1
|
Jeong SH, Lee HS, Jung JH, Baik K, Lee YH, Yoo HS, Sohn YH, Chung SJ, Lee PH. White Matter Hyperintensities, Dopamine Loss, and Motor Deficits in De Novo Parkinson's Disease. Mov Disord 2021; 36:1411-1419. [PMID: 33513293 DOI: 10.1002/mds.28510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND White matter hyperintensities, prevalent in patients with Parkinson's disease (PD), significantly affect parkinsonian motor symptoms. The objective of this study was to investigate the relationship between white matter hyperintensities and nigrostriatal dopamine depletion and their interaction or mediating effects on motor symptoms in patients with drug-naive early-stage PD. METHODS This cross-sectional study enrolled 501 patients with de novo PD who initially underwent [18 F] N-(3-fluoropropyl)-2β-carbonethoxy-3β-(4-iodophenyl) nortropane positron emission tomography and brain magnetic resonance imaging scans between April 2009 and September 2015 in a tertiary-care university hospital. We quantified dopamine transporter availability in each striatal subregion and assessed the severity of periventricular and lobar white matter hyperintensities using the Scheltens scale. The relationship between white matter hyperintensities, dopamine transporter availability in the posterior putamen, and Unified Parkinson's Disease Rating Scale (UPDRS) motor scores was assessed using multivariate linear regression and mediation analyses. RESULTS Periventricular and frontal white matter hyperintensities were generally associated with dopamine transporter availability in striatal subregions after adjusting for age at symptom onset, sex, disease duration, and vascular risk factors. There was an interaction effect between periventricular white matter hyperintensities and dopamine transporter availability in the posterior putamen for the axial motor score. The effect of white matter hyperintensities on UPDRS total score and bradykinesia subscore was indirectly mediated by dopamine transporter availability in the posterior putamen, whereas the axial sub-score was directly affected by white matter hyperintensities. CONCLUSIONS This study suggests that the detrimental effect of white matter hyperintensities on parkinsonian motor symptoms is more relevant and independent for axial motor impairments in the status of mildly decreased striatal dopamine transporter availability. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Quartarone A, Cacciola A, Milardi D, Ghilardi MF, Calamuneri A, Chillemi G, Anastasi G, Rothwell J. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 2020; 143:396-406. [PMID: 31628799 DOI: 10.1093/brain/awz310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', Messina, Italy
| | | | | | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Briones-Lizardi LJ, Cortés H, Avalos-Fuentes JA, Paz-Bermúdez FJ, Aceves J, Erlij D, Florán B. Presynaptic control of [3H]-glutamate release by dopamine receptor subtypes in the rat substantia nigra. Central role of D1 and D3 receptors. Neuroscience 2019; 406:563-579. [DOI: 10.1016/j.neuroscience.2019.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
4
|
Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks. PLoS One 2018; 13:e0198136. [PMID: 29813109 PMCID: PMC5973564 DOI: 10.1371/journal.pone.0198136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/14/2018] [Indexed: 01/15/2023] Open
Abstract
The dopamine (DA) hypothesis of cognitive deficits suggests that too low or too high extracellular DA concentration in the prefrontal cortex (PFC) can severely impair the working memory (WM) maintenance during delay period. Thus, there exists only an optimal range of DA where the sustained-firing activity, the neural correlate of WM maintenance, in the cortex possesses optimal firing frequency as well as robustness against noisy distractions. Empirical evidences demonstrate changes even in the D1 receptor (D1R)-sensitivity to extracellular DA, collectively manifested through D1R density and DA-binding affinity, in the PFC under neuropsychiatric conditions such as ageing and schizophrenia. However, the impact of alterations in the cortical D1R-sensitivity on WM maintenance has yet remained poorly addressed. Using a quantitative neural mass model of the prefronto-mesoprefrontal system, the present study reveals that higher D1R-sensitivity may not only effectuate shrunk optimal DA range but also shift of the range to lower concentrations. Moreover, higher sensitivity may significantly reduce the WM-robustness even within the optimal DA range and exacerbates the decline at abnormal DA levels. These findings project important clinical implications, such as dosage precision and variability of DA-correcting drugs across patients, and failure in acquiring healthy WM maintenance even under drug-controlled normal cortical DA levels.
Collapse
|
5
|
Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson's disease. Neuropharmacology 2018; 131:223-237. [DOI: 10.1016/j.neuropharm.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
|
6
|
Cacciola A, Calamuneri A, Milardi D, Mormina E, Chillemi G, Marino S, Naro A, Rizzo G, Anastasi G, Quartarone A. A Connectomic Analysis of the Human Basal Ganglia Network. Front Neuroanat 2017; 11:85. [PMID: 29018335 PMCID: PMC5622993 DOI: 10.3389/fnana.2017.00085] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
Abstract
The current model of basal ganglia circuits has been introduced almost two decades ago and has settled the basis for our understanding of basal ganglia physiology and movement disorders. Although many questions are yet to be answered, several efforts have been recently made to shed new light on basal ganglia function. The traditional concept of “direct” and “indirect” pathways, obtained from axonal tracing studies in non-human primates and post-mortem fiber dissection in the human brain, still retains a remarkable appeal but is somehow obsolete. Therefore, a better comprehension of human structural basal ganglia connectivity in vivo, in humans, is of uttermost importance given the involvement of these deep brain structures in many motor and non-motor functions as well as in the pathophysiology of several movement disorders. By using diffusion magnetic resonance imaging and tractography, we have recently challenged the traditional model of basal ganglia network by showing the possible existence, in the human brain, of cortico-pallidal, cortico-nigral projections, which could be mono- or polysynaptic, and an extensive subcortical network connecting the cerebellum and basal ganglia. Herein, we aimed at reconstructing the basal ganglia connectome providing a quantitative connectivity analysis of the reconstructed pathways. The present findings reinforce the idea of an intricate, not yet unraveled, network involving the cerebral cortex, basal ganglia, and cerebellum. Our findings may pave the way for a more comprehensive and holistic pathophysiological model of basal ganglia circuits.
Collapse
Affiliation(s)
| | - Alessandro Calamuneri
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gaetana Chillemi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, Cutroneo G, Bruschetta D, Rizzo G, Mondello S, Bramanti P, Quartarone A. A Direct Cortico-Nigral Pathway as Revealed by Constrained Spherical Deconvolution Tractography in Humans. Front Hum Neurosci 2016; 10:374. [PMID: 27507940 PMCID: PMC4960230 DOI: 10.3389/fnhum.2016.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Substantia nigra is an important neuronal structure, located in the ventral midbrain, that exerts a regulatory function within the basal ganglia circuitry through the nigro-striatal pathway. Although its subcortical connections are relatively well-known in human brain, little is known about its cortical connections. The existence of a direct cortico-nigral pathway has been demonstrated in rodents and primates but only hypothesized in humans. In this study, we aimed at evaluating cortical connections of substantia nigra in vivo in human brain by using probabilistic constrained spherical deconvolution (CSD) tractography on magnetic resonance diffusion weighted imaging data. We found that substantia nigra is connected with cerebral cortex as a whole, with the most representative connections involving prefrontal cortex, precentral and postcentral gyri and superior parietal lobule. These results may be relevant for the comprehension of the pathophysiology of several neurological disorders involving substantia nigra, such as parkinson's disease, schizophrenia, and pathological addictions.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| | - Giuseppe P Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Gianpaolo A Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Pietro Ciolli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Mariangela Irrera
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Stefania Mondello
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | | | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| |
Collapse
|
8
|
Reneaux M, Gupta R. Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period. PLoS One 2015; 10:e0144378. [PMID: 26636712 PMCID: PMC4670113 DOI: 10.1371/journal.pone.0144378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.
Collapse
Affiliation(s)
- Melissa Reneaux
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014; 282:248-57. [PMID: 25445194 DOI: 10.1016/j.neuroscience.2014.10.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
The midbrain dopamine (DA) neurons play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. Indeed, subpopulations of DA neurons have been associated with these different functions: the mesolimbic, mesocortical, and nigrostriatal pathways. The mesolimbic and nigrostriatal pathways are an integral part of the basal ganglia through its reciprocal connections to the ventral and dorsal striatum respectively. This chapter reviews the connections of the midbrain DA cells and their role in integrating information across limbic, cognitive and motor functions. Emphasis is placed on the interface between these functional domains within the striatum through corticostriatal connections, through the striato-nigro-striatal connection, and through the lateral habenula projection to the midbrain.
