1
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
3
|
Endo T, Yanagawa Y, Obata K, Isa T. Nicotinic Acetylcholine Receptor Subtypes Involved in Facilitation of GABAergic Inhibition in Mouse Superficial Superior Colliculus. J Neurophysiol 2005; 94:3893-902. [PMID: 16107532 DOI: 10.1152/jn.00211.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for α3β2- and α6β2-containing receptors, α-conotoxin MII (αCtxMII). A subset of these neurons exhibited a faster α-bungarotoxin-sensitive inward current component, indicating the expression of α7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABAA receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by αCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.
Collapse
Affiliation(s)
- Toshiaki Endo
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| | | | | | | |
Collapse
|
4
|
Abstract
Stratum griseum superficiale (SGS) of the superior colliculus receives a dense cholinergic input from the parabigeminal nucleus. In this study, we examined in vitro the modulatory influence of acetylcholine (ACh) on the responses of SGS neurons that project to the visual thalamus in the rat. We used whole-cell patch-clamp recording to measure the responses of these projection neurons to electrical stimulation of their afferents in the stratum opticum (SO) before and during local pressure injections of ACh. These colliculothalamic projection neurons (CTNs) were identified during the in vitro experiments by prelabeling them from the thalamus with the retrograde axonal tracer wheat germ agglutinin-apo-HRP-gold. In a group of cells that included the prelabeled neurons, EPSCs evoked by SO stimulation were significantly reduced by the application of ACh, whereas IPSC amplitudes were significantly enhanced. Similar effects were observed when the nicotinic ACh receptor agonist lobeline was used. Application of the selective GABA(B) receptor antagonist 3-[[(3,4-dichlorophenyl)-methyl]amino]propyl](diethoxymethyl)phosphinic acid blocked ACh-induced reduction in the evoked response. In contrast, the ACh-induced reduction was insensitive to application of the GABA(A) receptor antagonist bicuculline. The ACh-induced reduction was also diminished by bath application of muscimol at the low concentrations that selectively activate GABA(C) receptors. Because GABA(C) receptors may be specifically expressed by GABAergic SGS interneurons (Schmidt et al., 2001), our results support the hypothesis that ACh reduces CTN activity by nicotinic receptor-mediated excitation of local GABAergic interneurons. These interneurons in turn use GABA(B) receptors to inhibit the CTNs.
Collapse
|
5
|
Jeon CJ, Spencer RF, Mize RR. Organization and synaptic connections of cholinergic fibers in the cat superior colliculus. J Comp Neurol 1993; 333:360-74. [PMID: 8349848 DOI: 10.1002/cne.903330305] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cat superior colliculus (SC) receives a dense cholinergic input from three brainstem nuclei, the pedunculopontine tegmental nucleus, the lateral dorsal tegmental nucleus, and the parabigeminal nucleus (PBG). The tegmental inputs project densely to the intermediate gray layer (IGL) and sparsely to the superficial layers. The PBG input probably projects only to the superficial layers. In the present study, the morphology of choline acetyltransferase (ChAT)-immunoreactive axons and synaptic endings in the superficial and deep layers of the SC was examined by light and electron microscopy to determine whether these cholinergic afferents form different types of synapses in the superficial and deep layers. Two types of fibers were found within the zonal (ZL) and upper superficial gray layers (SGL): small diameter fibers with few varicosities and larger diameter fibers with numerous varicosities. Quantitative analysis demonstrated a bimodal distribution of axon diameters, with one peak at approximately 0.3-0.5 micron and the other at 0.9-1.0 micron. On the other hand, ChAT-immunoreactive fibers in the IGL were almost all small and formed discrete patches within the IGL. Two types of ChAT-immunoreactive synaptic profiles were observed within the ZL and upper SGL using the electron microscope. The first type consisted of small terminals containing predominantly round synaptic vesicles and forming asymmetric synaptic contacts, mostly on dendrites. The second type was comprised of varicose profiles that also contained round synaptic vesicles. Their synaptic contacts were always symmetric in profile. ChAT-immunoreactive terminals in the IGL patches contained round or pleomorphic synaptic vesicles, and the postsynaptic densities varied from symmetric to asymmetric, including intermediate forms. However, no large varicose profiles were observed. This study suggests that cholinergic fibers include at least two different synaptic morphologies: small terminals with asymmetric thickenings and large varicose profiles with symmetric terminals. The large varicose profile in the superficial layers is absent in the IGL. This result suggests that the cholinergic inputs that innervate the superficial layers and the patches in the IGL of the cat SC differ in their synaptic organization and possibly also in their physiological actions.
