1
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
2
|
Lamarque S, Taghzouti K, Simon H. Chronic treatment with Delta(9)-tetrahydrocannabinol enhances the locomotor response to amphetamine and heroin. Implications for vulnerability to drug addiction. Neuropharmacology 2001; 41:118-29. [PMID: 11445192 DOI: 10.1016/s0028-3908(01)00039-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis sativa preparations are some of the most widely used illicit recreational drugs. In addition to their direct addictive potential, cannabinoids may influence the sensitivity to other drugs. The aim of the present study was to determine if a cross-sensitization between Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and other drugs (amphetamine and heroin) could be demonstrated. We examined the effects of a chronic treatment with Delta(9)-THC (0.6, 3 and 15mg/kg, ip) on the locomotor response to amphetamine (1mg/kg, ip) and heroin (1mg/kg, ip). Chronic treatment with Delta(9)-THC resulted in tolerance to the initial hypothermic and anorexic effects. Pre-treatment with Delta(9)-THC increased the locomotor responses to amphetamine and heroin. This cross-sensitization was time-dependent as it was observed three days after the last injection of Delta(9)-THC for amphetamine, and a relatively long time after the end of chronic treatment (41 days) for heroin. Moreover, the enhanced response to amphetamine or heroin was noted in some individuals only: the high-responder rats (HR). These animals have previously been shown to be vulnerable to drug taking behaviors. It is hypothesised that repeated use of Cannabis derivates may facilitate progression to the consumption of other illicit drugs in vulnerable individuals.
Collapse
Affiliation(s)
- S Lamarque
- Laboratoire de Neuropsychobiologie des Désadaptations, Université Victor Segalen Bordeaux 2, CNRS UMR 5541, BP 31, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | |
Collapse
|
3
|
Bowers MB, Bannon MJ, Hoffman FJ. Activation of forebrain dopamine systems by phencyclidine and footshock stress: evidence for distinct mechanisms. Psychopharmacology (Berl) 2001; 93:133-5. [PMID: 2442790 DOI: 10.1007/bf02439600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phencyclidine combined with footshock stress produced a greater increase in the homovanillic acid content of prefrontal cortex than either phencyclidine or footshock alone. Phencyclidine decreased both substance P and substance K in the ventral tegmental area. The results suggest that phencyclidine and footshock activate forebrain dopaminergic systems in part by separate mechanisms.
Collapse
|
4
|
Ferrari F, Ottani A, Giuliani D. Influence of the cannabinoid agonist HU 210 on cocaine- and CQP 201-403-induced behavioural effects in rat. Life Sci 1999; 65:823-31. [PMID: 10466748 DOI: 10.1016/s0024-3205(99)00309-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute injection of the cannabinoid agonist HU 210 (6.25-100 microg/kg, i.p.) dose-dependently inhibited rat locomotor activity and rearing, while subchronic treatment with the drug (once daily for 7 days) at the same doses only diminished locomotion. Acute but not subchronic administration of HU 210 (12.5-50 microg/kg, i.p.) potently counteracted acute and subchronic cocaine (15 mg/kg, i.p.)-induced hyperlocomotion and enhanced rearing. The acute cannabinoid (6.25-100 microg/kg, i.p.) also inhibited locomotor activity, stereotyped behaviour and shaking elicited by the D1/D2 agonist CQP 201-403 (500 microg/kg, i.p.). On the contrary, subchronic treatments with HU 210 enhanced CQP 201-403-induced locomotor activity and potently stimulated escape attempts. Discussion centers on the influence of cannabinoids on experimental models of psychosis.
