-deoxy-3'-iodo (8) derivatives of 7-O-(2,6-dideoxy-2-fluoro-alpha-L-talopyranosyl)daunomycinone have been prepared by coupling suitably protected glycosyl bromides with daunomycinone. The doxorubicin-type analog (5) of 4 was also prepared. Among the compounds prepared, 5 showed the highest antitumor activity. Relationships between chemical structures of the synthetic products and antitumor activities, together with the degree of resistance were discussed.
Collapse
Affiliation(s)
- Y Takagi
- Institute of Bioorganic Chemistry, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
30
|
Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00498-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Mankhetkorn S, Teodori E, Scapecchi S, Garnier-Suillerot A. Study of P-glycoprotein functionality in living resistant K562 cells after photolabeling with a verapamil analogue. Biochem Pharmacol 1996; 52:213-7. [PMID: 8694845 DOI: 10.1016/0006-2952(96)00178-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To our knowledge, this is the first study to investigate the modification of P-glycoprotein functionality in living resistant cells after photolabeling. For this purpose, four new photoactive verapamil analogues were synthesized. These compounds have the same efficacy as verapamil to increase pirarubicin (pira) incorporation into living multidrug resistant (MDR) K562 cells and to sensitize them to the cytotoxic effect of this anthracycline derivative, indicating that they act as typical MDR modifiers in MDR cells. These compounds were used to photolabel P-glycoprotein (P-gp) in living resistant cells. Irradiation did not result in photodamage to cells, and P-gp functionality was verified by the ability of living cells to incorporate pira. The irradiation of resistant cells, 10(6)/mL, in the presence of a verapamil analogue at concentrations equal to or higher than 3 microM yielded 70% inhibition of P-gp functionality. Our data provide the first evidence that the binding of a verapamil analogue to P-gp is not sufficient to completely inhibit the efflux of this anthracycline. The cells were, subsequently, cultured for several days. Resistance was progressively recovered with time, with the treated cells being just as resistant as before photolabeling after 6 days.
Collapse
Affiliation(s)
- S Mankhetkorn
- Laboratoire De Physicochimie Biomoléculaire et Cellulaire (URA 2056 CNRS), Université Paris Nord, Bobigny, France
| | | | | | | |
Collapse
|
32
|
Ford JM. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer 1996; 32A:991-1001. [PMID: 8763340 DOI: 10.1016/0959-8049(96)00047-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J M Ford
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| |
Collapse
|