Collapse
Affiliation(s)
- C J Jeon
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis 38163
| | | | | |
Collapse
|
6
|
Xiong M, Finlay BL. Changes in synaptic density after developmental compression or expansion of retinal input to the superior colliculus. J Comp Neurol 1993; 330:455-63. [PMID: 8320337 DOI: 10.1002/cne.903300402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The retinal projection to the superior colliculus can be made abnormally dense by inducing a "compressed" retinal projection into a subnormal tectal volume, or abnormally sparse by monocular enucleation early in development. Any or all of the features of cell number, axonal arbor, dendritic arbor, and synaptic density could potentially be adjusted to compensate for such variations in the convergence of one cell population on another. We have examined the consequences of neonatal partial tectal ablation or monocular enucleation for synaptic length, density, and relative numbers of synapse classes in the superficial gray layer of the hamster superior colliculus. Monocular enucleation resulted in a reduction of synaptic density in the superficial gray layer of the colliculus ipsilateral to the remaining eye. This decrease in density was entirely accounted for by a reduction of the number of synapses with round vesicles, large asymmetric terminal specializations, and pale mitochondria characteristic of retinocollicular terminals (RLP synapses). There was no compensatory increase in any other synaptic class. RLP synapses were larger in monocular enucleates. Partial tectal ablation had no effect on synaptic density, nor on the relative proportions of different synaptic types. Synapses of the RLP class were slightly smaller than normal. These results suggest that synaptic density is normally at a maximum that cannot be altered by increases in potential input. However, density may be reduced by decreasing the number of inputs. Terminal classes do not appear to compete with each other within the collicular volume, suggesting that postsynaptic cells controls both the classes and numbers of their potential inputs.
Collapse
Affiliation(s)
- M Xiong
- Department of Psychology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
7
|
Feig S, Van Lieshout DP, Harting JK. Ultrastructural studies of retinal, visual cortical (area 17), and parabigeminal terminals within the superior colliculus of Galago crassicaudatus. J Comp Neurol 1992; 319:85-99. [PMID: 1592907 DOI: 10.1002/cne.903190109] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The morphology and synaptic relationships of anterogradely labeled retinal, visual cortical (area 17), and parabigeminal terminals have been analyzed within the superficial gray (stratum griseum superficiale) of Galago crassicaudatus. Our data regarding the retinocollicular projection reveal two populations of terminals based upon size. The population of smaller terminals are found in clusters, while the larger occur in isolation. Both populations of retinocollicular terminals form synapses primarily with dendritic spines, but synapses upon pale vesicle filled (PVF) profiles and dendritic shafts also occur. Corticotectal terminals contain round vesicles and make asymmetrical synapses, primarily onto dendritic spines; few form synapses with PVF profiles. Our findings suggest the possibility that there are two populations of corticotectal terminals based upon differences in size and morphology. Parabigeminotectal profiles contain densely packed round vesicles and make asymmetrical synapses. These terminals, which are exclusively cholinergic in Galago, are presynaptic to dendrites of various sizes. Convergence of retinal and cortical terminals has been observed. This convergence occurs on distinctly separate regions of the postsynaptic membrane. In contrast, convergence of retinal and parabigeminal terminals occurs on the same region of the postsynaptic cell(s).
