1
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
2
|
Rescue of Vasopressin Synthesis in Magnocellular Neurons of the Supraoptic Nucleus Normalises Acute Stress-Induced Adrenocorticotropin Secretion and Unmasks an Effect on Social Behaviour in Male Vasopressin-Deficient Brattleboro Rats. Int J Mol Sci 2022; 23:ijms23031357. [PMID: 35163282 PMCID: PMC8836014 DOI: 10.3390/ijms23031357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.
Collapse
|
3
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
4
|
Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17:69. [PMID: 33208141 PMCID: PMC7672931 DOI: 10.1186/s12987-020-00230-3] [Citation(s) in RCA: 869] [Impact Index Per Article: 173.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier is playing a critical role in controlling the influx and efflux of biological substances essential for the brain’s metabolic activity as well as neuronal function. Thus, the functional and structural integrity of the BBB is pivotal to maintain the homeostasis of the brain microenvironment. The different cells and structures contributing to developing this barrier are summarized along with the different functions that BBB plays at the brain–blood interface. We also explained the role of shear stress in maintaining BBB integrity. Furthermore, we elaborated on the clinical aspects that correlate between BBB disruption and different neurological and pathological conditions. Finally, we discussed several biomarkers that can help to assess the BBB permeability and integrity in-vitro or in-vivo and briefly explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Hossam Kadry
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Dept. of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Office 415, Rochester, MI, 48309, USA.
| |
Collapse
|
5
|
Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol 2012; 3:424. [PMID: 23162470 PMCID: PMC3493883 DOI: 10.3389/fphys.2012.00424] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/17/2012] [Indexed: 11/13/2022] Open
Abstract
As clinicians attempt to understand the underlying reasons for the vulnerability of different regions of the developing brain to injury, it is apparent that little is known as to how hypoxia-ischemia may affect the cerebrovasculature in the developing infant. Most of the research investigating the pathogenesis of perinatal brain injury following hypoxia-ischemia has focused on excitotoxicity, oxidative stress and an inflammatory response, with the response of the developing cerebrovasculature receiving less attention. This is surprising as the presentation of devastating and permanent injury such as germinal matrix-intraventricular haemorrhage (GM-IVH) and perinatal stroke are of vascular origin, and the origin of periventricular leukomalacia (PVL) may also arise from poor perfusion of the white matter. This highlights that cerebrovasculature injury following hypoxia could primarily be responsible for the injury seen in the brain of many infants diagnosed with hypoxic-ischemic encephalopathy (HIE). Interestingly the highly dynamic nature of the cerebral blood vessels in the fetus, and the fluctuations of cerebral blood flow and metabolic demand that occur following hypoxia suggest that the response of blood vessels could explain both regional protection and vulnerability in the developing brain. However, research into how blood vessels respond following hypoxia-ischemia have mostly been conducted in adult models of ischemia or stroke, further highlighting the need to investigate how the developing cerebrovasculature responds and the possible contribution to perinatal brain injury following hypoxia. This review discusses the current concepts on the pathogenesis of perinatal brain injury, the development of the fetal cerebrovasculature and the blood brain barrier (BBB), and key mediators involved with the response of cerebral blood vessels to hypoxia.
Collapse
Affiliation(s)
- Ana A Baburamani
- The Ritchie Centre, Monash Medical Centre, Monash Institute of Medical Research, Clayton Melbourne, VIC, Australia ; Sahlgrenska Academy, Gothenburg University Göteborg, Sweden
| | | | | | | |
Collapse
|
6
|
Neurovascular Unit: a Focus on Pericytes. Mol Neurobiol 2012; 45:327-47. [DOI: 10.1007/s12035-012-8244-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
7
|
Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 2006; 1:160-81. [PMID: 18040782 DOI: 10.1007/s11481-006-9017-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/27/2006] [Indexed: 01/07/2023]
Abstract
HIV infection of the central nervous system (CNS) can result in neurologic dysfunction with devastating consequences in a significant number of individuals with AIDS. Two main CNS complications in individuals with HIV are encephalitis and dementia, which are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual damage and/or loss of neurons. One of the major mediators of NeuroAIDS is the transmigration of HIV-infected leukocytes across the BBB into the CNS. This review summarizes new key findings that support a critical role of the BBB in regulating leukocyte transmigration. In addition, we discuss studies on communication among cells of the immune system, BBB, and the CNS parenchyma, and suggest how these interactions contribute to the pathogenesis of NeuroAIDS. We also describe some of the animal models that have been used to study and characterize important mechanisms that have been proposed to be involved in HIV-induced CNS dysfunction. Finally, we review the pharmacologic interventions that address neuroinflammation, and the effect of substance abuse on HIV-1 related neuroimmunity.