Collapse
Affiliation(s)
- S N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
10
|
Abstract
Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kerry P S Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7:114. [PMID: 23847463 PMCID: PMC3701870 DOI: 10.3389/fnins.2013.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
12
|
Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson's disease. CNS Drugs 2012; 26:1017-32. [PMID: 23114872 DOI: 10.1007/s40263-012-0016-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson's disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-D-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs), although in the early pre-clinical stages of investigation, are showing good efficacy against motor symptoms, neurodegeneration and LID. It is anticipated that the recent development of mGlu4 PAMs with improved systemic bioavailability will facilitate progression of these agents into the primate model of PD where their potential can be further explored.
Collapse
|
13
|
Jones S, Brothwell S, Huang-Doran I, Hallett J. Ionotropic Glutamate Receptors in the Basal Ganglia. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Morales M, Pickel VM. Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann N Y Acad Sci 2011; 1248:71-88. [PMID: 22171551 DOI: 10.1111/j.1749-6632.2011.06299.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drugs of abuse increase the release of dopamine from mesocorticolimbic neurons in the ventral tegmental area. Thus, insights into the cytoarchitecture and the synaptic circuitry affecting the activity of dopaminergic neurons in this area are fundamental for understanding the commonalities produced by mechanistically distinct drugs of abuse. Electron microscopic immunolabeling has provided these insights and also shown the critical relationships between the dopaminergic axon terminals and their targeted neurons in the prefrontal cortex and in the both the dorsal and ventral striatum. These brain regions are among those where dopamine and associated neurotransmitters are most implicated in the transition from recreational to compulsive consumption of reinforcing drugs. Thus, the synaptic circuitry and drug-induced plasticity occurring in the ventral tegmental area and in dopamine-targeted regions are reviewed, as both are essential for understanding the long-lasting changes produced by addictive substances.
Collapse
Affiliation(s)
- Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | | |
Collapse
|
15
|
Luquin N, Mitrofanis J. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats? Parkinsonism Relat Disord 2008; 14:213-23. [DOI: 10.1016/j.parkreldis.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/25/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
|
16
|
Abstract
The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or gamma-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co-expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- National Institute on Drug Abuse, Cellular Neurophysiology, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
17
|
Frankle WG, Laruelle M, Haber SN. Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection. Neuropsychopharmacology 2006; 31:1627-36. [PMID: 16395309 DOI: 10.1038/sj.npp.1300990] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frontal cortical efferent fibers are thought to have important regulatory influence on cortico-basal ganglia (BG) circuits. The cortico-midbrain (substantia nigra/ventral tegmental area, SN/VTA) pathway has received particular attention in psychiatric diseases, most notably schizophrenia. Work in rodents demonstrates that the prefrontal cortico (PFC)-midbrain pathway plays a central role in regulating the firing pattern of dopamine (DA) neurons. These findings have led to some important hypotheses concerning PFC/BG interaction in schizophrenia. Descending PFC projections to the SN/VTA have been primarily documented in the rodent. The aim of this study was to determine the degree and organization of PFC afferents to these areas in the Macaque monkey. Anterograde tracer injections were made into discrete orbital, cingulate, and dorsolateral prefrontal areas. Projections were charted to the SN and VTA. Overall, there were very few fibers in the ventral midbrain following injections confined to specific areas of the PFC. To determine the relationship of the descending fibers to the midbrain DA neurons, sections were double stained for the tracer molecules and for tyrosine hydroxylase. In all cases, the prefrontal projections and the TH-positive cells did not appear to be in close juxtaposition. The results show a very limited projection from the PFC to the midbrain DA neurons in primates, terminating both within the SN proper as well as in the VTA. They arise from a broad region of the PFC, including the DLPF, cingulate, and orbital cortices. However, despite the relative lack of cortical input to the midbrain cells, these neurons are rich in glutamate receptors in primates. Thus, while, based on these anatomical studies, direct cortical control of DA neurons remains debatable in primates; the cortex may directly impact other sources of glutamatergic control.
Collapse
Affiliation(s)
- William Gordon Frankle
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
18
|
Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. ACTA ACUST UNITED AC 2004; 47:126-44. [PMID: 15572168 DOI: 10.1016/j.brainresrev.2004.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/28/2022]
Abstract
Dopaminergic nigrostriatal neurons may be considered as bipolar functional entities since they are endowed with the ability to synthesize, store and release the transmitter dopamine (DA) at the somatodendritic level in the substantia nigra (SN). Such dendritic DA release seems to be distinct from the transmitter release occurring at the axon terminal and seems to rely preferentially on volume transmission to exert its physiological effects. An increased glutamatergic (Gluergic) transmission into the SN facilitates such dendritic DA release via activation of NMDA-receptors (NMDA-Rs) and to a lesser extent through group II metabotropic glutamate receptors (mGluRs). In addition, nigral mGluRs functionally interact with NMDA-Rs in the SN, further modulating the NMDA-R-mediated increase of DA release from dendrites in the SN. In turn, dendritically released DA may exert, via D1 receptors, a tonic inhibitory control upon nigral glutamate (Glu). Furthermore, released DA, via D2/D3 autoreceptors, produces an autoinhibitory effect upon DA cell firing and its own release process. An increased Gluergic transmission into the SN may also induce, via activation of NMDA-Rs, an augmented expression of different brain-derived neurotrophic factor (BDNF) gene transcripts in this brain area. Pharmacological evidence suggests that non-NMDA-Rs could also participate in the regulation of BDNF gene expression in the SN. Glu-mediated changes of nigral BDNF expression could regulate, in turn, the expression of important transmitter-related proteins in the SN, such as different NMDA-R subunits, mGluRs and DA-D3 receptors. In conclusion, Glu-DA-BDNF interactions in the SN may play an important role in modulating the flow of neuronal information in this brain structure under normal conditions, as well as during adaptive and plastic responses associated with various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Gonzalo Bustos
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Catholic University of Chile, Alameda 340, Santiago 114-D, Chile.
| | | | | | | | | | | |
Collapse
|
19
|
Jankowski MP, Sesack SR. Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol 2004; 468:518-29. [PMID: 14689484 DOI: 10.1002/cne.10976] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of human brain indicate that both the ventromedial prefrontal cortex (PFC) and the dorsal raphe nucleus (DRN) may be dysfunctional in major depressive illness, making it important to understand the functional interactions between these brain regions. Anatomical studies have shown that the PFC projects to the DRN, although the synaptic targets of this excitatory pathway have not yet been identified. Electrophysiological investigations in the rat DRN report that most serotonin neurons are inhibited by electrical stimulation of the PFC, suggesting that this pathway is more likely to synapse onto neighboring gamma-aminobutyric acid (GABA) neurons than onto serotonin cells. We tested this hypothesis by electron microscopic examination of DRN sections dually labeled for biotin dextran amine anterogradely transported from the PFC and immunogold-silver labeling for tryptophan hydroxylase (TrH) or for GABA. In the DRN, the majority of PFC axons either synapsed onto unlabeled dendrites or failed to form detectable synapses in single sections. Other PFC axons synapsed onto either TrH- or GABA-immunolabeled processes. Considerably more tissue sampling was necessary to detect PFC synapses onto TrH- than onto GABA-labeled dendrites, suggesting that the latter connections are more common. In other cases, PFC terminals and TrH- or GABA-immunoreactive dendrites either were closely apposed, without forming detectable synapses, or were separated by glial processes. These results provide potential anatomical substrates whereby the PFC can both directly and indirectly regulate the activity of serotonin neurons in the DRN and possibly contribute to the pathophysiology of depression.