Collapse
Affiliation(s)
- F Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|
5
|
Gorriti MA, Rodríguez de Fonseca F, Navarro M, Palomo T. Chronic (-)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 1999; 365:133-42. [PMID: 9988095 DOI: 10.1016/s0014-2999(98)00851-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical and basic research studies have linked cannabinoid consumption to the onset of psychosis, specially schizophrenia. In the present study we have evaluated the effects of the natural psychoactive constituent of Cannabis (-)-delta9-tetrahydrocannabinol on the acute actions of the psychostimulant, D-amphetamine, on behaviour displayed by male rats on a hole-board, a proposed animal model of amphetamine-induced psychosis. Cannabinoid-amphetamine interactions were studied (1) 30 min after acute injection of (-)-delta9-tetrahydrocannabinol (0.1 or 6.4 mg/kg, i.p.); (2) 30 min after the last injection of 14-daily treatment with (-)-delta9-tetrahydrocannabinol (0.1 or 6.4 mg/kg) and 3) 24 h after the last injection of 14-daily treatment with (-)-delta9-tetrahydrocannabinol (6.4 mg/kg). Acute cannabinoid exposure antagonized the amphetamine-induced dose-dependent increase in locomotion, exploration and the decrease in inactivity. Chronic treatment with (-)-delta9-tetrahydrocannabinol resulted in tolerance to this antagonistic effect on locomotion and inactivity but not on exploration, and potentiated amphetamine-induced stereotypies. Lastly, 24 h of withdrawal after 14 days of cannabinoid treatment resulted in sensitization to the effects of D-amphetamine on locomotion, exploration and stereotypies. Since (-)-delta9-tetrahydrocannabinol is a cannabinoid CB1 receptor agonist, densely present in limbic and basal ganglia circuits, and since amphetamine enhances monoaminergic inputs (i.e., dopamine, serotonin) in these brain areas, the present data support the hypothesis of a role for the cannabinoid CB1 receptor as a regulatory mechanism of monoaminergic neuron-mediated psychomotor activation. These findings may be relevant for the understanding of both cannabinoid-monoamines interactions and Cannabis-associated psychosis.
Collapse
Affiliation(s)
- M A Gorriti
- Servicio de Psiquiatría, Hospital 12 de Octubre, Carretera de Andalucía, Madrid, Spain.
| | | | | | | |
Collapse
|
6
|
Rodríguez de Fonseca F, Del Arco I, Martín-Calderón JL, Gorriti MA, Navarro M. Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol Dis 1998; 5:483-501. [PMID: 9974180 DOI: 10.1006/nbdi.1998.0217] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the prominent pharmacological features of drugs acting at the brain cannabinoid receptor (CB1) is the induction of alterations in motor behavior. Catalepsy, immobility, ataxia, or the impairment of complex behavioral acts are observed after acute administration of either natural and synthetic cannabinoid receptor agonists or the endogenous CB1 ligand anandamide. The dense presence of CB1 receptors in the cerebellum and in the basal ganglia, especially at the outflow nuclei (substantia nigra and the internal segment of the globus pallidus), supports the existence of an endogenous cannabinoid system regulating motor activity. In the basal ganglia, the functionality of the anandamide-CB1 system is poorly understood. Dual effects are often observed after the administration of CB1 ligands in animal models of pharmacological manipulation of basal ganglia transmitter systems, indicating that the activity of the anandamide-CB1 system depends on the ongoing activation of the different elements of the basal ganglia. This finding is in agreement with the proposed activity-dependent release of anandamide from a plasmalemma precursor. Additionally, a potential state-dependent bidirectional coupling of the CB1 receptor to the adenylate cyclase transduction system has also been described. From this perspective, the endogenous cannabinoid system can be proposed as a local regulator of neurotransmission processes within the basal ganglia. This system may serve as a counterregulatory homeostatic mechanism preserving the functional role of basal ganglia circuits in coding the serial order of events that constitute movement.
Collapse
Affiliation(s)
- F Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Spain.
| | | | | | | | | |
Collapse
|
7
|
Abstract
The reward/reinforcement circuitry of the mammalian brain consists of synaptically interconnected neurons associated with the medial forebrain bundle, linking the ventral tegmental area, nucleus accumbens, and ventral pallidum. Electrical stimulation of this circuit supports intense self-stimulation in animals and, in humans, produces intense pleasure or euphoria. This circuit is strongly implicated in the neural substrates of drug addiction and in such addiction-related phenomena as withdrawal dysphoria and craving. This circuit is also implicated in the pleasures produced by natural rewards (e.g., food, sex). Cannabinoids are euphorigenic in humans and have addictive liability in vulnerable persons, but were long considered "anomalous" drugs of abuse, lacking pharmacological interaction with these brain reward substrates. It is now clear, however, that cannabinoids activate these brain substrates and influence reward-related behaviors. From these actions, presumably, derive both the abuse potential of cannabinoids and the possible clinical efficacy in dysphoric states.