Collapse
|
8
|
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16:1-13. [PMID: 15207256 DOI: 10.1016/j.nbd.2003.12.016] [Citation(s) in RCA: 1566] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 11/21/2003] [Accepted: 12/10/2003] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a diffusion barrier, which impedes influx of most compounds from blood to brain. Three cellular elements of the brain microvasculature compose the BBB-endothelial cells, astrocyte end-feet, and pericytes (PCs). Tight junctions (TJs), present between the cerebral endothelial cells, form a diffusion barrier, which selectively excludes most blood-borne substances from entering the brain. Astrocytic end-feet tightly ensheath the vessel wall and appear to be critical for the induction and maintenance of the TJ barrier, but astrocytes are not believed to have a barrier function in the mammalian brain. Dysfunction of the BBB, for example, impairment of the TJ seal, complicates a number of neurologic diseases including stroke and neuroinflammatory disorders. We review here the recent developments in our understanding of the BBB and the role of the BBB dysfunction in CNS disease. We have focused on intraventricular hemorrhage (IVH) in premature infants, which may involve dysfunction of the TJ seal as well as immaturity of the BBB in the germinal matrix (GM). A paucity of TJs or PCs, coupled with incomplete coverage of blood vessels by astrocyte end-feet, may account for the fragility of blood vessels in the GM of premature infants. Finally, this review describes the pathogenesis of increased BBB permeability in hypoxia-ischemia and inflammatory mechanisms involving the BBB in septic encephalopathy, HIV-induced dementia, multiple sclerosis, and Alzheimer disease.
Collapse
Affiliation(s)
- Praveen Ballabh
- Department of Pediatrics, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 2002; 110:245-56. [PMID: 11958867 DOI: 10.1016/s0306-4522(01)00575-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dopaminergic innervation of the developing caudate-putamen (patches and matrix) and nucleus accumbens (shell and core) of the rat was examined with light and electron microscope immunocytochemistry, using antibodies against dopamine. Light microscopic analysis showed, in accordance with previous studies, that early in life, dopaminergic fibers were relatively thick and present throughout the striatum. Their distribution was heterogeneous, showing dense aggregations, the so-called dopamine islands. The pattern of innervation became more uniform during the third postnatal week with most of the dopamine islands no longer detectable. For electron microscopic analysis, parts of the caudate-putamen containing dopamine islands or matrix, and of the nucleus accumbens, from the shell and the core of the nucleus, were selected. This analysis revealed that symmetrical synapses between immunoreactive profiles and unlabeled dendritic shafts predominated throughout development but, at the late stages, symmetrical axospinous synapses also became a prominent feature. These findings indicate that: (1) although the caudate-putamen and the nucleus accumbens have different connections and functions, they exhibit similar types of dopaminergic synapses, and (2) the relatively late detection of dopaminergic axospinous synapses suggests that the development of the dopaminergic system in the striatum is an active process, which parallels the morphological changes of striatal neurons and may contribute to their maturation.
Collapse
Affiliation(s)
- J Antonopoulos
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Three major functional roles have been ascribed to pericytes associated with central nervous system microvasculature-contractility, regulation o f endothelial cell activity, and macrophage activity. A host of different cell factors and signalling agents appear to be involved with these cellular functions, some effecting the pericyte and others produced by this cell. These include neuromodulators, vasoactive peptides, metabolic factors, growth factors and cytokines. The specific compounds and their actions are collectively viewed in an effort to provide an overall picture of the regulation of pericyte functional activity. This small vascular cell is emerging as a significant entity in several physiological processes through the functions of above; these processes include control of blood flow, regulation of vascular development and immune responses. Defining the regulatory agents and their mechanisms is key to understanding the role that pericytes play in these processes. Because these cells have begun to receive increasing attention in neurobiological studies, an overview of signalling properties should be timely and beneficial.