Collapse
Affiliation(s)
- Michael P Jankowski
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
20
|
Ochi M, Shiozaki S, Kase H. Adenosine A2A receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson's disease. Neuroscience 2004; 127:223-31. [PMID: 15219684 DOI: 10.1016/j.neuroscience.2004.04.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/21/2022]
Abstract
A target neuron of adenosine A(2A) receptor antagonists to exert anti-parkinsonian activities has been currently identified to be, at least in part, striatopallidal medium spiny neurons (MSNs). In the present study, we determine whether A(2A) receptor-mediated modulation is associated with changes in the release of GABA and glutamate in the substantia nigra pars reticulata (SNr), an output structure of the whole basal ganglia network, using in vivo microdialysis in a rat Parkinson's disease (PD) model. In 6-hydroxydopamine (OHDA)-lesioned rats compared with normal rats, basal extracellular GABA levels in the SNr show no change, whereas basal glutamate levels are significantly increased. Oral administration of the A(2A) receptor-selective antagonist (E-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1-H-purine-2,6-dion (KW-6002) to 6-OHDA-lesioned rats at 1 mg/kg caused a marked and sustained increase of GABA and glutamate levels in the SNr. The increase of nigral glutamate by KW-6002 was abolished by a kainic acid-induced lesion of the globus pallidus (GP) or subthalamic nucleus (STN) in 6-OHDA-lesioned rats, whereas the increase of nigral GABA was completely blocked by the GP-lesion but only partially blocked by the STN-lesion. These results indicate that changes in neurotransmitter release in the SNr brought about by KW-6002 are largely attributable to blockade of A(2A) receptor-mediated modulation of striatopallidal MSNs. Thus, these actions of KW-6002 on striatopallidal MSNs may be the main mechanism for ameliorating PD by A(2A) antagonists.
Collapse
Affiliation(s)
- M Ochi
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd, Nagaizumi, Sunto, Shizuoka 411-8731, Japan
| | | | | |
Collapse
|
21
|
Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 2002. [PMID: 12077212 DOI: 10.1523/jneurosci.22-12-05173.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the role of excitatory amino acids (EAAs) in the activation of midbrain dopaminergic (DA) neurons evoked by stimulation of the ventromedial and ventrolateral (subcommissural) bed nucleus of the stria terminalis (vBNST). Using anesthetized rats and extracellular recording techniques, we found that 84.8% of ventral tegmental area (VTA) DA neurons were activated synaptically by single-pulse electrical stimulation of the vBNST. In contrast, similar stimulation did not affect the activity of presumed GABA neurons in the VTA. Three characteristic responses were observed in VTA DA neurons: short latency activation (<25 msec; 55.1% of cells), long latency activation (>65 msec; 56% of cells), and inhibition (61.8% of cells, usually followed by long latency excitation). Microinfusion of antagonists of EAA receptors (3 mm kynurenic acid, 100 microm AP-5, or 50 microm CNQX) from a micropipette adjacent to the recording electrode significantly reduced both short and long latency activations evoked in DA neurons by vBNST stimulation. Specific responses were attenuated similarly by AP-5 alone, CNQX alone, or a cocktail of AP-5+CNQX, indicating that joint activation of NMDA plus non-NMDA receptors was required. Stimulation of the vBNST by local microinfusion of glutamate increased the firing and bursting activity of VTA DA neurons. Similar microinfusion of GABA decreased bursting of VTA DA neurons without altering their firing rate. Retrograde and anterograde labeling and antidromic activation of vBNST neurons by VTA stimulation confirmed a direct projection from the vBNST to the VTA. These results reveal that inputs from the vBNST exert a strong excitatory influence on VTA DA neurons mediated by both NMDA and non-NMDA receptors.
Collapse
|
22
|
Bressand K, Dematteis M, Ming Gao D, Vercueil L, Louis Benabid A, Benazzouz A. Superior colliculus firing changes after lesion or electrical stimulation of the subthalamic nucleus in the rat. Brain Res 2002; 943:93-100. [PMID: 12088842 DOI: 10.1016/s0006-8993(02)02541-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent data have suggested a critical role for the basal ganglia in the remote control of epileptic seizures. In particular, it has been shown that inhibition of either substantia nigra pars reticulata or subthalamic nucleus as well as activation of the superior colliculus suppresses generalized seizures in several animal models. It was previously shown that high frequency stimulation of the subthalamic nucleus, thought to act as functional inhibition, stopped ongoing non-convulsive generalized seizures in rats. In order to determine whether high frequency stimulation of the subthalamic nucleus involved an activation of superior colliculus neurons, we examined the effects of subthalamic nucleus manipulation, by either high frequency stimulation or chemical lesion, on the spontaneous electrical activity of superior colliculus neurons. Acute high frequency stimulation of the subthalamic nucleus (frequency 130 Hz) induced an immediate increase of unitary activity in 70% of responding cells, mainly located within the deep layers, whereas a reduction was observed in the remaining 30%. The latter responses are dependent on the intensity and frequency of the stimulation. Unilateral excitotoxic lesion of the subthalamic nucleus induced a delayed and transient decrease of superior colliculus activity. Our data suggest that high frequency stimulation of the subthalamic nucleus suppresses generalised epileptic seizures through superior colliculus activation.
Collapse
Affiliation(s)
- Karine Bressand
- Laboratoire de Neurobiologie Préclinique, INSERM U318, Centre Hospitalier Universitaire, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
23
|
Ishida Y, Todaka K, Hashiguchi H, Takeda R, Mitsuyama Y, Nishimori T. Morphological changes in immunopositive cells of ionotropic glutamate receptor subunits during the development of transplanted fetal ventral mesencephalic neurons. Brain Res 2002; 940:79-85. [PMID: 12020878 DOI: 10.1016/s0006-8993(02)02595-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To elucidate the morphological changes in immunopositive cells of ionotropic glutamate receptors within intrastriatal 'developing' grafts of fetal ventral mesencephalon (VM) in 6-hydroxydopamine-lesioned rats, immunohistochemistry was performed to detect cells expressing N-methyl-D-aspartate (NMDA) receptor subunit 1 (NR1), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits (GluR1, GluR2/3, and GluR4), or tyrosine hydroxylase (TH) in the intrastriatal VM grafts at 1, 4, and 12 weeks following transplantation. One week after transplantation, TH-positive cells were detected without any immunoreactivity of the NMDA and AMPA receptor subunits in the grafts. Four weeks after transplantation, TH-positive cells, distributed homogeneously in the grafts, appeared to be multipolar and larger compared to those at 1 week post-grafting. At this stage, we could observe immunopositive cells of NMDA and AMPA receptors distributed homogeneously in the grafts. Twelve weeks after transplantation, the numbers of NR1- and GluR1-positive cells were smaller than that at 4 weeks post-grafting, whereas TH-positive cells appeared to be more matured in shape and size. On the other hand, the numbers of GluR2/3- and GluR4-positive cells were not changed as compared with those at 4 weeks post-grafting. These results suggest that the ionotropic glutamate receptors have differential roles during the developmental period of the intrastriatal VM grafts.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, 5200 Kihara, Kiyotake-cho, Miyazaki-gun, 889-1692, Miyazaki, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 2002; 110:403-20. [PMID: 11906782 DOI: 10.1016/s0306-4522(01)00591-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Group III metabotropic glutamate receptors (mGluRs) are selectively activated by L-2-amino-4-phosphonobutyrate (L-AP4), which produces depression of synaptic transmission. The relative contribution of different group III mGluRs to the effects of L-AP4 remains to be clarified. Here, we assessed the distribution of mGluR4 in the rat and mouse brain using affinity-purified antibodies raised against its entire C-terminal domain. The antibodies reacted specifically with mGluR4 and not with other mGluRs in transfected COS 7 cells. No immunoreactivity was detected in brains of mice with gene-targeted deletion of mGluR4. Pre-embedding immunocytochemistry for light and electron microscopy showed the most intense labelling in the cerebellar cortex, basal ganglia, the sensory relay nuclei of the thalamus, and some hippocampal areas. Immunolabelling was most intense in presynaptic active zones. In the basal ganglia, both the direct and indirect striatal output pathways showed immunolabelled terminals forming mostly type II synapses on dendritic shafts. The localisation of mGluR4 on GABAergic terminals of striatal projection neurones suggests a role as a presynaptic heteroreceptor. In the cerebellar cortex and hippocampus, mGluR4 was also localised in terminals establishing type I synapses, where it probably operates as an autoreceptor. In the hippocampus, mGluR4 labelling was prominent in the dentate molecular layer and CA1-3 strata lacunosum moleculare and oriens. Somatodendritic profiles of some stratum oriens/alveus interneurones were richly decorated with mGluR4-labelled axon terminals making either type I or II synapses. This differential localisation suggests a regulation of synaptic transmission via a target cell-dependent synaptic segregation of mGluR4. Our results demonstrate that, like other group III mGluRs, presynaptic mGluR4 is highly enriched in the active zone of boutons innervating specific classes of neurones. In addition, the question of alternatively spliced mGluR4 isoforms is discussed.
