1
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Emery MA, Akil H. Endogenous Opioids at the Intersection of Opioid Addiction, Pain, and Depression: The Search for a Precision Medicine Approach. Annu Rev Neurosci 2020; 43:355-374. [PMID: 32109184 PMCID: PMC7646290 DOI: 10.1146/annurev-neuro-110719-095912] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.
Collapse
Affiliation(s)
- Michael A Emery
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Kościelniak-Merak B, Batko I, Kobylarz K, Sztefko K, Kocot-Kępska M, Tomasik PJ. Impact of Intravenous, Perioperative-Administrated Lidocaine on Postoperative Serum Levels of Endogenous Opioids in Children. Curr Pharm Des 2020; 25:3209-3215. [PMID: 31317834 DOI: 10.2174/1381612825666190718153209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endogenous opioids are neuropeptides involved in pain-relieving processes. In the periphery, they are synthesised and stored in cells of the immune system. OBJECTIVE In the current study, we describe the influence of perioperative, intravenous (i.v.) lidocaine infusion in children on postoperative, serum endogenous opioid concentrations in children. METHODS Forty-four children undergoing major spinal surgery were enrolled in the cohort study. They were divided into two groups: group A (n = 21) generally anesthetised with fentanyl, propofol, rocuronium, a mixture of oxygen/air/sevoflurane and with analgetics and co-analgetics: morphine, acetaminophen, metamizole, gabapentin, dexamethason and group B (n = 23) where, in addition to the above-described general anesthesia, patients were given i.v. lidocaine as a co-analgesic. We also recruited 20 healthy age- and gender-matched children (group C). We measured endogenous opioid levels in serum using immunoenzymatic methods. We evaluated postoperative pain intensity using a numerical or visual pain scale and demand for morphine. RESULTS The levels of measured endogenous opioids were similar in the control and in the studied groups before surgery. We noted that group B patients had lower pain intensity when compared to group A subjects. In group B, the elevated serum concentrations of β-endorphin, enkephalin and dynorphin in the postoperative period were reported. We also observed that the levels of endogenous opioids negatively correlated with morphine requirements and positively correlated with lidocaine concentration. CONCLUSION Multidrug pain management including lidocaine seems to be more efficient than models without lidocaine. The endogenous opioid system should be considered as a novel target for pain relief therapy in children.
Collapse
Affiliation(s)
- Barbara Kościelniak-Merak
- Department of Clinical Biochemistry, Pediatrics Institute, Jagiellonian University Medical College, Wielicka St 265, 30-663 Cracow, Poland
| | - Ilona Batko
- Intensive Care Unit, University Children's Hospital, Wielicka St 265, 30-663 Cracow, Poland
| | - Krzysztof Kobylarz
- Intensive Care Unit, University Children's Hospital, Wielicka St 265, 30-663 Cracow, Poland.,Department of Anesthesiology and Intensive Care, Jagiellonian University Medical College, Kopernika St. 17, 31-501 Cracow, Poland
| | - Krystyna Sztefko
- Department of Clinical Biochemistry, Pediatrics Institute, Jagiellonian University Medical College, Wielicka St 265, 30-663 Cracow, Poland
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, Śniadeckich St 10, 31-501 Cracow, Poland
| | - Przemysław J Tomasik
- Department of Clinical Biochemistry, Pediatrics Institute, Jagiellonian University Medical College, Wielicka St 265, 30-663 Cracow, Poland
| |
Collapse
|
4
|
Lerma-Cabrera JM, Carvajal F, Garbutt JC, Navarro M, Thiele TE. The melanocortin system as a potential target for treating alcohol use disorders: A review of pre-clinical data. Brain Res 2019; 1730:146628. [PMID: 31891691 DOI: 10.1016/j.brainres.2019.146628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
The melanocortin (MC) system consists of neuropeptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). In the brain, MC neuropeptides signal primarily through the MC-3 and MC-4 receptors, which are widely expressed throughout the brain. While the MC system has been largely studied for its role in food intake and body weight regulation, converging evidence has emerged over approximately the last 20-years showing that alcohol (ethanol), and other drugs of abuse influence the central MC system, and that manipulating MC receptor signalling modulates ethanol intake. Although there is divergent evidence, the wealth of data appears to suggest that activating MC signalling, primarily through the MC-4 receptor, is protective against excessive ethanol consumption. In the present review, we first describe the MC system and then detail how ethanol exposure and consumption alters central MC and MC-receptor expression and levels. This is followed by a review of the data, from pharmacological and genetic studies, which show that manipulations of MC receptor activity alter ethanol intake. We then briefly highlight studies implicating a role for the MC system in modulating neurobiological responses and intake of other drugs of abuse, including amphetamine, cocaine and opioids. Finally, we introduce relatively new observations that the drug, bupropion (BUP), a drug that activates central MC activity, significantly reduces ethanol intake in rodent models when administered alone and in combination with the non-selective opioid receptor antagonist, naltrexone. Phase II clinical trials are currently underway to assess the efficacy of BUP as a treatment for alcohol use disorders.