Collapse
Affiliation(s)
- H K Rucker
- Department of Anatomy and Physiology, Meharry Medical College, Nashville, TN, USA
| | | | | |
Collapse
|
12
|
Pompeiano O. Vasopressin in the locus coeruleus and dorsal pontine tegmentum affects posture and vestibulospinal reflexes. PROGRESS IN BRAIN RESEARCH 1999; 119:537-54. [PMID: 10074811 DOI: 10.1016/s0079-6123(08)61592-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vasopressin (VP) acts on both the locus coeruleus (LC) neurons and the neighbouring dorsal pontine reticular formation (PRF) neurons by exciting them. Experiments performed in precollicular decerebrate cats have shown that microinjection of 0.25 x 10(-11) micrograms VP into the LC complex of one side increased the extensor rigidity of the ipsilateral limbs, while rigidity of the contralateral limbs remained unmodified or slightly decreased. The amplitude of modulation and thus the response gain of both the ipsilateral and the contralateral forelimb extensor triceps brachii to sinusoidal roll tilt of the animal (at 0.15 Hz, +/- 10 degrees), leading to stimulation of labyrinth receptors, decreased significantly, while there was only a slight decrease in phase lead of the responses. These effects occurred 5-10 min after the injection, were fully developed within 30 min and disappeared in about 2 h. VP activation of presumed noradrenergic LC neurons had a facilitatory influence on ipsilateral limb extensor motoneurons, either directly through the coeruleospinal (CS) pathway, or indirectly by inhibiting the dorsal PRF and the related medullary inhibitory reticulospinal (RS) neurons. Moreover, because the facilitatory CS neurons fire out-of-phase with respect to the excitatory VS neurons, we postulated that the higher the firing rate of the CS neurons in the animal at rest, the greater the disfacilitation affecting the limb extensor motoneurons during side-down animal tilt. These motoneurons would then respond less efficiently to the excitatory VS volleys elicited for the same direction of animal orientation, leading to a reduced gain of the EMG responses of the forelimb extensors to labyrinth stimulation. In contrast to these findings, unilateral injections of the same dose of VP immediately ventral to the LC, i.e., in the peri-LC alpha and the surrounding dorsal PRF, where presumed cholinergic neurons are located, decreased extensor rigidity in the ipsilateral limbs while that of the contralateral limbs either decreased or increased. The same injection also produced either a moderate or a marked increase in gain of the multiunit EMG response of the ipsilateral triceps brachii to animal tilt. In the first instance the response gain of the contralateral triceps brachii to animal tilt increased slightly, while the corresponding response pattern remained unmodified, as shown for the ipsilateral responses (increased EMG activity during ipsilateral tilt and decreased activity during contralateral tilt). In the second instance, however, the response gain of the contralateral triceps brachii showed only slight changes, while the pattern of response was reversed. These effects occurred 5-20 min after the injection, developed fully within 20-60 min and disappeared in 2-3 h. We postulated that VP increased the discharge of the dorsal PRF neurons and the related medullary inhibitory RS neurons of the injected side, leading to reduced postural activity of the ipsilateral limbs. However, because these inhibitory RS neurons fire out-of-phase with respect to the excitatory VS neurons, it appeared that the higher the firing rate of the RS neurons in the animal at rest, the greater the disinhibition affecting the limb extensor motoneurons during ipsilateral tilt. These motoneurons would then respond more efficiently to the same excitatory VS volleys elicited by given parameters of stimulation, leading to an increased gain of the EMG responses. The contralateral effects could be attributed to crossed excitation by dorsal PRF neurons of one side, either of medullary inhibitory RS neurons or of excitatory CS neurons of the opposite side, respectively. We conclude that VP controls posture and gain of the VS reflex by acting on LC neurons as well as on dorsal PRF and the related medullary inhibitory RS neurons.
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy.
| |
Collapse
|
13
|
|
14
|
Abstract
Pericytes are a very important cellular constituent of the blood-brain barrier. They play a regulatory role in brain angiogenesis, endothelial cell tight junction formation, blood-brain barrier differentiation, as well as contribute to the microvascular vasodynamic capacity and structural stability. Central nervous system pericytes express macrophage functions and are actively involved in the neuroimmune network operating at the blood-brain barrier. They exhibit unique functional characteristics critical for the pathogenesis of a number of cerebrovascular, neurodegenerative, and neuroimmune diseases.