Collapse
Affiliation(s)
- C Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
25
|
Campusano JM, Abarca J, Forray MI, Gysling K, Bustos G. Modulation of dendritic release of dopamine by metabotropic glutamate receptors in rat substantia nigra. Biochem Pharmacol 2002; 63:1343-52. [PMID: 11960611 DOI: 10.1016/s0006-2952(02)00870-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A superfusion system was used to study the effects of metabotropic glutamate receptor (mGluR) ligands upon the release of [(3)H]dopamine ([(3)H]DA) previously taken up by rat substantia nigra (SN) slices. trans-(+/-)-1-Amino-(1S,3R)-cyclopentane dicarboxylic acid (trans-ACPD; 100 and 600 microM), a group I and II mGluR agonist, evoked the release of [(3)H]DA from nigral slices. This last effect was reduced significantly by (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)-glycine (MCCG; 300 microM), an antagonist of group II mGluR, or by the addition of tetrodotoxin (D-APV; 1 microM) to the superfusion medium. D-(-)-2-Amino-5-phosphono-valeric acid (100 microM), an N-methyl-D-aspartate receptor antagonist, or the presence of Mg(2+) (1.2mM) in the superfusion medium did not modify trans-ACPD-induced [(3)H]DA release. In addition, a group II mGluR agonist such as (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG-IV; 100 microM) significantly induced the release of [(3)H]DA from nigral slices, whereas a group I mGluR agonist such as (RS)-3,5-dihydroxyphenylglycine (DHPG; 50 and 100 microM) did not modify the release of the [(3)H]-amine. Further experiments showed that the NMDA (100 microM)-evoked release of [(3)H]DA was decreased significantly by prior exposure of SN slices to trans-ACPD. Finally, partial denervation of the DA nigro-striatal pathway with 6-hydroxydopamine (6-OH-DA) increased trans-ACPD-induced release of [(3)H]DA, whereas it decreased trans-ACPD inhibitory effects on NMDA-evoked release of [(3)H]DA from nigral slices. The present results suggest that the dendritic release of DA in the SN is regulated by mGluR activation. Such nigral mGluR activation may produce opposite effects upon basal and NMDA-evoked release of DA in the SN. In addition, such mGluR-induced effects in the SN are modified in response to partial denervation of the DA nigro-striatal pathway.
Collapse
Affiliation(s)
- Jorge M Campusano
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Alameda 340, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
26
|
Loddenkemper T, Pan A, Neme S, Baker KB, Rezai AR, Dinner DS, Montgomery EB, Lüders HO. Deep brain stimulation in epilepsy. J Clin Neurophysiol 2001; 18:514-32. [PMID: 11779965 DOI: 10.1097/00004691-200111000-00002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Since the pioneering studies of Cooper et al. to influence epilepsy by cerebellar stimulation, numerous attempts have been made to reduce seizure frequency by stimulation of deep brain structures. Evidence from experimental animal studies suggests the existence of a nigral control of the epilepsy system. It is hypothesized that the dorsal midbrain anticonvulsant zone in the superior colliculi is under inhibitory control of efferents from the substantia nigra pars reticulata. Inhibition of the subthalamic nucleus (STN) could release the inhibitory effect of the substantia nigra pars reticulata on the dorsal midbrain anticonvulsant zone and thus activate the latter, raising the seizure threshold. Modulation of the seizure threshold by stimulation of deep brain structures-in particular, of the STN-is a promising future treatment option for patients with pharmacologically intractable epilepsy. Experimental studies supporting the existence of the nigral control of epilepsy system and preliminary results of STN stimulation in animals and humans are reviewed, and alternative mechanisms of seizure suppression by STN stimulation are discussed.
Collapse
Affiliation(s)
- T Loddenkemper
- Department of Neurology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ferraro L, Tomasini MC, Fernandez M, Bebe BW, O'Connor WT, Fuxe K, Glennon JC, Tanganelli S, Antonelli T. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience 2001; 102:113-20. [PMID: 11226674 DOI: 10.1016/s0306-4522(00)00448-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-probe microdialysis in the awake rat was employed to investigate the effects of intranigral perfusion with the tridecapeptide neurotensin on local dialysate glutamate and GABA levels in the substantia nigra pars reticulata and on dialysate GABA levels in the ventral thalamus. Intranigral neurotensin (10-300nM, 60min) dose-dependently increased (+29+/-3% and +46+/-3% vs basal for the 100 and 300nM concentrations, respectively) local dialysate glutamate levels, while the highest 300nM concentration of the peptide exerted a long-lasting and prolonged reduction in both local and ventral thalamic (-20+/-4% and -22+/-2%, respectively) GABA levels. Intranigral perfusion with the inactive neurotensin fragment neurotensin(1-7) (10-300nM, 60min) was without effect. Furthermore, the non-peptide neurotensin receptor antagonist SR 48692 (0.2mg/kg) and tetrodotoxin (1microM) fully counteracted the intranigral neurotensin (300nM)-induced increase in local glutamate. SR 48692 (0.2mg/kg) also counteracted the decreases in nigral and ventral thalamic GABA release induced by the peptide. In addition, intranigral perfusion with the dopamine D(2) receptor antagonist raclopride (1microM) fully antagonized the neurotensin (300nM)-induced decreases in nigral and ventral thalamic GABA levels. The ability of nigral neurotensin receptor activation to differently influence glutamate and GABA levels, whereby it increases nigral glutamate and decreases both nigral and ventral thalamic GABA levels, suggests the involvement of neurotensin receptor in the regulation of basal ganglia output at the level of the nigra.
Collapse
Affiliation(s)
- L Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chatha BT, Bernard V, Streit P, Bolam JP. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 2001; 101:1037-51. [PMID: 11113353 DOI: 10.1016/s0306-4522(00)00432-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamatergic neurotransmission in the substantia nigra pars compacta and pars reticulata is mediated through N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxaline propionic acid/kainate (AMPA) type receptors as well as other glutamate receptors and is critical for basal ganglia functioning. A major glutamatergic input to the substantia nigra originates in the subthalamic nucleus, and the long-lasting stimulation of the dopaminergic cells of the substantia nigra pars compacta by the subthalamic neurons has been implicated in the pathophysiology of Parkinson's disease. The objectives of the present study were to determine the subcellular and subsynaptic localization of subunits of the N-methyl-D-aspartate and AMPA receptors in the substantia nigra, and also to determine whether co-localization of N-methyl-D-aspartate and AMPA receptor subunits occur at individual synapses. To achieve this, pre-embedding and post-embedding immunocytochemistry was applied to sections of substantia nigra using antibodies that recognize the NR1 and NR2A/B subunits of the N-methyl-D-aspartate receptor, and GluR2/3 subunits of the AMPA receptor. In both regions of the substantia nigra, immunolabelling for each of the subunits was observed in numerous perikarya and proximal dendrites. At the subcellular level, silver-intensified immunogold particles localizing N-methyl-D-aspartate and AMPA receptor subunits were most commonly present within dendrites where they were associated with a variety of intracellular organelles and with the internal surface of the plasma membrane. Post-embedding immunogold labelling revealed immunoparticles labelling for NR1, NR2A/B and GluR2/3 to be enriched at asymmetric synaptic specializations, although a large proportion of asymmetric synapses were immunonegative. Double immunolabelling revealed, in addition to single-labelled synapses, the co-localization of subunits of the N-methyl-D-aspartate receptor and subunits of the AMPA receptor at individual asymmetric synapses. Similarly, double immunolabelling also revealed the co-localization of the NRl and NR2A/B subunits of the N-methyl-D-aspartate receptor at individual asymmetric synapses. Labelling for NR1 and GluR2/3 was, on average, relatively evenly distributed across the width of the synapse with a gradual reduction towards the periphery when analysed in single sections. In summary, the present results demonstrate that AMPA and N-methyl-D-aspartate receptors are selectively localized at a subpopulation of asymmetric synapses in the substantia nigra pars compacta and reticulata and that the two receptor types, at least partially co-localize at individual synapses. It is concluded that glutamatergic transmission in the substantia nigra pars compacta and pars reticulata occurs primarily at asymmetric synapses and, at least in part, is mediated by both N-methyl-D-aspartate and AMPA receptors.