Collapse
Affiliation(s)
| | | | - James C Garbutt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Daniels S, Pratt M, Zhou Y, Leri F. Effect of steady-state methadone on high fructose corn syrup consumption in rats. J Psychopharmacol 2018; 32:215-222. [PMID: 29207922 DOI: 10.1177/0269881117742116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients undergoing methadone maintenance treatment self-report enhanced preferences for, and excessive consumption of, foods rich in sugar. However, it is unclear whether these are direct pharmacological effects of methadone or the consequences of metabolic dysfunctions induced by addiction to illicit opiates. Hence, the current study in drug-naïve male Sprague-Dawley rats explored the effects of steady-state methadone delivered by osmotic mini-pumps (13 days; 0, 10, 30 mg/kg/day) on consumption of rat chow and a palatable, sweet, liquid high fructose corn syrup solution. Six days after the removal of the pumps, mRNA expression of genes involved in responses to stress and rewards were quantified: pro-opiomelanocortin in the hypothalamus, mu-opioid receptor in the nucleus accumbens, and dopamine D2 receptor in the dorsal striatum. Taste reactivity and locomotion tests were also performed throughout the study. It was found that methadone increased caloric intake from high fructose corn syrup and reduced caloric intake from chow, effects that could not be directly ascribed to changes in high fructose corn syrup taste reactivity or motor functions. However, the changes in caloric intake displayed significant tolerance, and mRNA expression analysis suggested that methadone attenuated the effect of high fructose corn syrup on pro-opiomelanocortin mRNA, and possibly on dopamine D2 receptor mRNA. These findings in rats suggest that the pharmacological effect of methadone, administered to achieve steady-state maintenance, may not be the primary cause of dietary alterations reported by patients maintained on methadone.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- 2 The Rockefeller University, New York, USA
| | | |
Collapse
|
6
|
Tudurí E, Beiroa D, Stegbauer J, Fernø J, López M, Diéguez C, Nogueiras R. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology 2016; 110:322-332. [DOI: 10.1016/j.neuropharm.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 08/05/2016] [Indexed: 01/19/2023]
|
7
|
Abstract
Clients report more pain at some times of day than at others due, in part, to the temporal variation of the body's inhibitory pain response. The analgesic effectiveness of morphine varies with the time of day, perhaps due to the inhibiting or enhancing effects of the drug on plasma beta-endorphin (BE). This experiment was designed to examine the timed effects of morphine on the pain-induced BE response. Six groups of treatment mice (injected with morphine sulfate) and 6 groups of control mice (injected with saline) were exposed to an acute pain stimulus at 4-h intervals, and blood was collected. Plasma BE was analyzed using radioimmunoassay. Control mice showed a robust cir-cadian BE-response rhythm with a peak at 0000 and a nadir at 1200, whereas the BE response of mice that received morphine was arrhythmic. Animals that received morphine tolerated the noxious stimulus longer, but the analgesia varied with time of day. These results indicate that morphine abolishes the rhythmic BE response to pain and does not inhibit pain equally at all times of day. Morphine doses should be titrated to maximize the endogenous pain control system while achieving analgesia with decreased dosages.
Collapse
Affiliation(s)
- Natalie Ann Rasmussen
- College of Nursing, University of Nebraska Medical Center, 985330 Nebraska Medical Center, Omaha, NE 68198-5330, USA.
| | | |
Collapse
|
8
|
Zhou Y, Leri F, Cummins E, Kreek MJ. Individual differences in gene expression of vasopressin, D2 receptor, POMC and orexin: vulnerability to relapse to heroin-seeking in rats. Physiol Behav 2015; 139:127-35. [PMID: 25446223 PMCID: PMC4275356 DOI: 10.1016/j.physbeh.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Individual vulnerability to stress-induced relapse during abstinence from chronic heroin exposure is a key feature of opiate addiction, with limited studies on this topic. Arginine vasopressin (AVP) and its V1b receptor, components of the brain stress responsive systems, play a role in heroin-seeking behavior triggered by foot shock (FS) stress in rats. In this study, we tested whether individual differences in the FS-induced heroin-seeking were associated with alterations of AVP and V1b, as well as other stress responsive systems, including pro-opiomelanocortin (POMC), orexin, plasma ACTH and corticosterone, as well as dopamine D2 receptor (D2) and plasma prolactin. Sprague-Dawley rats were subjected to 3-hour intravenous heroin self-administration (SA) and then tested in extinction, and FS-induced and heroin priming-induced reinstatements. The rats that self-administered heroin were divided into high and low reinstatement responders induced by FS (H-RI; L-RI). Over SA sessions, both the H-RI and L-RI displayed similar active lever responding, heroin infusion and total heroin intake. Compared to the L-RI, however, the H-RI showed greater active lever responses during stress-induced reinstatement, with higher AVP mRNA levels in medial/basolateral amygdala and lower D2 mRNA levels in caudate putamen. However, heroin priming resulted in similar reinstatement in both groups and produced similarly low POMC and high orexin mRNA levels in hypothalamus. Our results indicate that: 1) enhanced amygdalar AVP and reduced striatal D2 expression may be related to individual vulnerability to stress-induced reinstatement of heroin- seeking; and 2) heroin abstinence-associated alterations of hypothalamic orexin and POMC expression may be involved in drug priming-induced heroin-seeking.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Conditioning, Classical/drug effects
- Corticosterone/blood
- Electroshock/adverse effects
- Extinction, Psychological/drug effects
- Gene Expression/drug effects
- Heroin/administration & dosage
- Individuality
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Orexins
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Prolactin/blood
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Reinforcement, Psychology
- Self Administration
- Vasopressins/genetics
- Vasopressins/metabolism
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, Canada
| | - Erin Cummins
- Department of Psychology, University of Guelph, Guelph, Canada
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
10
|
Nie Y, Ferrini MG, Liu Y, Anghel A, Paez Espinosa EV, Stuart RC, Lutfy K, Nillni EA, Friedman TC. Morphine treatment selectively regulates expression of rat pituitary POMC and the prohormone convertases PC1/3 and PC2. Peptides 2013; 47:99-109. [PMID: 23891651 PMCID: PMC3787842 DOI: 10.1016/j.peptides.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.