Collapse
Affiliation(s)
- R Balabanov
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
15
|
Korting C, van Zwieten EJ, Boer GJ, Ravid R, Swaab DF. Increase in vasopressin binding sites in the human choroid plexus in Alzheimer's disease. Brain Res 1996; 706:151-4. [PMID: 8720503 DOI: 10.1016/0006-8993(95)01242-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vasopressin binding sites were determined in the choroid plexus of five Alzheimer's disease patients and five non-demented controls using the 125I-labelled linear V1a-antagonist. The Alzheimer's disease patients showed a twofold increase in the density of vasopressin binding sites, whereas the increase in the affinity constant Kd did not reach significance.
Collapse
Affiliation(s)
- C Korting
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | |
Collapse
|
16
|
Abstract
Ever since the discovery of Paul Ehrlich (1885 Das Sauerstoff-bedürfnis des Organismus: Hirschwald, Berlin) about the restricted material exchange, existing between the blood and the brain, the ultimate goal of subsequent studies has been mainly directed towards the elucidation of relative importance of different cellular compartments in the peculiar penetration barrier consisting the structural basis of the blood-brain barrier (BBB). It is now generally agreed that, in most vertebrates, the endothelial cells of the central nervous system (CNS) are responsible for the unique penetration barrier, which restricts the free passage of nutrients, hormones, immunologically relevant molecules and drugs to the brain. After an era of studying with endogenous or exogenous tracers the unique permeability properties of cerebral endothelial cells in vivo, the next generation, i.e. the in vitro blood-brain barrier model system was introduced in 1973. Recent advances in our knowledge of the BBB have in part been made by studying the properties and function of cerebral endothelial cells (CEC) with this in vitro approach. This review summarizes the results obtained on isolated brain microvessels in the second decade of its advent.
Collapse
Affiliation(s)
- F Joó
- Laboratory of Molecular Neurobiology, Biological Research Center, Szeged, Hungary
| |
Collapse
|
17
|
Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab 1992; 12:681-90. [PMID: 1618946 DOI: 10.1038/jcbfm.1992.93] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain edema formation was investigated in the vasopressin-deficient Brattleboro rat using a middle cerebral artery occlusion model of early ischemic injury. Water and sodium accumulation after 4 h of ischemia were attenuated 36 and 20%, respectively, in the Brattleboro strain as compared to the control Long-Evans strain. This effect was independent of differences in animal size and state of hydration. In addition, measurements of cerebral blood flow indicated that Brattleboro and Long-Evans rats had equal levels of ischemia following middle cerebral artery occlusion. Systemic treatment of Brattleboro rats with vasopressin normalized their serum electrolyte concentrations and osmolarity but did not alter sodium or water accumulation in the ischemic brain. In contrast, intraventricular administration of vasopressin in Brattleboro rats increased edema formation to that seen in control rats. The reduced water and sodium accumulation in Brattleboro rats subjected to middle cerebral artery occlusion may be related to alterations in blood-brain barrier permeability since the blood-to-brain sodium flux was 36% less in the ischemic tissue of the Brattleboro as compared to the Long-Evans strain. These results support the hypothesis that central vasopressin is a regulator of brain volume and electrolyte homeostasis. Furthermore, our findings suggest a role for central vasopressin in the development of ischemic brain edema.
Collapse
Affiliation(s)
- L D Dickinson
- Department of Surgery (Neurosurgery), University of Michigan, Ann Arbor 48109-0718
| | | |
Collapse
|
18
|
Andre P, d'Ascanio P, Ioffe M, Pompeiano O. Microinjections of vasopressin in the locus coeruleus complex affect posture and vestibulospinal reflexes in decerebrate cats. Pflugers Arch 1992; 420:376-88. [PMID: 1598193 DOI: 10.1007/bf00374473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vasopressin (VP) acts as a neurotransmitter or a neuromodulator on noradrenergic locus coeruleus (LC) neurons by exciting them. Experiments were performed in precollicular decerebrate cats to investigate whether direct infusion of VP into the LC complex of one side produced changes in posture as well as in the gain of vestibulospinal reflexes acting on forelimb extensors. Unilateral microinjection of 0.25 microliters VP solution (10(-11) micrograms/microliters saline) into the LC complex increased the extensor rigidity in the ipsilateral limbs, while that of the contralateral limbs either remained unmodified or slightly decreased. The amplitude of modulation and thus the response gain of both the ipsilateral and the contralateral triceps brachii to roll tilt of the animal leading to stimulation of labyrinth receptors decreased (t-test, P less than 0.001 for both the ipsilateral and the contralateral responses). Moreover, a slight decrease in phase lead of the responses was observed. These findings occurred 5-10 min after the injection, were fully developed within 30 min and disappeared in about 2 h. The changes in posture as well as in the gain of vestibulospinal reflexes described above were site specific and depended upon the injected neuropeptide. They were attributed to tonic activation of presumptive noradrenergic neurons, which exert a facilitatory influence on limb extensor motoneurons either directly, by utilizing the coeruleospinal pathway, or indirectly by inhibiting the dorsal pontine reticular formation and the related medullary inhibitory reticulospinal neurons.