Collapse
Affiliation(s)
- B T Chatha
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, OX1 3TH, Oxford, UK
| | | | | | | |
Collapse
|
29
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
30
|
Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M. High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 2001; 60:15-24. [PMID: 11202172 DOI: 10.1093/jnen/60.1.15] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The subthalamic nucleus (STN) has come under focus in Parkinson disease (PD) because of recent advances in the understanding of the functional organization of the basal ganglia in normal and pathological conditions. Manipulations of the STN have been described to compensate for some imbalance in motor output of the basal ganglia in animal models of PD and have been proposed as a potential therapeutic target in humans. Indeed, high frequency stimulation (HFS) (130 Hz) of the STN has beneficial effects in severe parkinsonian patients but the precise mechanisms underlying these clinical results remain to be elucidated. To date, very little is known concerning the effect of HFS-STN on striatal dopaminergic transmission. Since it has been reported that dopaminergic medication may be reduced in PD patients under HFS-STN, our goal was to study the effect of HFS-STN on striatal dopamine (DA) transmission by using intracerebral microdialysis in normal and partially DA denervated rats. Our results show that HFS STN induces a significant increase of extracellular DA in the striatum of normal and partially DA lesioned rats while striatal extracellular levels of DOPAC were not affected. We conclude that HFS-STN acts directly and/or indirectly on striatal DA levels in control or partially DA lesioned rats.
Collapse
Affiliation(s)
- N Bruet
- Equipe Neurochimie et Neuroplasticité Fonctionnelles, INSERM U.318--Neurosciences Précliniques, Université Joseph Fourier, Pavillon de Neurologie, CHU de Grenoble, France
| | | | | | | | | | | |
Collapse
|
31
|
Nakao N, Nakai E, Nakai K, Itakura T. Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mitochondrial toxin 3-nitropropionic acid. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199905)45:5<640::aid-ana13>3.0.co;2-u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
West AR, Grace AA. Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 2000; 83:1796-808. [PMID: 10758092 DOI: 10.1152/jn.2000.83.4.1796] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.
Collapse
Affiliation(s)
- A R West
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
33
|
Todaka K, Ishida Y, Hashiguchi H, Nishimori T, Mitsuyama Y. Cellular distribution of the NMDA receptor subunit NMDAR1 in fetal ventral mesencephalon transplants in the dopamine-depleted striatum of a rat. Exp Neurol 1999; 160:394-401. [PMID: 10619556 DOI: 10.1006/exnr.1999.7217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunohistochemistry was performed to demonstrate the cellular distribution of N-methyl-D-aspartate (NMDA) receptor subunit NMDAR1 in the intrastriatal grafts of a rat model of Parkinson's disease. Unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal pathway were produced in young adult female rats. Neural transplantation was performed with fetal ventral mesencephalon (VM) tissue (at embryonic day 15) 3 weeks after the 6-OHDA lesions. In the fetal VM in which the tyrosine hydroxylase (TH) immunoreactivity was intensely observed, no NMDAR1 subunit immunoreactivity was detected. Immunopositive cells of NMDAR1 were densely distributed in the intact SNc contralateral to the lesions, in which intense immunoreactivity for TH was observed. In contrast, the cells positive for NMDAR1 in the SNr were scattered. The immunoreactivity for NMDAR1 was markedly decreased in the SNc, but not in the SNr on the lesioned side. Double immunostaining revealed that most TH-positive cells in the SNc showed moderate NMDAR1 immunoreactivity. Within the intrastriatal fetal VM grafts containing TH-positive cells, NMDAR1-positive cells tended to locate homogeneously within the grafts. These were composed of various cell sizes and shapes, but they were mainly medium-sized and aspiny cells. Double immunostaining revealed that a part of the TH-positive cells in the grafts was also immunopositive for NMDAR1. Taken together with our previous studies, it is suggested that both dopaminergic neurons and nondopaminergic neurons in the VM transplants appear to be modified functionally by glutamatergic afferents via various glutamate receptors, including NMDAR1.
Collapse
Affiliation(s)
- K Todaka
- Department of Psychiatry, Miyazaki Medical College, Japan
| | | | | | | | | |
Collapse
|
34
|
Kitai ST, Shepard PD, Callaway JC, Scroggs R. Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 1999; 9:690-7. [PMID: 10607649 DOI: 10.1016/s0959-4388(99)00040-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent studies examining the modulation of dopamine (DA) cell firing patterns, particular emphasis has been placed on excitatory afferents from the prefrontal cortex and the subthalamic nucleus. A number of inconsistencies in recently published reports, however, do not support the contention that tonic activation of NMDA receptors is the sole determinate of DA neuronal firing patterns. The results of work on the basic mechanism of DA firing and the action of apamin suggest that excitatory projections to DA neurons from cholinergic and glutamatergic neurons in the tegmental pedunculopontine nucleus, and/or inhibitory GABAergic projections, are also involved in modulating DA neuron firing behavior.
Collapse
Affiliation(s)
- S T Kitai
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
35
|
Lokwan SJ, Overton PG, Berry MS, Clark D. Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience 1999; 92:245-54. [PMID: 10392847 DOI: 10.1016/s0306-4522(98)00748-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimulation of the medial prefrontal cortex in the rat produces events in midbrain dopaminergic neurons which resemble natural bursts, and which are closely time-locked to the stimulation, albeit with a very long latency. As a consequence, we have previously argued that such bursts are polysynaptically generated via more proximal excitatory amino acidergic afferents, arising, for example, from the pedunculopontine tegmental nucleus. In the present study, single-pulse electrical stimulation applied to this nucleus (and other sites in the rostral pons) was found to elicit responses in the majority of substantia nigra (A9) dopaminergic neurons. Responses usually consisted of long-latency, long-duration excitations or inhibition-excitations. Thirty-seven percent of responses (currents combined) elicited by stimulation of the pedunculopontine tegmental nucleus contained time-locked bursts, the bursts being embedded in the long-duration excitatory phases of excitation and inhibition-excitation responses. Stimulation sites located within 0.5 mm of the pedunculopontine tegmental nucleus were also effective at eliciting time-locked bursts (although less so than sites located in the nucleus itself), whereas more distal sites were virtually ineffective. For responses containing time-locked bursts, a higher percentage of stimulations produced a burst when the response was elicited from within the pedunculopontine tegmental nucleus than when it was elicited from outside: the bursts themselves having a very long latency (median of 96.2 ms; shorter than that of medial prefrontal cortex-induced bursts). Finally, although there was no difference in the distribution within the substantia nigra pars compacta of cells which exhibited time-locked bursting and those which did not, stimulation-induced bursts were elicited more frequently in dopaminergic neurons which were classified as "bursting" on the basis of their basal activity. The pedunculopontine tegmental nucleus appears to be a critical locus in the rostral pons for the elicitation of time-locked bursts in A9 dopaminergic neurons. Since time-locked bursts were more often elicited from cells which exhibited bursting under basal conditions, this suggests that rostral pontine sites, in particular the pedunculopontine tegmental nucleus, may play a role in the natural burst activity of dopaminergic neurons. Given that bursts in dopaminergic neurons are generated in response to primary and secondary reinforcers, the projection from the pedunculopontine tegmental nucleus could be one means by which motivationally relevant information (arising, for example, from the medial prefrontal cortex) reaches these cells.