Collapse
Affiliation(s)
- Ying Nie
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Monica G. Ferrini
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Adrian Anghel
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Enma V. Paez Espinosa
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Ronald C. Stuart
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | - Kabirullah Lutfy
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Eduardo A. Nillni
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Pintér-Kübler B, Ferenczi S, Núnez C, Zelei E, Polyák Á, Milanés MV, Kovács KJ. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal. PLoS One 2013; 8:e67027. [PMID: 23805290 PMCID: PMC3689674 DOI: 10.1371/journal.pone.0067027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/13/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.
Collapse
Affiliation(s)
- Bernadett Pintér-Kübler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cristina Núnez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Edina Zelei
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ágnes Polyák
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Suppression of hypothalamic-pituitary-adrenal axis by acute heroin challenge in rats during acute and chronic withdrawal from chronic heroin administration. Neurochem Res 2013; 38:1850-60. [PMID: 23771528 DOI: 10.1007/s11064-013-1091-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic-pituitary-adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 min after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3 × 2.5 mg/kg/day on day 1; 3 × 20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 h after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal.
Collapse
|
13
|
Proopiomelanocortin (POMC) expression and conditioned place aversion during protracted withdrawal from chronic intermittent escalating-dose heroin in POMC-EGFP promoter transgenic mice. Neuroscience 2013; 236:220-32. [PMID: 23337531 DOI: 10.1016/j.neuroscience.2012.12.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/07/2012] [Accepted: 12/27/2012] [Indexed: 01/31/2023]
Abstract
In heroin-dependent individuals, the drive to avoid or ameliorate the negative affective/emotional state associated with the discontinuation of heroin contributes to the chronic relapsing nature of the disease. Here, we investigate changes in proopiomelanocortin (POMC) expression at three time points across an extended period of heroin withdrawal in a clinically relevant rodent model of addiction using conditioned place aversion (CPA) in POMC-EGFP (POMC-enhanced green fluorescent protein) bacterial artificial chromosome (BAC) transgenic mice. Neurons expressing POMC-EGFP were found in the medial nucleus of the amygdala (MeA), basomedial amygdala (BMA) and dentate gyrus of hippocampus (DG), as well as the arcuate nucleus of hypothalamus (ARC). Heroin-treated mice displayed robust CPA after acute spontaneous withdrawal (12h), which persisted across the extended (14days) withdrawal period. After 12-h withdrawal, heroin-treated mice showed lower signal intensity of POMC-EGFP-positive cells in the ARC, higher levels of POMC mRNA in the amygdala but lower levels in the hippocampus than saline controls. After 7-d withdrawal, heroin-treated mice showed fewer POMC-EGFP-positive cells in the MeA and lower POMC mRNA in the amygdala than saline controls. After extended (14days) withdrawal, heroin-treated mice showed more POMC-EGFP-positive cells in BMA and DG, increased intensity of POMC-EGFP signal in DG, and higher POMC mRNA levels in the hippocampus compared to controls. Our results show dynamic changes in POMC in hypothalamic and extra-hypothalamic regions that may contribute to the negative affective/emotional state of heroin withdrawal shown by CPA from acute to extended periods of heroin withdrawal.