Collapse
Affiliation(s)
- E L Gardner
- Department of Psychiatry, Albert Einstein College of Medicine, New York, New York 10461-1602, USA.
| | | |
Collapse
|
8
|
Jentsch JD, Wise A, Katz Z, Roth RH. Alpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex. Synapse 1998; 28:21-6. [PMID: 9414014 DOI: 10.1002/(sici)1098-2396(199801)28:1<21::aid-syn3>3.0.co;2-e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The noncompetitive NMDA receptor antagonist phencyclidine (PCP) and the neuronal cannabinoid receptor agonist delta9-tetrahydrocannabinol (THC) are two agents shown to have psychotomimetic properties in humans. Both drugs increase dopamine release and utilization in the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. In the present series of studies, the effects of drugs acting at alpha-noradrenergic receptors on PCP- and THC-induced increases in prefrontal cortical and nucleus accumbens dopamine utilization in the rat were examined. Clonidine, an alpha2 noradrenergic receptor agonist, completely blocked the activation of mesoprefrontal dopamine system by THC or PCP. In addition, the alpha1 noradrenergic receptor antagonist prazosin blocked the PCP-induced increase in prefrontal cortical dopamine utilization. These data may provide new insights concerning pharmacological therapies for acute drug-induced psychoses and behavioral abnormalities in human PCP and THC abusers.
Collapse
Affiliation(s)
- J D Jentsch
- Neuropsychopharmacology Research Unit, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
9
|
French ED, Dillon K, Wu X. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 1997; 8:649-52. [PMID: 9106740 DOI: 10.1097/00001756-199702100-00014] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular recordings were used to determine the effects of cannabinoids on the activity of dopamine neurons within the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC). Systemic administration of the natural psychoactive cannabinoid delta 9-tetrahydrocannabinol (delta 9-THC) and the synthetic cannabimimetic aminoalkylindole WIN 55,212-2 produced dose-dependent increases in firing rate and burst firing in both neuronal populations. These effects appear to be specific as the non-psychoactive cannabidiol and the inactive enantiomer WIN 55,212-3 failed to alter either parameter of neuronal excitability. Furthermore, dopamine neurons in the VTA were more sensitive than those in the SNC to the stimulatory actions of delta 9-THC. These results may provide a mechanism by which psychoactive cannabinoids increase extracellular dopamine levels in mesolimbic and striatal tissues, and thereby contribute to the reinforcing effects of marijuana.
Collapse
Affiliation(s)
- E D French
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724, USA
| | | | | |
Collapse
|
10
|
Navarro M, de Miguel R, Rodríguez de Fonseca F, Ramos JA, Fernández-Ruiz JJ. Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats. Behav Brain Res 1996; 75:91-8. [PMID: 8800663 DOI: 10.1016/0166-4328(96)00176-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present work, we attempted to study whether hashish exposure during perinatal development affects sociosexual approach behavior in adult rats. To this end, we subjected adult female and male rats that had been perinatally exposed to hashish extracts to a sociosexual approach behavior test, completed with a dark-light emergence test and with a social interaction test. It was found that adult males perinatally exposed to hashish extracts exhibited marked changes in the behavioral patterns executed in the sociosexual approach behavior test; these changes did not exists in females. Thus, control males first visited the incentive male and took longer to visit the incentive female, whereas hashish-exposed males followed the opposite pattern. Moreover, hashish-exposed males spent more time in the vicinity of the incentive female, whereas they decreased their frequency of visits to, and the time spent in, the male incentive area. This behavior was observed early on, during the first third of the test, but became normalized and even inverted later on during the last two-thirds. Additionally, in the social interaction test, the normal reduction in the time spent in active social interaction following the exposure to a neophobic situation (high light levels) in controls did not occur in hashish-exposed males, although these exhibited a response in the dark-light emergence test similar to that of their corresponding controls. No changes were seen in spontaneous locomotor activity in both tests. These behavioral alterations observed in hashish-exposed males were paralleled by a significant decrease in L-3,4-dihydroxyphenylacetic acid contents in the limbic forebrain; this suggests a decreased activity of mesolimbic dopaminergic neurons. No effects were seen in females. Collectively, these results show that in the rat, perinatal cannabinoid exposure affects the sociosexual approach behavior and the mesolimbic dopaminergic activity in adulthood, although the effects were sexually dimorphic because they only appeared in the males.