Collapse
Affiliation(s)
- S J Lokwan
- Department of Psychology, School of Biological Sciences, University of Wales, Swansea, UK
| | | | | | | |
Collapse
|
36
|
Iravani MM, Muscat R, Kruk ZL. MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. Synapse 1999; 32:212-24. [PMID: 10340631 DOI: 10.1002/(sici)1098-2396(19990601)32:3<212::aid-syn7>3.0.co;2-m] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine ((+)-MK-801) and a competitive NMDA antagonist, (+/-)-3-2-carboxypiperazin-4-yl-propyl-1-phosphonic acid (CPP) were compared in electrically evoked 5-HT release in the brain slices incorporating the substantia nigra pars reticulata (SNr) or the dorsal raphé nucleus (DRN) using fast cyclic voltammetry (FCV). Electrical stimulation of either the SNr or the DRN with 50 pulses at frequencies greater than 10 Hz generated signals that were indistinguishable from 5-HT. In the SNr, 0.6-60 microM MK-801 concentration dependently potentiated stimulated 5-HT release. CPP 20 microM or NMDA 100 microM had no effect on 5-HT release evoked by electrical stimulation. In the SNr, 1 microM fluvoxamine or 0.6-60 microM MK-801 potentiated electrically evoked release of 5-HT. Pre-exposure to 20 microM MK-801 inhibited the enhancing effects of 1 microM fluvoxamine on electrically evoked 5-HT release in the SNr. In the DRN, the presence of 1 microM fluvoxamine or 20 microM MK-801 weakly potentiated 5-HT release. In the presence of 1 microM methiothepin (a nonselective 5-HT1-2 antagonist), 1 microM fluvoxamine or 20 microM MK-801 were equipotent in potentiating the concentration of 5-HT released in response to electrical stimulation. The T1/2 values for 5-HT release following MK-801 or fluvoxamine administration were significantly increased. Potentiation of 5-HT release by MK-801 in the SNr and the DRN and lack of effect of either CPP or NMDA on 5-HT release or uptake argues against a role for NMDA receptors in modulation of 5-HT release. Inhibition of fluvoxamine induced potentiation of 5-HT signal in the presence of MK-801 suggests that MK-801 and fluvoxamine may interact at the level of the 5-HT transporter.
Collapse
Affiliation(s)
- M M Iravani
- Neurodegenerative Disease Research Centre, Pharmacology Group, Kings College London, UK.
| | | | | |
Collapse
|
37
|
Contreras-Vidal JL, Schultz W. A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 1999; 6:191-214. [PMID: 10406133 DOI: 10.1023/a:1008862904946] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A neural network model of how dopamine and prefrontal cortex activity guides short- and long-term information processing within the cortico-striatal circuits during reward-related learning of approach behavior is proposed. The model predicts two types of reward-related neuronal responses generated during learning: (1) cell activity signaling errors in the prediction of the expected time of reward delivery and (2) neural activations coding for errors in the prediction of the amount and type of reward or stimulus expectancies. The former type of signal is consistent with the responses of dopaminergic neurons, while the latter signal is consistent with reward expectancy responses reported in the prefrontal cortex. It is shown that a neural network architecture that satisfies the design principles of the adaptive resonance theory of Carpenter and Grossberg (1987) can account for the dopamine responses to novelty, generalization, and discrimination of appetitive and aversive stimuli. These hypotheses are scrutinized via simulations of the model in relation to the delivery of free food outside a task, the timed contingent delivery of appetitive and aversive stimuli, and an asymmetric, instructed delay response task.
Collapse
|
38
|
Abstract
The dopaminergic modulation of neural activity in the prefrontal cortex (PFC) is essential for working memory. Delay-activity in the PFC in working memory tasks persists even if interfering stimuli intervene between the presentation of the sample and the target stimulus. Here, the hypothesis is put forward that the functional role of dopamine in working memory processing is to stabilize active neural representations in the PFC network and thereby to protect goal-related delay-activity against interfering stimuli. To test this hypothesis, we examined the reported dopamine-induced changes in several biophysical properties of PFC neurons to determine whether they could fulfill this function. An attractor network model consisting of model neurons was devised in which the empirically observed effects of dopamine on synaptic and voltage-gated membrane conductances could be represented in a biophysically realistic manner. In the model, the dopamine-induced enhancement of the persistent Na+ and reduction of the slowly inactivating K+ current increased firing of the delay-active neurons, thereby increasing inhibitory feedback and thus reducing activity of the "background" neurons. Furthermore, the dopamine-induced reduction of EPSP sizes and a dendritic Ca2+ current diminished the impact of intervening stimuli on current network activity. In this manner, dopaminergic effects indeed acted to stabilize current delay-activity. Working memory deficits observed after supranormal D1-receptor stimulation could also be explained within this framework. Thus, the model offers a mechanistic explanation for the behavioral deficits observed after blockade or after supranormal stimulation of dopamine receptors in the PFC and, in addition, makes some specific empirical predictions.
Collapse
|
39
|
Loopuijt LD, Schmidt WJ. The role of NMDA receptors in the slow neuronal degeneration of Parkinson's disease. Amino Acids 1999; 14:17-23. [PMID: 9871436 DOI: 10.1007/bf01345237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease is a disorder, in which neurons of various neuronal systems degenerate. Furthermore, in such degenerating neurons, the cytoskeleton seems to be affected. In this respect, Parkinson's disease resembles Alzheimer's disease. Since it has been shown, that elevated levels of intracellular calcium can disrupt the cytoskeleton and that the stimulation of glutamate (NMDA) receptors can cause high intracellular concentrations of calcium, it has been suggested, that the stimulation of glutamate receptors plays a role in the slow degeneration in Alzheimer's and Parkinson's disease. In case of the degeneration of the dopaminergic nigrostriatal system in Parkinson's disease, neurons that contain calcium binding protein appear to be less vulnerable than the neurons that lack it, suggesting that calcium binding protein might protect these neurons from degeneration by preventing that cytosolic calcium concentrations increase excessively. And, since there is in the nigrostriatal system a glutamatergic afferent pathway (the prefrontonigral projection) and since dopaminergic nigrostriatal neurons contain postsynaptic NMDA receptors, glutamatergic excitation may play a role in the degeneration of the nigrostriatal system in Parkinson's disease. If so, it may be possible to protect the neurodegeneration of these dopaminergic neurons by NMDA receptor antagonists.
Collapse
Affiliation(s)
- L D Loopuijt
- Department of Neuropharmacology, University of Tübingen, Federal Republic of Germany
| | | |
Collapse
|
40
|
Todaka K, Ishida Y, Kuwahara I, Nishimori T, Mitsuyama Y. Cellular distributions of AMPA glutamate receptor subunits in fetal ventral mesencephalon transplants in the dopamine-depleted striatum of a rat. Brain Res Bull 1998; 47:325-30. [PMID: 9886783 DOI: 10.1016/s0361-9230(98)00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To demonstrate the cellular distributions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits (GluR1, GluR2/3, and GluR4) in the intrastriatal grafts of a rat model of Parkinson's disease, immunocytochemistry was performed in 6-hydroxydopamine rats with intrastriatal transplants of fetal ventral mesencephalon (VM). In the fetal VM (at embryonic day 15) in which the tyrosine hydroxylase (TH) immunoreactivity was intensely observed, no GluR subunit immunoreactivity was detected. Within the intrastriatal fetal VM grafts containing TH-positive cells, a large number of cells immunoreactive for GluR1 and GluR2/3 were observed. However, the GluR1- and GluR2/3-positive cells tended to locate homogeneously within the grafts and were composed of various cell sizes and shapes, mainly medium-sized and aspiny cells. Weak GluR4-positive cells were seen in the grafts, although in some cases the staining was too faint to see any immunoreactive cells at all. Double immunostaining revealed that a part of TH-positive cells in the grafts was also immunopositive for GluR1 or GluR2/3. Both dopaminergic neurons and nondopaminergic neurons in the VM transplants appear to be modified functionally by glutamatergic afferents via various glutamate receptors, including GluR1 and GluR2/3 and, to a lesser extent, GluR4.