Collapse
|
14
|
Pandit R, de Jong JW, Vanderschuren LJMJ, Adan RAH. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur J Pharmacol 2011; 660:28-42. [PMID: 21295024 DOI: 10.1016/j.ejphar.2011.01.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 01/07/2023]
Abstract
The alarming increase in the incidence of obesity and obesity-associated disorders makes the etiology of obesity a widely studied topic today. As opposed to 'homeostatic feeding', where food intake is restricted to satisfy one's biological needs, the term 'non-homeostatic' feeding refers to eating for pleasure or the trend to over-consume (palatable) food. Overconsumption is considered a crucial factor in the development of obesity. Exaggerated consumption of (palatable) food, coupled to a loss of control over food intake despite awareness of its negative consequences, suggests that overeating may be a form of addiction. At a molecular level, insulin and leptin resistance are hallmarks of obesity. In this review, we specifically address the question how leptin resistance contributes to enhanced craving for (palatable) food. Since dopamine is a key player in the motivation for food, the interconnection between dopamine, leptin and neuropeptides related to feeding will be discussed. Understanding the mechanisms by which these neuropeptidergic systems hijack the homeostatic feeding mechanisms, thus leading to overeating and obesity is the primary aim of this review. The melanocortin system, one of the crucial neuropeptidergic systems modulating feeding behavior will be extensively discussed. The inter-relationship between neuronal populations in the arcuate nucleus and other areas regulating energy homeostasis (lateral hypothalamus, paraventricular nucleus, ventromedial hypothalamus etc.) and reward circuitry (the ventral tegmental area and nucleus accumbens) will be evaluated and scrutinized.
Collapse
Affiliation(s)
- Rahul Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Basaran NF, Buyukuysal RL, Millington WR, Cavun S. Glycyl-glutamine (β-endorphin30-31) inhibits morphine-induced dopamine efflux in the nucleus accumbens. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 381:467-75. [DOI: 10.1007/s00210-010-0507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
16
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 702] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
17
|
Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases. Brain Res 2009; 1314:235-52. [PMID: 19914222 DOI: 10.1016/j.brainres.2009.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 11/22/2022]
Abstract
From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review.
Collapse
|
18
|
Seo YJ, Kwon MS, Choi SM, Lee JK, Park SH, Jung JS, Sim YB, Suh HW. Possible involvement of the hypothalamic pro-opiomelanocortin gene and beta-endorphin expression on acute morphine withdrawal development. Brain Res Bull 2009; 80:359-70. [PMID: 19723567 DOI: 10.1016/j.brainresbull.2009.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
We studied the effects of supraspinally administered morphine on the expression of the hypothalamic pro-opiomelanocortin (POMC) gene and beta-endorphin. Mice were administered morphine intracerebroventricularly (i.c.v.) either once or 5 times for 5 days (once/day). A single morphine administration significantly increased the hypothalamic POMC gene and beta-endorphin expression at 2h after application in dose-dependent fashion; however, repeated morphine administration had no effect on the hypothalamic POMC gene and beta-endorphin expression. In the immunoblot and immunohistochemical study, the increase of beta-endorphin was observed in the arcuate nucleus of the hypothalamus. Moreover, the expressions of c-Fos, phosphorylated calcium/calmodulin-dependent protein kinase-IIalpha (pCaMK-IIalpha), and phosphorylated cAMP response element-binding protein (pCREB) were increased by a single i.c.v. morphine injection at various time points, but the expressions of phosphorylated extracellular signal-regulated protein kinase1/2 (pERK1/2) and phosphorylated IkappaB (pIkappaB) were not. We also found that the expressions of c-Fos, pCaMKIIalpha, and pCREB were co-localized with the POMC expression. Meanwhile, naloxone as well as muscimol and baclofen significantly attenuated the increases of the POMC gene expression induced by a single morphine administration. Furthermore, the pretreatment of muscimol and baclofen 10 min before morphine injection robustly attenuated the withdrawal behavior induced by a single morphine administration. These results imply that the hypothalamic POMC gene and beta-endorphin expression may play an important role in the development of an acute physical dependency of morphine. In that, GABAergic neurotransmission appear to be involved in the regulation of the hypothalamic POMC gene expression induced by supraspinal morphine administration.
Collapse
Affiliation(s)
- Young-Jun Seo
- Advanced Therapy Products Research Division, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, 194 Tongilro, Eunpyeong-gu, Seoul 122-704, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Espinosa VP, Liu Y, Ferrini M, Anghel A, Nie Y, Tripathi PV, Porche R, Jansen E, Stuart RC, Nillni EA, Lutfy K, Friedman TC. Differential regulation of prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-AMP-response element binding protein by short-term and long-term morphine treatment: implications for understanding the "switch" to opiate addiction. Neuroscience 2008; 156:788-99. [PMID: 18771713 DOI: 10.1016/j.neuroscience.2008.07.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Drug addiction is a state of altered brain reward and self-regulation mediated by both neurotransmitter and hormonal systems. Although an organism's internal system attempts to maintain homeostasis when challenged by exogenous opiates and other drugs of abuse, it eventually fails, resulting in the transition from drug use to drug abuse. We propose that the attempted maintenance of hormonal homeostasis is achieved, in part, through alterations in levels of processing enzymes that control the ratio of active hormone to pro-hormone. Two pro-hormone convertases, PC1/3 and PC2 are believed to be responsible for the activation of many neurohormones and expression of these enzymes is dependent on the presence of a cyclic-AMP response element (CRE) in their promoters. Therefore, we studied the effects of short-term (24-h) and long-term (7-day) morphine treatment on the expression of hypothalamic PC1/3 and PC2 and levels of phosphorylated cyclic-AMP-response element binding protein (P-CREB). While short-term morphine exposure down-regulated, long-term morphine exposure up-regulated P-CREB, PC1/3 and PC2 protein levels in the rat hypothalamus as determined by Western blot analysis. Quantitative immunofluorescence studies confirmed these regulatory actions of morphine in the paraventricular and dorsomedial nucleus of the hypothalamus. Specific radioimmunoassays demonstrated that the increase in PC1/3 and PC2 levels following long-term morphine led to increased TRH biosynthesis as evidence by increased TRH/5.4 kDa C-terminal proTRH-derived peptide ratios in the median eminence. Promoter activity experiments in rat somatomammotrope GH3 cells containing the mu-opioid receptor demonstrated that the CRE(s) in the promoter of PC1/3 and PC2 is required for morphine-induced regulation of PC1/3 and PC2. Our data suggest that the regulation of the prohormone processing system by morphine may lead to alterations in the levels of multiple bioactive hormones and may be a compensatory mechanism whereby the organism tries to restore its homeostatic hormonal milieu. The down-regulation of PC1/3, PC2 and P-CREB by short-term morphine and up-regulation by long-term morphine treatment may be a signal mediating the switch from drug use to drug abuse.