Collapse
Affiliation(s)
- M Navarro
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Bonnin A, de Miguel R, Fernández-Ruiz JJ, Cebeira M, Ramos JA. Possible role of the cytochrome P450-linked monooxygenase system in preventing delta 9-tetrahydrocannabinol-induced stimulation of tuberoinfundibular dopaminergic activity in female rats. Biochem Pharmacol 1994; 48:1387-92. [PMID: 7945437 DOI: 10.1016/0006-2952(94)90561-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The administration of delta 9-tetrahydrocannabinol (THC) or related cannabinoids markedly affected neurobehavioral and neuroendocrine indices in male rodents but usually failed to affect those indices in females. We examined whether inhibition of the cytochrome P450-linked monooxygenase system in female rats is able to elicit the effects of THC on one of the most characteristic targets of cannabinoid action, tuberoinfundibular dopaminergic neurons, whose activity is known to increase after cannabinoid exposure in males. It was found that the administration of THC to ovariectomized rats acutely replaced with estradiol (to discard problems derived from differences in the estrogenic status) did not affect either dopamine and L-3,4-dihydroxyphenylacetic acid (DOPAC) contents and tyrosine hydroxylase activity in the medial basal hypothalamus or the density of D2-dopaminergic receptors in the anterior pituitary. However, the administration of THC to estrogen-replaced ovariectomized rats that had been pretreated with two separately administered inhibitors of cytochrome P450, piperonyl butoxide or metyrapone, significantly increased DOPAC content in the medial basal hypothalamus, with no changes in the other parameters. Collectively, these results indicate that the metabolism of THC to inactive compounds might play a protective role in females, counteracting the effects of this cannabinoid on tuberoinfundibular dopaminergic activity because pharmacological inhibition of cytochrome P450-linked monooxygenase system elicited a significant stimulation of these neurons by THC.
Collapse
Affiliation(s)
- A Bonnin
- Department of Biochemistry, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Bowers MB, Morton JB. Regional brain catecholamines and metabolites following THC, PCP and MK-801. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18:961-4. [PMID: 7972865 DOI: 10.1016/0278-5846(94)90111-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. THC, PCP, and MK-801 increased DOPAC in rat olfactory tubercle and prefrontal cortex without affecting DA levels, suggesting increased DA release. 2. Effects on NE and MHPG were not evident. 3. These two classes of drugs can effect dopaminergic systems independently of noradrenergic systems.
Collapse
Affiliation(s)
- M B Bowers
- Yale University Department of Psychiatry, New Haven, CT
| | | |
Collapse
|
13
|
Javaid JI, Notorangelo MP, Pandey SC, Reddy PL, Pandey GN, Davis JM. Peripheral benzodiazepine receptors are decreased during cocaine withdrawal in humans. Biol Psychiatry 1994; 36:44-50. [PMID: 8080902 DOI: 10.1016/0006-3223(94)90061-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, homovanillic acid in plasma (pHVA) and benzodiazepine receptors (3H-PK11195 binding) in neutrophil membranes were determined in blood obtained from cocaine-dependent (DSM-III-R) adult male inpatients at baseline-(within 72 hr of last cocaine use) and after 3 weeks of cocaine abstinence, and normal controls. The mean (+/- SEM) pHVA at baseline (10.3 ng/ml +/- 1.1) was similar to normals and did not change after 3 weeks of cocaine abstinence. Similarly, the binding indices of benzodiazepine receptors in cocaine-dependent subjects as a group were not significantly different than in normal controls. In 10 cocaine-dependent subjects, however, where both blood samples were available, the number of 3H-PK11195 binding sites was significantly (p < 0.05) decreased after 3 weeks of cocaine abstinence (mean +/- sem: Bmax = 6371 +/- 657 fmol/mg protein) compared with baseline (Bmax = 7553 +/- 925 fmol/mg protein), although there were no differences in the binding affinity (mean +/- sem: KD = 8.6 +/- 1.2 nmol/L after 3 weeks of abstinence compared with 8.1 +/- 1.0 nmol/L at baseline). These preliminary results suggest that peripheral benzodiazepine receptors may play an important role in the pathophysiology of cocaine withdrawal in cocaine-dependent human subjects.