Collapse
Affiliation(s)
- K Todaka
- Department of Psychiatry, Miyazaki Medical College, Japan
| | | | | | | | | |
Collapse
|
41
|
Yung KK. Localization of ionotropic and metabotropic glutamate receptors in distinct neuronal elements of the rat substantia nigra. Neurochem Int 1998; 33:313-26. [PMID: 9840222 DOI: 10.1016/s0197-0186(98)00034-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The localization of glutamate receptors in the substantia nigra is of critical importance since glutamate receptor-mediated excitotoxicity is implied in the cause for the neuronal degeneration in Parkinson's disease. The major glutamatergic synaptic inputs to the substantia nigra originate in the subthalamic nucleus, in which hyperactivity is reported in Parkinson's disease. In order to compare directly the localization of different ionotropic and metabotropic glutamate receptors in the substantia nigra of the same animals, rats were perfuse-fixed under deep anesthesia. Sections of the substantia nigra were obtained and receptor immunocytochemistry was performed using commercially available antibodies (against subunits of ionotropic glutamate receptors: GluR1, GluR2/3, GluR4, NMDAR1, NMDAR2A/B; and subtypes of metabotropic glutamate receptors: mGluR1alpha, mGluR2/3). When compared to the localization of tyrosine hydroxylase immunoreactivity, immunoreactivity for GluR1, GluR2/3 and NMDARI was mainly localized in the perikarya and proximal dendrites of the compacta neurons and only in a few reticulata neurons. In contrast, GluR4 immunoreactivity was only detected in the reticulata neurons. Consistent results were obtained by double labeling experiments that revealed tyrosine hydroxylase and GluR1, GluR2/3, GluR4 or NMDAR1 immunoreactivity in the same sections. Immunoreactivity for NMDAR2A/B, mGluR1alpha. and mGluR2/3 was detected in the neuropil of the substantia nigra pars reticulata. No NMDAR2A/B- and mGluR2/3-immunoreactive perikarya were detected. However, a few neurons in the reticulata were found to be mGluR1alpha-immunoreactive. The present results indicate there is a differential localization of different subunits and subtypes of glutamate receptors in the substantia nigra and there may be functional implications in different neuronal elements in the substantia nigra in normal and in Parkinson's disease.
Collapse
Affiliation(s)
- K K Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, China.
| |
Collapse
|
42
|
Thorré K, Sarre S, Smolders I, Ebinger G, Michotte Y. Dopaminergic regulation of serotonin release in the substantia nigra of the freely moving rat using microdialysis. Brain Res 1998; 796:107-16. [PMID: 9689460 DOI: 10.1016/s0006-8993(98)00336-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The functional regulation by dopamine (DA) receptors of serotonin (5-HT) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. A D1- and D2-receptor-mediated inhibition of nigral 5-HT release was demonstrated in this study. Continuous administration of the D1-receptor agonist CY 208243 (10 microM) through the probe did not alter extracellular DA nor 5-HT from the SN, whereas intranigral administration of the D1-receptor antagonist SCH-23390 HCl (10 microM) significantly increased both DA (to 214%) and 5-HT release (to 168%) from the SN. Co-perfusion of the D1-receptor agonist and antagonist did not change nigral DA nor 5-HT release compared to perfusion of the antagonist alone. The continuous intranigral perfusion of the D2-receptor agonist, (-)-quinpirole HCl (1 microM) significantly decreased both DA ad 5-HT release to 71% and 78%, respectively. These decreases were abolished when the D2-receptor antagonist S(-)-sulpiride (10 microM) and the D2-receptor agonist (-)-quinpirole HCl (1 microM) were co-perfused. In contrast, the intranigral perfusion of the DA precursor, L-DOPA (5 microM; 1 h), significantly increased nigral and striatal 5-HT release to 202% and 155%, respectively. This enhanced nigral 5-HT release might not be receptor-mediated. The results of the present study suggest a D1 and D2 regulation of nigral 5-HT release, either directly mediated by DA receptors on nigral 5-HT terminals or indirectly by nigral GABA, Glu or Asp. Alternatively, the observed DA-5HT-interaction in the SN might not reflect a local interaction but might involve an interaction at the level of the serotonin cell body region, the dorsal raphe nuclei (DRN).
Collapse
Affiliation(s)
- K Thorré
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussels, Belgium
| | | | | | | | | |
Collapse
|
43
|
Vercueil L, Benazzouz A, Deransart C, Bressand K, Marescaux C, Depaulis A, Benabid AL. High-frequency stimulation of the subthalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Res 1998; 31:39-46. [PMID: 9696299 DOI: 10.1016/s0920-1211(98)00011-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-frequency electrical stimulation of deep brain structures has recently been developed for the surgical approach of neurologic disorders. Applied to the thalamus in tremors or to the subthalamic nucleus in Parkinson's disease, high-frequency stimulation has been demonstrated to exert a local inhibiting influence, leading to symptoms alleviation. In the present study, bilateral high-frequency stimulations (130 Hz) of the subthalamic nuclei suppressed ongoing spontaneous absence seizures in rats. This effect was dissociated from motor side-effects and appears specific to the subthalamic nucleus. Bilateral excitotoxic lesions of the subthalamic nuclei only partially suppressed absence-seizures. These results confirm the involvement of the basal ganglia system in the control of generalized seizures and suggest that high-frequency stimulations could be used in the treatment of some forms of seizures.
Collapse
Affiliation(s)
- L Vercueil
- U398 INSERM, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Bezard E, Gross CE. Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Prog Neurobiol 1998; 55:93-116. [PMID: 9618745 DOI: 10.1016/s0301-0082(98)00006-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper provides an overview of the compensatory mechanisms which come into action during experimental and human parkinsonism. The intrinsic properties of the dopaminergic neurones of the substantia nigra pars compacta (SNc) which degenerate during Parkinson's disease are described in detail. It is generally considered that the nigrostriatal pathway is principally responsible for the compensatory preservation of dopaminergic function. It is also becoming clear that the morphological characteristics of dopaminergic neurones and the dual character, synaptic and asynaptic, of striatal dopaminergic innervation engender two modes of transmission, wiring and volume, and that both these modes play a role in the preservation of dopaminergic function. The plasticity of the dopamine neurones, extrinsic or intrinsic to the striatum, can thus be regarded as another compensatory mechanism. Recent anatomical and electrophysiological studies have shown that the SNc receives both glutamatergic and cholinergic inputs. The dynamic role this innervation plays in compensatory mechanisms in the course of the disease is explained and discussed. Recent developments in the field of compensatory mechanisms speak for the urgence to develop a valid chronic model of Parkinson's disease, integrating all the clinical features, even resting tremor, and illustrating the gradual evolution of nigral degeneration observed in human Parkinson's disease. Only a dynamic approach to the physiopathological study of compensatory mechanisms in the basal ganglia will be capable of elucidating these complex questions.
Collapse
Affiliation(s)
- E Bezard
- Laboratoire de Neurophysiologie, CNRS UMR 5543, Université de Bordeaux II, France.
| | | |
Collapse
|
45
|
Arts M, Bemelmans F, Cools A. Activation of N-methyl-D-aspartate receptors in the feline retrorubral nucleus elicits orofacial dyskinesia. Eur J Pharmacol 1998; 349:23-31. [PMID: 9669492 DOI: 10.1016/s0014-2999(98)00167-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimulation of dopamine receptors within a circumscribed subregion of the feline caudate nucleus, that is the anterodorsal part of this nucleus, with dopamine or the dopamine receptor agonist (3,4-dihydroxyphenylimino)-2-imidazoline (DPI) elicits orofacial dyskinesia. Orofacial dyskinesia is a syndrome of tic-like contractions of the facial muscles which ends with a tongue protrusion. Afferent fibres of the anterodorsal part of the caudate nucleus are known to emanate from the retrorubral nucleus, including the dopaminergic A8 cell group. The present study was undertaken to investigate whether excitation of A8 cells can mediate and/or modulate orofacial dyskinesia. For this purpose, the activity of the retrorubral nucleus was manipulated with local injections of N-methyl-D-aspartate (NMDA). These local injections into the retrorubral nucleus were subsequently combined with manipulations of the dopamine transmission in the anterodorsal part of the caudate nucleus with local injections of DPI. The present study shows that injections of NMDA into the retrorubral nucleus elicits orofacial dyskinesia. This effect is dose-dependent, NMDA-specific, and inhibited by intra-caudate injections of DPI.