Collapse
Affiliation(s)
- V Paez Espinosa
- Division of Endocrinology, Department of Medicine, The Charles Drew University of Medicine & Sciences-UCLA School of Medicine, 1731 East 120th Street, Los Angeles, CA 90059, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Király KP, Riba P, D'Addario C, Di Benedetto M, Landuzzi D, Candeletti S, Romualdi P, Furst S. Alterations in prodynorphin gene expression and dynorphin levels in different brain regions after chronic administration of 14-methoxymetopon and oxycodone-6-oxime. Brain Res Bull 2006; 70:233-9. [PMID: 16861108 DOI: 10.1016/j.brainresbull.2006.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/04/2006] [Accepted: 05/09/2006] [Indexed: 11/19/2022]
Abstract
Previous studies showed that opioid drugs-oxycodone-6-oxime and 14-methoxy-5-methyl-dihydromorphinone (14-methoxymetopon)-produced less respiratory depressive effect and slower rate of tolerance and dependence, respectively. It was also reported that morphine decreased the prodynorphin gene expression in the rat hippocampus, striatum and hypothalamus. In this study, we determined the prodynorphin gene expression and dynorphin levels in selected brain regions of opioid tolerant rats. We found that in the striatum morphine decreased, while oxycodone-6-oxime increased and 14-methoxymetopon did not alter the prodynorphin gene expression. In the nucleus accumbens, morphine and oxycodone-6-oxime did not change, while 14-methoxymetopon increased the prodynorphin gene expression. In the hippocampus both oxycodone-6-oxime and 14-methoxymetopon enhanced, whereas morphine did not alter the prodynorphin gene expression. In the rat striatum only oxycodone-6-oxime increased dynorphin levels significantly in accordance with the prodynorphin mRNA changes. In the hippocampus both opioid agonists increased the dynorphin levels significantly similarly to the augmented prodynorphin gene expression. In ventral tegmental area only 14-methoxymetopon increased dynorphin levels significantly. In nucleus accumbens and the temporal-parietal cortex the changes in the prodynorphin gene expression and the dynorphin levels did not correlate. Since the endogenous prodynorphin system may play a modulatory role in the development of opioid tolerance, the elevated supraspinal dynorphin levels appear to be partly responsible for the reduced degree of tolerance induced by the investigated opioids.
Collapse
Affiliation(s)
- K P Király
- Neuropsychopharmacological Group, Hungarian Academy of Sciences, H-1445 Budapest, Nagyvárad tér 4., P.O. Box 370, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cavun S, Göktalay G, Millington WR. Glycyl-glutamine, an endogenous beta-endorphin-derived peptide, inhibits morphine-induced conditioned place preference, tolerance, dependence, and withdrawal. J Pharmacol Exp Ther 2005; 315:949-58. [PMID: 16079299 DOI: 10.1124/jpet.105.091553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycyl-glutamine (Gly-Gln; beta-endorphin(30-31)) is an endogenous dipeptide synthesized from beta-endorphin(1-31). Previous investigations have shown that Gly-Gln inhibits the cardiovascular and respiratory depression caused by morphine and beta-endorphin(1-31), but it does not interfere with opioid analgesia. In this study, we tested whether Gly-Gln administration would influence morphine-induced conditioned place preference, tolerance, dependence, or withdrawal. For place preference experiments, rats were conditioned with morphine sulfate (2.5 mg/kg i.p.) or saline on alternate days for 6 days and tested on day 7. Glycyl-glutamine (1-100 nmol i.c.v.) pretreatment inhibited acquisition of a conditioned place preference to morphine significantly. Glycyl-glutamine (100 nmol i.c.v.) also blocked expression of a pre-established morphine place preference, but it did not interfere with acquisition of a conditioned place preference to palatable food, and it did not produce place preference or aversion when given alone to morphine-naive animals. To induce antinociceptive tolerance, rats were treated with morphine (10 mg/kg i.p.) twice daily for 7 days, and morphine antinociception was evaluated with the tail-flick test. Glycyl-glutamine (100 nmol i.c.v.) pretreatment delayed the onset of morphine tolerance significantly and partially reversed pre-established tolerance. Morphine dependence and withdrawal were assessed by measuring naloxone-precipitated withdrawal symptoms. Glycyl-glutamine inhibited the development of morphine dependence when given to rats twice daily immediately before they received morphine (10 mg/kg i.p.) and suppressed withdrawal symptoms of rats with subcutaneously implanted morphine pellets when administered 5 min before withdrawal was induced with naloxone. Glycyl-glutamine thus attenuates morphine-induced conditioned place preference, tolerance, dependence, and withdrawal without compromising morphine analgesia.