Collapse
Affiliation(s)
- J I Javaid
- Illinois State Psychiatric Institute, Chicago 60651
| | | | | | | | | | | |
Collapse
|
14
|
Navarro M, Fernández-Ruiz JJ, de Miguel R, Hernández ML, Cebeira M, Ramos JA. An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res 1993; 57:37-46. [PMID: 8292253 DOI: 10.1016/0166-4328(93)90059-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cannabinoid consumption has been reported to affect several neurotransmitter systems and their related behaviors. The present study has been designed to examine cannabinoid effects on certain behaviors, which have been currently located in the limbic forebrain, in parallel to their effects on mesolimbic dopaminergic neurons. To this end, male rats treated with an oral dose of delta 9-tetrahydrocannabinol (THC) or vehicle were used 1 h after treatment for two different behavioral tests or neurochemical analyses of mesolimbic dopaminergic activity. Treatments, behavioral tests and sacrifice were performed in the dark phase of photoperiod because it corresponds to the maximum behavioral expression in the rat. Behavioral tests were a dark-light emergence test, which allows measurements of emotional reactivity, and a socio-sexual approach behavior test, which allows measurements of sexual motivation and also of spontaneous and stereotypic activities. Neurochemical analyses consisted of measurements of dopamine (DA) and L-3,4-dihydroxyphenylacetic acid (DOPAC) contents, tyrosine hydroxylase activity, in vitro DA release and number and affinity of D1 receptors in the limbic forebrain. Results were as follows. THC exposure markedly altered the pattern executed by the animals in both tests. Concretely, THC-exposed animals exhibited a low number of visits to an incentive female in addition to high time spent in the vicinity of an incentive male, both observed in the socio-sexual approach behavior test, and an increased emergence latency to go out of a dark compartment in the dark-light emergence test. However, the fact that THC also decreased spontaneous activity and the frequency of rearing and self-grooming behaviors, in addition to the observations of either low total number of visits to both incentive sexual areas or high escape latency to go out of a light compartment, when the animal is placed in this compartment, also suggest the possible existence of an accompanying motor deficit. These behavioral effects were accompanied by increases in DA and DOPAC contents and in D1 receptor density in the limbic forebrain and to a slight decrease in the pattern of K(+)-evoked DA release in vitro from perifused limbic fragments, with no changes in the remaining neurochemical parameters. Collectively, these results allow us to conclude that acute THC markedly altered the behavioral pattern executed by the animals in a socio-sexual approach behavior test and in a dark-light emergence test, presumably indicating loss of sexual motivation and increased emotionality, although also accompanied by motor deficiencies.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Navarro
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Bonnin A, Fernández-Ruiz JJ, Martín M, Rodríguez de Fonseca F, Hernández ML, Ramos JA. delta 9-Tetrahydrocannabinol affects mesolimbic dopaminergic activity in the female rat brain: interactions with estrogens. J Neural Transm (Vienna) 1993; 92:81-95. [PMID: 8103663 DOI: 10.1007/bf01244868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this work, we studied the possible estrogenic modulation of the effects of delta 9-tetrahydrocannabinol (THC) on mesolimbic dopaminergic activity, by examining the effects of an acute dose of this cannabinoid: (i) during the estrous cycle; (ii) after ovariectomy, chronic estrogen-replacement and tamoxifen (TMX)-induced blockade of estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats. THC significantly decreased the density of D 1 dopaminergic receptors