Collapse
Affiliation(s)
- M Arts
- Department of Psychoneuropharmacology, University of Nijmegen, Netherlands
| | | | | |
Collapse
|
46
|
Bezard E, Bioulac B, Gross CE. Glutamatergic compensatory mechanisms in experimental parkinsonism. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:609-23. [PMID: 9682276 DOI: 10.1016/s0278-5846(98)00030-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. Injection cannulae allowing access to the SNc were implanted bilaterally in four monkeys. Once animals had recovered from the operation, daily low-dose treatment with MPTP was started. 2. Group I comprised two monkeys under treatment with MPTP, but still asymptomatic. Group II comprised two monkeys treated with MPTP and presenting clinical symptoms. 3. Both groups received daily intracranial injections of kynurenic acid in order to block the glutamatergic afferents to the SNc. 4. In the first group of asymptomatic monkeys, kynurenic acid induced parkinsonian motor abnormalities. In the second group of symptomatic monkeys, it increased the severity of clinical signs. 5. Glutamatergic inputs to the SNc would therefore appear to be implicated in compensatory phenomena at different stages of experimental parkinsonism.
Collapse
Affiliation(s)
- E Bezard
- Laboratoire de Neurophysiologie, CNRS UMR 5543, Université de Bordeaux II, France
| | | | | |
Collapse
|
47
|
Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55:27-57. [PMID: 9602499 DOI: 10.1016/s0301-0082(97)00091-9] [Citation(s) in RCA: 403] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generalized non-convulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike and wave discharges (SWDs) on the electroencephalogram, that are concomitant with a behavioral arrest. Many similarities between rodent and human absence seizures support the use of genetic rodent models, in which spontaneous SWDs occur. This review summarizes data obtained on the neurophysiological and neurochemical mechanisms of absence seizures with special emphasis on the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). EEG recordings from various brain regions and lesion experiments showed that the cortex, the reticular nucleus and the relay nuclei of the thalamus play a predominant role in the development of SWDs. Neither the cortex, nor the thalamus alone can sustain SWDs, indicating that both structures are intimely involved in the genesis of SWDs. Pharmacological data confirmed that both inhibitory and excitatory neurotransmissions are involved in the genesis and control of absence seizures. Whether the generation of SWDs is the result of an excessive cortical excitability, due to an unbalance between inhibition and excitation, or excessive thalamic oscillations, due to abnormal intrinsic neuronal properties under the control of inhibitory GABAergic mechanisms, remains controversial. The thalamo-cortical activity is regulated by several monoaminergic and cholinergic projections. An alteration of the activity of these different ascending inputs may induce a temporary inadequation of the functional state between the cortex and the thalamus and thus promote SWDs. The experimental data are discussed in view of these possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- L Danober
- INSERM U 398, Neurobiologie et Neuropharmacologie des épilepsies généralisées, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | |
Collapse
|
48
|
CLARK DAVID, OVERTON PAULG. Alterations in excitatory amino acid-mediated regulation of midbrain dopaminergic neurones induced by chronic psychostimulant administration and stress: relevance to behavioural sensitization and drug addiction. Addict Biol 1998; 3:109-35. [PMID: 26734818 DOI: 10.1080/13556219872191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Repeated, intermittent administration of the psychostimulants d-amphetamine and cocaine, as well as other drugs of abuse, leads to an enduring augmentation of certain behavioural responses (e.g. locomotor activity) produced by these drugs. This behavioural sensitization has been the subject of considerable interest due to its potential relevance to drug addiction. Repeated administration of d-amphetamine also leads to an enhancement in the ability of electrical stimulation of the prefrontal cortex to induce burst firing in midbrain dopaminergic (DA) neurones. This hyper-responsiveness probably reflects a potentiation of transmission at excitatory amino acid (EAA)ergic synapses on DA neurones. In addition, we have previously reported that selective activation of mineralocorticoid receptors (MRs) by corticosterone leads to a potentiation of EAA-induced burst firing in midbrain DA neurones, an effect antagonized by glucocorticoid receptor (GR) activation. In this review article, we propose a model describing how drugs of abuse and stress alter EAA function at the level of DA cells in the ventral tegmental area (VTA), which can result in a long-lasting impact on behaviour. D-amphetamine produces a transitory increase in EAA-mediated transmission at the level of DA cells in the VTA, which triggers a more long-lasting change in EAAergic function resembling hippocampal long-term potentiation. Dopaminergic burst events are likely to be a critical link between enhanced EAAergic activity in afferents synapsing on DA neurones and plasticity at these synapses, by increasing calcium transport into the cell, which is known to be an important factor in synaptic plasticity. Selective MR occupation by corticosterone in the VTA facilitates the development of this plasticity. However, we hypothesize that during stress, GR-occupation also activates EAAergic afferents to DA neurones in a manner similar to that following psychostimulants. Under these circumstances, GR-occupation acts via circuitry external to the VTA, which may include the hippocampus. Thus, potentiation of EAAergic synapses on DA neurones in the VTA may represent a final common pathway by which two divserse means (psychostimulants and stress) achieve the same end (sensitization). Alterations in EAA-mediated transmission at the level of DA cells not only plays a critical role in the induction of behavioural sensitization, but probably continues to produce abnormal DA cell responses in the drug-free situation.
Collapse
|
49
|
Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 1998; 54:369-415. [PMID: 9522394 DOI: 10.1016/s0301-0082(97)00055-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Forty years of research into the function of L-glutamic acid as a neurotransmitter in the vertebrate central nervous system (CNS) have uncovered a tremendous complexity in the actions of this excitatory neurotransmitter and an equally great complexity in the molecular structures of the receptors activated by L-glutamate. L-Glutamate is the most widespread excitatory transmitter system in the vertebrate CNS and in addition to its actions as a synaptic transmitter it produces long-lasting changes in neuronal excitability, synaptic structure and function, neuronal migration during development, and neuronal viability. These effects are produced through the activation of two general classes of receptors, those that form ion channels or "ionotropic" and those that are linked to G-proteins or "metabotropic". The pharmacological and physiological characterization of these various forms over the past two decades has led to the definition of three forms of ionotropic receptors, the kainate (KA), AMPA, and NMDA receptors, and three groups of metabotropic receptors. Twenty-seven genes are now identified for specific subunits of these receptors and another five proteins are likely to function as receptor subunits or receptor associated proteins. The regulation of expression of these protein subunits, their localization in neuronal and glial membranes, and their role in determining the physiological properties of glutamate receptors is a fertile field of current investigations into the cell and molecular biology of these receptors. Both ionotropic and metabotropic receptors are linked to multiple intracellular messengers, such as Ca2+, cyclic AMP, reactive oxygen species, and initiate multiple signaling cascades that determine neuronal growth, differentiation and survival. These cascades of complex molecular events are presented in this review.
Collapse
Affiliation(s)
- E K Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66047, USA
| |
Collapse
|
50
|
Overton PG, Clark D. Burst firing in midbrain dopaminergic neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:312-34. [PMID: 9495561 DOI: 10.1016/s0165-0173(97)00039-8] [Citation(s) in RCA: 367] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Midbrain dopaminergic (DA) neurons fire bursts of activity in response to sensory stimuli, including those associated with primary reward. They are therefore conditional bursters - the bursts conveying, amongst other things, motivationally relevant information to the forebrain. In the forebrain, bursts give rise to a supra-additive release of dopamine, and possibly favour the release of co-localised neuropeptides. Evidence is presented that in rat DA neurons, bursts are engendered by the activity of cortically-regulated afferents. Certain factors are identified which, in combination, lead to burst production: (1) A burst of activity in EAAergic afferents to DA neurons arising from non-cortical sources, but controlled by the medial prefrontal cortex; (2) N-methyl-D-aspartate receptor activation, producing a slow depolarising wave in the recipient neuron; (3) activation of a high threshold, dendritically located calcium conductance which produces a 'plateau potential'; (4) activation of a calcium-activated potassium conductance, which terminates the burst. These factors are argued to operate in the context of an 'optimal' level of intracellular calcium buffering for bursting. Other factors which appear to be involved in bursting in other systems, in particular a low threshold calcium conductance, are rejected as being necessary for bursting in DA neurons. The factors which do play a crucial role in burst production in DA neurons are integrated into a theory from which arises a series of hypotheses amenable to empirical investigation. Additional factors are discussed which may modulate bursting. These may either act indirectly through changes in membrane potential (or intracellular calcium concentration), or they may act directly through an interaction with certain conductances, which appear to promote or inhibit burst firing in DA neurons.
Collapse
Affiliation(s)
- P G Overton
- Department of Psychology, University of Wales, Swansea, UK.
| | | |
Collapse
|