Collapse
Affiliation(s)
- Sinan Cavun
- Department of Basic and Pharmaceutical Sciences, Albany College of Pharmacy, Union University, NY 12208, USA
| | | | | |
Collapse
|
22
|
Chaki S, Okuyama S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides 2005; 26:1952-64. [PMID: 15979204 DOI: 10.1016/j.peptides.2004.11.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/14/2004] [Indexed: 10/25/2022]
Abstract
The melanocortins, which are derived from proopiomelanocortin, have a variety of physiological functions mediated membrane surface receptors. To date, five subtypes have been cloned. With the cloning of melanocortin receptors, studies with genetic models, and development of selective compounds, the physiological roles of the five melanocortin receptors have begun to be understood. The melanocortin-4 receptor (MC4R), which is predominantly expressed in the central nervous system, has in particular become the focus of much attention in recent years because of the critical roles it plays in a wide range of functions, including feeding, sexual behavior, and stress. Recent development of selective antagonists for the MC4R has provided pharmacological evidence that blockade of MC4R could be a useful way of alleviating numerous conditions such as anxiety/depression, pain, and addiction to drugs of abuse.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | | |
Collapse
|
23
|
Murphy KG, Bloom SR. Peripheral influences on central melanocortin neurons. Peptides 2005; 26:1744-52. [PMID: 15970358 DOI: 10.1016/j.peptides.2004.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022]
Abstract
The melanocortins are peptide products of post-translational processing of the pro-opiomelanocortin precursor protein. Melanocortin-expressing neurons are found in the arcuate nucleus of the hypothalamus and the nucleus of the solitary tract in the brain stem. The central melanocortin system is involved in a number of biological functions, including regulation of energy homeostasis. Hypothalamic and brain stem circuits interpret and integrate a number of peripheral inputs to provide a coordinated central response. This review examines the effect of these peripheral signals on central melanocortin signaling.
Collapse
Affiliation(s)
- K G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
24
|
Abstract
Opiate addiction is a central nervous system disorder of unknown mechanism. Neuronal basis of positive reinforcement, which is essential to the action of opioids, relies on activation of dopaminergic neurons resulting in an increased dopamine release in the mesolimbic brain structures. Certain aspects of opioid dependence and withdrawal syndrome are also related to the activity of noradrenergic and serotonergic systems, as well as to both excitatory and inhibitory amino acid and peptidergic systems. The latter pathways have been recently proven to be involved both in the development of dependence and in counteracting the states related to relapse. An important role in neurochemical mechanisms of opioid reward, dependence and vulnerability to addiction has been ascribed to endogenous opioid peptides, particularly those acting via the mu- and kappa-opioid receptors. Opiate abuse leads to adaptive reactions in the nervous system which occur at the cellular and molecular levels. Recent research indicates that intracellular mechanisms of signal transmission-from the receptor, through G proteins, cyclic AMP, MAP kinases to transcription factors--also play an important role in opioid tolerance and dependence. The latter link in this chain of reactions may modify synthesis of target genes and in this manner, it may be responsible for opiate-induced long-lasting neural plasticity.