Collapse
Affiliation(s)
- P Andre
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy
| | | | | | | |
Collapse
|
19
|
Goldman H, Berman RF, Gershon S, Murphy S, Morehead M, Altman HJ. Cerebrovascular permeability and cognition in the aging rat. Neurobiol Aging 1992; 13:57-62. [PMID: 1542382 DOI: 10.1016/0197-4580(92)90009-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regional cerebrovascular permeability-capillary surface area products (rPS) and brain vascular space (BVS) were measured in aging, conscious, unrestrained Sprague-Dawley rats. Three groups of animals were examined: young-mature (6 months), middle-aged (12-14 months), and old (24-26 months) rats. Complex maze learning had been previously characterized in these same animals. Maze learning declined with age. Brain vascular space did not differ significantly with age in any brain region. However, small, but significant age-dependent decreases in rPS (25-33%) were observed. These decreases occurred mainly in the old animals in the basal ganglia and parietal cortex, and in the middle-aged and old rats in the olfactory bulbs. Significant and unexpected positive average correlations between brain permeability-capillary surface area products (PS) and learning errors occurred primarily in young rats and were attributable mainly to changes in 5 of 14 brain regions; hypothalamus, hippocampus, parietal cortex, septal area and superior colliculus. The higher correlations between maze learning errors and PS in young animals may indicate dynamic regulation of this cerebrovascular parameter which is lessened with aging. Average correlations between PS and cerebral blood flow also were determined and found to be generally small and not significant for most brain regions and age groups.
Collapse
Affiliation(s)
- H Goldman
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | | | | | |
Collapse
|
20
|
Thurston CL, Campbell IG, Culhane ES, Carstens E, Watkins LR. Characterization of intrathecal vasopressin-induced antinociception, scratching behavior, and motor suppression. Peptides 1992; 13:17-25. [PMID: 1535707 DOI: 10.1016/0196-9781(92)90135-p] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrathecal (IT) administration of vasopressin produces antinociception, scratching behavior, and motor suppression. The present experiments characterized these effects with regards to the following: 1) VP receptor specificity, 2) possible involvement of endogenous opiates, 3) possible involvement of seizure activity, and 4) whether the antinociception is due to direct actions of VP at the spinal cord. These studies showed that IT administration of a V1-specific vasopressin antagonist completely blocked the antinociception, scratching behavior, and motor suppression produced by 25 ng IT vasopressin. Furthermore, IT administration of the vasopressin metabolite, [pGlu4,Cyt6]AVP(4-9), produced none of the effects produced by vasopressin. Systemic administration of the opiate antagonists naloxone (1 mg/kg IP) and naltrexone (10 mg/kg IP) had no significant effect on the antinociception produced by IT vasopressin, whereas naltrexone potentiated the scratching behavior. Neither the IT vasopressin-induced antinociception nor scratching behavior was affected by pretreatment with the anticonvulsant sodium valproate. In addition, IT vasopressin inhibited the tail flick reflex in rats with transected spinal cords, demonstrating direct spinal effects of vasopressin. In conclusion, IT administration of vasopressin produces antinociception, scratching behavior, and motor suppression via activation of VP-specific receptors in the spinal cord.
Collapse
Affiliation(s)
- C L Thurston
- Department of Animal Physiology, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
21
|
Hess J, Jensen CV, Diemer NH. The vasopressin receptor of the blood-brain barrier in the rat hippocampus is linked to calcium signalling. Neurosci Lett 1991; 132:8-10. [PMID: 1838582 DOI: 10.1016/0304-3940(91)90419-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The signal transduction system of the vasopressin receptor in cerebral microvessels is not known but appears not to be adenylate cyclase/cyclic AMP. We determined the effect of arginine vasopressin (AVP) on the intracellular free calcium concentration [Ca2+]i in endothelial cells of isolated hippocampal microvessels of rats, using the fura-2 fluorescence technique. AVP administration caused a rapid and transient rise of cytosolic free calcium which was absent after extracellular calcium was removed, and could be blocked with the vasopressin V1 receptor antagonist, d(CH2)5 Tyr(Me)AVP. The vasopressin V2 receptor agonist, 1-deamino-8,D-AVP, on the contrary, failed to affect the intracellular free calcium level, and was unable to inhibit the AVP-induced rise of [Ca2+]i in the preparation. Our results, therefore, demonstrate the presence of a calcium-signalling, i.e. V1 vasopressin receptor at the blood-brain barrier in the hippocampus of the rat.