Collapse
Affiliation(s)
- S Feig
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
8
|
Carter DA, Aguayo AJ, Bray GM. Retinal ganglion cell terminals in the hamster superior colliculus: an ultrastructural study. J Comp Neurol 1991; 311:97-107. [PMID: 1719046 DOI: 10.1002/cne.903110108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution, cross-sectional area, and presynaptic and postsynaptic characteristics of retinal ganglion cell axon terminals in the superior colliculus of normal adult female Syrian hamsters were investigated by quantitative ultrastructural techniques. After an intravitreal injection of horseradish peroxidase, most labelled axon terminals were found in the stratum griseum superficiale and stratum opticum of the contralateral superior colliculus. However, a small proportion (approximately 2%) of retinal ganglion cell axon terminals were located in deeper layers of the superior colliculus between the stratum opticum and the periaqueductal grey matter. Terminals were smaller in the upper two-thirds of the stratum griseum superficiale than in the lower one-third of this layer, the stratum opticum, and the stratum griseum intermedium. Presynaptic characteristics such as the length and number of contacts and the postsynaptic neuronal domains (somata, dendritic spines, or shafts) contacted by retinal ganglion cell axons in the superior colliculus were similar in all layers.
Collapse
Affiliation(s)
- D A Carter
- Center for Research in Neuroscience, Montreal General Hospital, Quebec, Canada
| | | | | |
Collapse
|
9
|
Pinard R, Benfares J, Lanoir J. Electron microscopic study of GABA-immunoreactive neuronal processes in the superficial gray layer of the rat superior colliculus: their relationships with degenerating retinal nerve endings. JOURNAL OF NEUROCYTOLOGY 1991; 20:262-76. [PMID: 1646864 DOI: 10.1007/bf01235544] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GABA-immunoreactive neuronal elements were detected in the stratum griseum superficiale or superficial gray layer of the rat superior colliculus in an electron microscopic study, using postembedding immunocytochemistry with protein A-gold as a marker. In addition to neuronal somata, two types of GABA-immunoreactive neuronal processes were observed. Numerous profiles of axon terminals (1 microns in diameter) with clear round or pleomorphic synaptic vesicles and mitochondria were found to establish mostly symmetrical synaptic contacts with GABA-immunonegative dendrites of various diameters. Some axosomatic synapses could also be observed. The gold particle density in this axon terminal compartment was between seven and 13 times the background level. The stratum griseum superficiale also included GABA-immunoreactive dendrites, some of which contained clear synaptic vesicles. These dendritic profiles always formed the presynaptic component of dendrodendritic synaptic contacts. The density of the gold particles in the dendritic compartment, taken as a whole, was between three and 13 times the background level. Furthermore, the relationship between the GABA-immunoreactive neuronal elements and degenerating retinal nerve endings identified in the left stratum griseum superficiale following enucleation of the right eye was investigated after a 7-day survival period. The profiles of degenerating retinal nerve endings (0.7 microns in diameter) were found to be devoid of any specific labelling. Most of the retinal boutons established axodendritic synapses of the asymmetrical type with an immunonegative dendrite, which was also contacted in some cases by a GABA-immunopositive axon terminal. Other retinal endings were presynaptic to GABA-immunopositive dendritic profiles with synaptic vesicles, some of which were found to contact in turn an unlabelled dendrite, thereby completing serial synaptic relationships. More rarely, retinal endings formed the presynaptic component of possible axoaxonic synapses with GABA-positive terminals presumed to be axonic in nature. It can be concluded that the retinal input to the superficial gray layer often converges with a GABAergic axonal input on a dendritic target, the neurotransmitter specificity of which is unknown. In other cases, retinal terminals synaptically contact GABA-immunolabelled conventional and presynaptic dendrites and probably also some axon terminals; this might provide an anatomical substrate for the control of GABA release from these GABAergic processes. These results indicate that transmitter GABA plays an important role in retinocollicular transmission.