Collapse
Affiliation(s)
- Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
25
|
Houshyar H, Manalo S, Dallman MF. Time-dependent alterations in mRNA expression of brain neuropeptides regulating energy balance and hypothalamo-pituitary-adrenal activity after withdrawal from intermittent morphine treatment. J Neurosci 2005; 24:9414-24. [PMID: 15496677 PMCID: PMC6730111 DOI: 10.1523/jneurosci.1641-04.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic stressors alter brain function and may leave traces after their relief. We used intermittent morphine treatment to examine the relationships between stress-induced changes in energy balance and hypothalamo-pituitary-adrenal (HPA) activity and the recovery thereafter. We studied the effects of morphine injections on energy balance, hormones and fat stores, brain neuropeptide expression, and the ACTH and corticosterone responses to restraint 12 hr after the final injection and 8 d later during recovery. Weight gain, food intake, and caloric efficiency decreased at morphine onset, and these were maintained throughout the morphine injections. At 12 hr, fat stores, leptin, insulin, and testosterone concentrations were reduced. Subsequently, body weight gain and food intake increased and caloric efficiency was above control during the final days. By the eighth recovery day, fat stores and peripheral hormones were no longer depressed. At 12 hr, an over-response of CRF mRNA to restraint occurred in the hypothalamus, similar to the facilitated ACTH and corticosterone responses. On day 8, the hypothalamic CRF mRNA response to restraint was still facilitated, opposite to inhibited ACTH responses. Hypothalamic CRF mRNA correlated highly with mesenteric fat weight in morphine-treated rats. We conclude that there is a prolonged recovery from chronic stressors involving interrelated changes in energy balance and HPA activity. Nonetheless, 8 d after withdrawal from morphine, rats still display facilitated central stress responses, similar to the HPA symptoms described in posttraumatic stress disorder patients. Repeated partial withdrawal associated with intermittent morphine treatment, compounded by complete withdrawal associated with termination of the treatment, is likely required for these metabolic and HPA derangements.
Collapse
Affiliation(s)
- Hani Houshyar
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, California 94143-0444, USA.
| | | | | |
Collapse
|
26
|
Thiele TE, Navarro M, Sparta DR, Fee JR, Knapp DJ, Cubero I. Alcoholism and obesity: overlapping neuropeptide pathways? Neuropeptides 2003; 37:321-37. [PMID: 14698675 DOI: 10.1016/j.npep.2003.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ethanol is a caloric compound, and ethanol drinking and food intake are both appetitive and consummatory behaviors. Furthermore, both ethanol and food have rewarding properties. It is therefore possible that overlapping central pathways are involved with uncontrolled eating and excessive ethanol consumption. A growing list of peptides has been shown to regulate food intake and/or energy homeostasis. Peptides such as the melanocortins, corticotropin releasing factor, and cholecystokinin promote reductions of food intake while others such as galanin and neuropeptide Y stimulate feeding. The present review highlights research aimed at determining if ingestive peptides also regulate voluntary ethanol intake, with an emphasis on the melanocortins and neuropeptide Y. It is suggested that research directed at ingestive peptides may expand our understanding of the neurobiological mechanisms that drive ethanol self-administration, and may reveal new therapeutic candidates for treating alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB# 3270, Chapel Hill, NC 27599-3270, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Day HEW, Vittoz NM, Oates MM, Badiani A, Watson SJ, Robinson TE, Akil H. A 6-hydroxydopamine lesion of the mesostriatal dopamine system decreases the expression of corticotropin releasing hormone and neurotensin mRNAs in the amygdala and bed nucleus of the stria terminalis. Brain Res 2002; 945:151-9. [PMID: 12126877 DOI: 10.1016/s0006-8993(02)02747-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mesostriatal dopamine (DA) system is known to play a vital role in extrapyramidal motor responses, and animals with a unilateral 6-hydroxydopamine (6-OHDA) lesion of this system have proved useful in studying the behavioral and neurobiological effects of DA depletion. Less is known about the role of this system in modulating emotional responses, although a number of lines of evidence suggest that dopamine influences emotional behavior. During the course of a study involving rats that had a unilateral 6-OHDA lesion, we discovered a hemispheric asymmetry in the levels of corticotropin releasing hormone (CRH) mRNA in the central nucleus of the amygdala (CEA). The present study was performed in order to determine (1) if the lesion resulted in a decrease in CRH mRNA, and/or if there was upregulation on the intact side, (2) if a similar imbalance in CRH mRNA was observed in other brain regions and (3) if levels of other neuropeptide mRNAs were affected by the lesion. Adult male Sprague-Dawley rats were left unoperated or were pretreated with desipramine and then injected unilaterally with 6-OHDA into the medial forebrain bundle to lesion the ascending mesostriatal DA neurons. Animals were killed 15-31 days following surgery and brain sections processed for CRH, neurotensin and enkephalin mRNAs by in situ hybridization. Levels of CRH and neurotensin mRNAs were decreased on the lesioned side in the CEA and oval nucleus of the BST (BSTov) relative to the intact side and to unoperated controls. Levels of enkephalin mRNA in these regions were not affected by the lesion. These effects appeared specific, because the lesion did not alter CRH mRNA expression in the ventral BST, paraventricular nucleus of the hypothalamus or cortex or neurotensin mRNA expression in the CA1 region of the hippocampus. In contrast, and consistent with previous reports, levels of neurotensin and enkephalin mRNAs were upregulated on the lesioned side of the striatum. This study provides evidence that the mesostriatal DA system regulates CRH and neurotensin mRNA in the BSTov and CEA, suggesting that dopamine may be an important modulator of CRH and neurotensin function within these nuclei. Although the precise mechanisms are not clear, and the involvement of noradrenergic systems cannot be precluded, data are consistent with the idea that dopamine, released in response to a stressful experience for example, interacts with CRH and neurotensin in the extended amygdala to affect emotional responsiveness.