and non-significantly increased the L-3,4-dihydroxyphenylacetic acid (DOPAC) content in the limbic forebrain of ovariectomized rats chronically replaced with estrogens. The decrease in D 1 receptors was also produced by TMX, whereas the coadministration of both THC and TMX did not lead to a major decrease. In addition to the trend of THC increasing DOPAC content, this cannabinoid was also able to increase the ratio between DOPAC and dopamine, although this last effect only occurred after coadministration of THC and TMX, which had been ineffective administered individually. All these effects were not seen when THC was administered to normal cycling rats during each phase of estrous cycle and to ovariectomized rats without chronic estrogen replacement or only submitted to a single and acute dose of estradiol. This observation might be related to the fact that the density of limbic cannabinoid receptors increased in chronic estrogen-replaced ovariectomized rats versus normal cycling, ovariectomized or acutely estrogen-treated ovariectomized rats. Interestingly, THC administration in ovariectomized rats was followed by a slight, although significant, increase in tyrosine hydroxylase activity, which was also observed after coadministration of THC with a short-time and acute dose of estradiol. In summary, THC stimulated the presynaptic activity of mesolimbic dopaminergic neurons, but accompanied by a decrease in their postsynaptic sensitivity. These effects did not appear in normal cycling rats being only evident after ovariectomy and chronic estrogen replacement, which might be related to changes in binding characteristics of cannabinoid receptors in this area. Moreover, some of them appeared after TMX-induced blockade of estrogenic cytosolic receptors, which likely suggests the existence of a certain estrogenic modulation of the actions of THC on mesolimbic neurons. On the contrary, coadministration of THC with a single and shortly tested dose of estradiol was always ineffective in modifying THC effects.
Collapse
Affiliation(s)
- A Bonnin
- Department of Biochemistry, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Rodríguez De Fonseca F, Fernández-Ruiz JJ, Murphy LL, Cebeira M, Steger RW, Bartke A, Ramos JA. Acute effects of delta-9-tetrahydrocannabinol on dopaminergic activity in several rat brain areas. Pharmacol Biochem Behav 1992; 42:269-75. [PMID: 1321451 DOI: 10.1016/0091-3057(92)90526-l] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, we examined the acute effects of two doses of delta-9-tetrahydrocannabinol (THC) on several pre- and postsynaptic biochemical measures of dopaminergic activity in the striatum, limbic forebrain, and hypothalamic-anterior pituitary area of adult male rats. The exposure to a low dose of THC (0.5 mg/kg bw) decreased the number of striatal D2 dopaminergic binding sites, but did not affect their affinity. Treatment with a higher dose of THC was ineffective. In addition, both doses decreased the number of D1 dopaminergic binding sites in the limbic forebrain without changing their affinity. We did not find any changes in the dopamine (DA) or L-3,4-dihydroxyphenylacetic acid (DOPAC) content, or in the DOPAC/DA ratio, in either the striatum or limbic forebrain. THC treatment produced a dose-related decline in plasma prolactin (PRL) levels. Furthermore, both the basal and DA-inhibited in vitro release of PRL were reduced in animals exposed to THC in a dose-dependent manner. This inhibitory effect of THC on PRL release was accompanied by a decreased DOPAC/DA ratio in medial basal hypothalamus that, in turn, may be a result of the fall in PRL levels rather than a direct action of the drug. These data show that acute exposure to THC can alter brain dopaminergic neurotransmission. Our results suggest that the reduction of PRL release following THC exposure, both in vivo and in vitro, might be elicited by a direct action of THC on the pituitary.