Collapse
Affiliation(s)
- R Pinard
- CNRS Laboratoire de Neurobiologie, Département Voies et Neurotransmission Centrales, Marseille, France
| | | | | |
Collapse
|
10
|
Pinard R, Segu L, Lanoir J. Transient increase in [3H]Ro 15-4513 specific binding in the superficial gray layer of the rat superior colliculus induced by visual deafferentation. Brain Res 1991; 543:287-95. [PMID: 1647833 DOI: 10.1016/0006-8993(91)90039-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The imidazodiazepine compound [3H]Ro 15-4513, a partial inverse agonist of benzodiazepine receptors of the central type, binds with high affinity (order of 10(-8) M) to a single population of benzodiazepine binding sites in the mammalian central nervous system. A quantitative autoradiographic study was carried out to determine the effects of one eye removal on [3H]Ro 15-4513 specific binding to rat brain sections in the superficial gray layer or stratum griseum superficiale (SGS) of the superior colliculus. Retinal afferent degeneration due to right eye removal, performed 3 and 7 days before sacrifice, led to a significant and symmetrical increase in the [3H]Ro 15-4513 specific binding in both right and left SGS by enhancing the binding affinity of the radioligand. This transient phenomenon disappeared when a longer survival period of 45 days was allowed to elapse. Conversely, unilateral lesion of the primary visual areas had no apparent effects on the specific binding of the radioligand. The absence of any loss of binding sites after either type of lesion suggests that the benzodiazepine receptors are probably not situated on the optic nerve axon terminals, nor on the cortical axon terminals originating from primary visual areas. In the SGS, as in other rat brain structures, benzodiazepine receptors of the central type are functionally coupled with GABAA receptors and form 'GABAA receptors/benzodiazepine receptors/chloride channel' complexes. The involvement of the local GABAergic system in the postlesion plasticity of benzodiazepine receptors was studied by testing the effects of exogenously applied GABA on [3H]Ro 15-4513 specific binding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Pinard
- CNRS, Laboratoire de Neurobiologie E6, Marseille, France
| | | | | |
Collapse
|
11
|
Tan MM, Harvey AR. The cholinergic innervation of normal and transplanted superior colliculus in the rat: an immunohistochemical study. Neuroscience 1989; 32:511-20. [PMID: 2586759 DOI: 10.1016/0306-4522(89)90098-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of choline acetyltransferase was determined in normal and transplanted rat superior colliculus with choline acetyltransferase immunohistochemistry. This distribution was compared to the pattern of histochemically detected acetylcholinesterase activity. To determine cholinergic input to the superficial superior colliculus, double labelling experiments combining retrograde tracing methods and choline acetyltransferase immunohistochemistry were carried out. No choline acetyltransferase-containing neurons were observed in the rat superior colliculus. A dense network of choline acetyltransferase-immunoreactive fibres and terminals was seen in the intermediate layers of the normal superior colliculus. The distribution was patchy and very similar to the pattern of acetylcholinesterase activity. Occasional fibres and terminals were seen in the deep tectal laminae. The superficial layers contained a low number of choline acetyltransferase-stained fibres and terminals but a comparatively high level of acetylcholinesterase activity. Following a unilateral injection of a tracer into the superficial superior colliculus, retrogradely labelled choline acetyltransferase-immunoreactive neurons were found in the dorsal and ventral subnuclei of the ipsilateral parabigeminal nucleus. As in the normal superior colliculus, choline acetyltransferase-positive neurons were not found in tectal transplants. However, choline acetyltransferase-immunoreactive fibres and terminals were seen in grafts but only in those which had extensive connections with the host midbrain. The pattern of staining most closely resembled that seen in the intermediate layers of the normal superior colliculus. The similar arrangement of choline acetyltransferase and acetylcholinesterase activity in the intermediate layers of normal rat superior colliculus provides further evidence for cholinergic innervation to these layers, probably originating in the dorsal and pedunculopontine tegmental nuclei. The data from the double labelling experiments indicate that the choline acetyltransferase-immunoreactive terminals observed in the superficial layers represent the terminal field of an ipsilateral cholinergic projection from the parabigeminal nucleus. Tectal grafts receive cholinergic innervation from the host. The evidence suggests that much of this input derives from the cholinergic nuclei in the brainstem tegmentum which normally project to the intermediate tectal layers.
Collapse
Affiliation(s)
- M M Tan
- Department of Anatomy and Human Biology, University of Western Australia, Nedlands, Perth
| | | |
Collapse
|