Collapse
Affiliation(s)
- J Hess
- PharmaBiotec, Institute of Neuropathology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Unger JW, Lange W. Immunohistochemical mapping of neurophysins and calcitonin gene-related peptide in the human brainstem and cervical spinal cord. J Chem Neuroanat 1991; 4:299-309. [PMID: 1930749 DOI: 10.1016/0891-0618(91)90020-d] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our study investigates the distribution of neurophysins (Nph), proteins that are part of the precursors for vasopressin and oxytocin, and calcitonin gene-related peptide (CGRP) in the human brainstem by immunohistochemistry. Both peptides were found in discrete regions of the human hindbrain. Nph could be demonstrated exclusively in fibers and punctate perineural varicosities that were travelling within the mesencephalic central gray, substantia nigra, as well as locus coeruleus, medial longitudinal fascicle, raphe, nucleus of the solitary tract, lateral reticular nucleus and area postrema. A few varicosities were seen in the substantia gelatinosa of the spinal trigeminal tract and its continuation into the dorsal horn of the cervical spinal cord. In contrast to these observations. CGRP-immunoreactive fibers were found to be densest in the spinal tract of the trigeminal nerve and the dorsal horn of the spinal cord. In addition, fibers and varicosities could be demonstrated in numerous distinct brain regions, such as locus coeruleus and subcoeruleus, solitary tract, cuneate nucleus, raphe and periaqueductal gray. CGRP-immunoreactivity was also present in perikarya in the ventral horn of the spinal cord, as well as motor nuclei of cranial nerves, i.e., hypoglossal nucleus, ambiguous nucleus. Our results suggest that Nph-immunoreactivity in the human brainstem may be present predominantly within long fiber projections from hypothalamic neurosecretory nuclei, in analogy to data obtained from rodents, whereas CGRP may play a role in the branchiomotor system as well as in intrinsic or extrinsic projections involved in autonomic regulation and integration of sensory information.
Collapse
Affiliation(s)
- J W Unger
- Department of Anatomy, University of Munich, Federal Republic of Germany
| | | |
Collapse
|
23
|
Brust P, Diemer NH. Blood-brain transfer of L-phenylalanine declines after peripheral but not central nervous administration of vasopressin. J Neurochem 1990; 55:2098-104. [PMID: 2230811 DOI: 10.1111/j.1471-4159.1990.tb05801.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To determine whether a previously reported effect of vasopressin on blood-brain transfer of leucine extends to other large neutral amino acids, we measured the regional blood-brain transfer of L-phenylalanine with the integral technique. Intravenous co-injection of L-phenylalanine and arginine vasopressin (30 nmol to 10 pmol) resulted in a decrease of the permeability-surface area (PaS) product of phenylalanine of between 11 and 39%. In addition, the peptide elicited a decrease of the cerebral blood flow of between 11 and 56% combined with a drastic decrease of the cardiac output (32-64%) and an elevation of the blood pressure to approximately 150% of control values. However, we found no changes of the cardiac output, the blood pressure, or the PaS product of phenylalanine after microdialysis (30 min, 5 microliters min-1) of arginine vasopressin (15 mumol L-1) into the dorsal hippocampus, but cerebral blood flow was decreased. The results support the hypothesis that arginine vasopressin receptors at the blood-brain barrier are involved in the regulation of large neutral amino acid transfer from blood to brain and indicate that these receptors are located at the luminal membrane of the endothelial cells.
Collapse
Affiliation(s)
- P Brust
- Department of Cell Biology and Regulation, Karl Marx University, Leipzig, G.D.R
| | | |
Collapse
|
24
|
Ermisch A, Landgraf R. Vasopressin, the blood-brain barrier, and brain performance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 274:71-89. [PMID: 2239439 DOI: 10.1007/978-1-4684-5799-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A Ermisch
- Department of Cell Biology and Regulation, Karl Marx University, Leipzig, GDR
| | | |
Collapse
|