Collapse
|
17
|
Rodríguez de Fonseca F, Hernández ML, de Miguel R, Fernández-Ruiz JJ, Ramos JA. Early changes in the development of dopaminergic neurotransmission after maternal exposure to cannabinoids. Pharmacol Biochem Behav 1992; 41:469-74. [PMID: 1350099 DOI: 10.1016/0091-3057(92)90359-n] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perinatal exposure to cannabinoid derivatives has been shown to affect brain development. In this work, we studied the changes induced by maternal exposure to cannabinoids during gestation and lactation on the dopaminergic activity in the prosencephalic area of offspring of several days of development. This brain area contains an increasing population of dopaminergic terminals from the different dopaminergic pathways that become differentiated in the adult rat. We measured the endogenous content of dopamine and its intraneuronal metabolite, L-3,4-dihydroxyphenylacetic acid, and the activity of tyrosine hydroxylase as indices of dopaminergic activity. Results showed that perinatal exposure to cannabinoids caused several changes in the evolution of the dopaminergic indices studied. These changes were mainly observed in males. The only alteration in females occurred on the tenth day of development: An increase in dopamine content was observed with no changes in either the content of L-3,4-dihydroxyphenylacetic acid or tyrosine hydroxylase activity. In males, the content of both dopamine and L-3,4-dihydroxyphenylacetic acid were decreased on the day previous to birth in the animals exposed to cannabinoids. Although the reduction in its metabolite disappeared on the fifth day, the decrease in dopamine was maintained and it was correlated with a decrease in tyrosine hydroxylase activity. However, this decrease in the activity of tyrosine hydroxylase was followed by an increase on the tenth day. These results allow us to conclude that perinatal exposure to cannabinoids produces changes in the normal development of several indices of the activity of dopaminergic neurons in the brain area containing the most important population of dopaminergic endings. These changes were mainly observed in males. They could be responsible for a long-term alteration in the neurological processes in which these neurons are involved in the adult.
Collapse
|
18
|
Rodríguez de Fonseca F, Cebeira M, Fernández-Ruiz JJ, Navarro M, Ramos JA. Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons. Neuroscience 1991; 43:713-23. [PMID: 1922791 DOI: 10.1016/0306-4522(91)90329-m] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The changes induced by maternal exposure to cannabinoids in the maturation of nigrostriatal, tuberoinfundibular and mesolimbic dopaminergic activities of rat offspring 15-40 days old were studied. In the striatum, tyrosine hydroxylase activity was constantly decreased during cannabinoid exposure in males. This decrease was correlative to increased number of D1 and D2 dopaminergic receptors. Both effects were also observed after the drug withdrawal caused by weaning on day 24. In females, the most consistent effect appeared on day 20, when decreased dopamine content and number of D1 receptors were observed. Both effects disappeared after drug withdrawal, but the reduction in the number of D1 receptors was again observed 40 days after birth. In the limbic area, cannabinoid exposure caused a decrease in the number of D1 receptors in 15-day-old females, along with decreases in the content of dopamine and its metabolite, L-3,4-dihydroxyphenylacetic acid. Changes in receptors disappeared on subsequent days, but increases in L-3,4-dihydroxyphenylacetic acid content and in its ratio with dopamine (L-3,4-dihydroxyphenylacetic acid/dopamine) were observed on day 20 followed by a decrease in the neurotransmitter content on day 30. In males, tyrosine hydroxylase activity increased on day 30, followed by an increase in L-3,4-dihydroxyphenylacetic acid content and L-3,4-dihydroxyphenylacetic acid/dopamine ratio on day 40. In the hypothalamus, the cannabinoid effects were always manifested after the cessation of drug exposure. Thus, a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio was observed in 30-day-old females, and it was followed by a decrease on day 40, accompanied by a decrease in the anterior pituitary content of dopamine. Rise in prolactin release was not significant. In males, tyrosine hydroxylase activity was increased 30 days after birth, while L-3,4-dihydroxyphenylacetic acid content decreased. On day 40, L-3,4-dihydroxyphenylacetic acid content increased, paired to a rise in L-3,4-dihydroxyphenylacetic acid/dopamine ratio and anterior pituitary content of dopamine and to a decrease in the prolactin release. Perinatal exposure to cannabinoids altered the normal development of nigrostriatal, mesolimbic and tuberoinfundibular dopaminergic neurons, as reflected by changes in several indices of their activity. These changes were different regarding the sex and brain areas. Cannabinoid effects were more marked and constant in the striatum of males, while alterations in limbic neurons were mostly transient and those in hypothalamic neurons occurred after drug withdrawal. A long-term impact of these early changes on the neurological processes of adulthood is plausible.
Collapse
|
19
|
Yu ZJ, Lim DK, Hoskins B, Rockhold RW, Ho IK. Effects of acute and subacute cocaine administration on the CNS dopaminergic system in Wistar-Kyoto and spontaneously hypertensive rats: I. Levels of dopamine and metabolites. Neurochem Res 1990; 15:613-9. [PMID: 2215853 DOI: 10.1007/bf00973752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.
Collapse
Affiliation(s)
- Z J Yu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216
| | | | | | | | | |
Collapse
|
20
|
Abstract
Because cocaine effectively increases extracellular levels of both dopamine (DA) and serotonin (5HT), it might be expected that this agent would inhibit transmitter biosynthesis in these monoamine neurons by activation of autoregulatory feedback pathways. This possibility was tested by measuring the effect of cocaine on 3,4-dihydroxyphenylalanine accumulation (DA synthesis) and 5-hydroxytryptophan accumulation (5HT synthesis) in vivo and in vitro after inhibition of aromatic amino acid decarboxylase with NSD-1015. In vivo, cocaine suppressed both DA and 5HT synthesis in a dose-dependent (10-60 mumols/kg, i.p.) and time-dependent fashion (maximum 60 min after administration, recovery by 120-150 min). Inhibition of DA and 5HT synthesis ranged from 35% to 60% depending on the brain region and was apparent in dopaminergic fields such as the medial prefrontal cortex, nucleus accumbens, piriform cortex, striatum, and in noradrenergic fields, such as the hippocampus and temporal cortex. Inhibition of DA, but not 5HT, synthesis was blocked by the D2 antagonist sulpiride in brain areas containing DA nerve terminals. Procaine (30 mumols/kg) did not inhibit DA or 5HT synthesis and prior treatment with reserpine diminished the effectiveness of cocaine in the medial prefrontal cortex, but not in the striatum. Cocaine did not reverse the gamma-butyrolactone-induced increase in striatal DA synthesis nor did cocaine block the ability of the D2 agonist quinpirole to reverse the increase. In vitro, cocaine inhibited DA synthesis in depolarized (K+ = 30 mM) striatal brain slices, an effect that was reversed by the D2 antagonist eticlopride. These results suggest that DA and 5HT neurons compensate in situ for cocaine-induced increases in synaptic transmitter levels by a transient inhibition of transmitter biosynthesis. Acute suppression of transmitter synthesis (and release) in mesoprefrontal DA neurons may represent the principal compensatory mechanism in this group of neurons.
Collapse
Affiliation(s)
- M P Galloway
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
21
|
Abstract
Six patients were evaluated over a 21-day period during inpatient recovery from chronic repeated cocaine use. Serial evaluations of Hamilton depression rating, cocaine craving, plasma homovanillic acid (pHVA), and plasma 3-methoxy-4-hydroxyphenylethyleneglycol (pMHPG) concentrations were determined. There was a distinct increase in cocaine craving between 1 and 2 weeks after the last cocaine use. Levels of pHVA also increased at the time of heightened craving. The data provide preliminary evidence to suggest that changes in cocaine craving during abstinence are positively correlated with changes in dopamine turnover.
Collapse
Affiliation(s)
- S D Martin
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI
| | | | | | | |
Collapse
|
22
|
Bowers MB, Hoffman FJ. Effects of diazepam on regional brain homovanillic acid following phencyclidine or delta 9-tetrahydrocannabinol. Biochem Pharmacol 1989; 38:2385-7. [PMID: 2546566 DOI: 10.1016/0006-2952(89)90480-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M B Bowers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | | |
Collapse
|
23
|
Affiliation(s)
- R G Pertwee
- Department of Pharmacology, Marischal College, University of Aberdeen, Scotland
| |
Collapse
|
24
|
|