Collapse
Affiliation(s)
- Heidi E W Day
- Psychology Department, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Na C, Lee YS. Alcohol urge and plasma beta-endorphin change after alcohol challenge with naltrexone pretreatment in social drinkers. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:663-70. [PMID: 12188097 DOI: 10.1016/s0278-5846(01)00315-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The authors have investigated the effect of naltrexone (NTX) on lowering the urge of alcohol drinking and the action mechanism of NTX. Fifteen healthy male social drinkers voluntarily participated. The experimental method was a double-blind, placebo-controlled cross-over design. To eliminate NTX effect, 1 week washout cross-over interval was taken. Subjects ingested NTX, 50 mg/day, or placebo for 1 week. Then, the alcohol (0.5 ml/kg) challenge test was done in the evening. Blood samples were taken immediately before drinking, at 20 min and at 60 min after alcohol drinking. Plasma beta-endorphin, plasma ACTH and serum cortisol levels were checked. Subjects completed self-report questionnaires such as the visual analog scales of drink urge and the alcohol sensation scales at regular intervals. In the case of NTX pretreatment, the subjects reported significantly (P=.013) less urge to drink alcohol on the self-reporting urge scales, especially at postdrinking 20 min and 60 min than placebo pretreatment. After alcohol challenge, the subjects reported significantly more dizziness (P=.015) in the case of NTX pretreatment, and reported less mood elevation trend, though not significant (P=.052). Basal plasma beta-endorphin levels were not different, but in the case of NTX pretreatment, the increasing degree of plasma beta-endorphin during 20 min after alcohol challenge was significantly (P=.039) higher than with placebo pretreatment. This results show that the NTX reduced the urge to drink alcohol with the mechanism of partially blocking the opioid positive reward system and partially mimicking the alcohol effect.
Collapse
Affiliation(s)
- Chul Na
- Department of Neuropsychiatry, College of Medicine, Chung-Ang University Medical Center, Seoul, South Korea.
| | | |
Collapse
|
29
|
Carr JA, Lovering AT. Mu and delta opioid receptor regulation of pro-opiomelanocortin peptide secretion from the rat neurointermediate pituitary in vitro. Neuropeptides 2000; 34:69-75. [PMID: 10688972 DOI: 10.1054/npep.1999.0793] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the ability of selective opioid agonists and antagonists to influence pro-opiomelanocortin peptide secretion from the rat neurointermediate lobe in vitro. The mu-opioid agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin) significantly stimulated beta-endorphin and alpha-melanocyte-stimulating hormone release relative to controls early (30 min) in the incubation period. Similar effects on beta-endorphin secretion were observed with the selective mu-opioid agonist dermorphin. The delta-opioid receptor agonist DPDPE ([D-Pen(2,5)]enkephalin) weakly inhibited beta-endorphin secretion relative to controls while the kappa-opioid receptor agonist U50488 had no effect. The mu-opioid selective antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)) inhibited basal beta-endorphin secretion while kappa- and delta-opioid receptor antagonists had no effect. Our data support a role for local mu-opioid receptor control of intermediate lobe pro-opiomelanocortin peptide secretion. Peptide secretion from melanotropes appears to be tonically stimulated by activation of mu-opioid receptors in the absence of intact neuronal innervation to the intermediate lobe.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- In Vitro Techniques
- Male
- Oligopeptides/pharmacology
- Opioid Peptides
- Pituitary Gland/drug effects
- Pituitary Gland/physiology
- Pro-Opiomelanocortin/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- alpha-MSH/metabolism
- beta-Endorphin/metabolism
Collapse
Affiliation(s)
- J A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
30
|
Bouret S, Prevot V, Croix D, Jégou S, Vaudry H, Stefano GB, Beauvillain JC, Mitchell V. Mu-opioid receptor mRNA expression in proopiomelanocortin neurons of the rat arcuate nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:155-8. [PMID: 10381554 DOI: 10.1016/s0169-328x(99)00132-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been previously demonstrated that the activity of proopiomelanocortin (POMC)-containing neurons in the rat arcuate nucleus is regulated by opiates, but the expression of opioid receptors in POMC neurons has never been reported. In the present study, we have applied a double-labeling in situ hybridization technique to investigate the occurrence of mu-opioid receptor mRNA on POMC neurons. We have found that 20+/-3% of arcuate POMC neurons express mu-opioid receptor mRNA and that the proportion of POMC neurons expressing mu-opioid receptor is higher in the caudal than in the rostral portion of the arcuate nucleus. Our data suggest that POMC neurons might be both auto-regulated by beta-endorphin, and regulated by enkephalins.
Collapse
Affiliation(s)
- S Bouret
- INSERM U 422, IFR 22, Neuroendocrinologie et Physiopathologie Neuronale, place de Verdun, Lille Cedex 59045, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fang Y, Kelly MJ, Rønnekleiv OK. Proopiomelanocortin (POMC) mRNA expression: distribution and region-specific down-regulation by chronic morphine in female guinea pig hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:1-8. [PMID: 9645954 DOI: 10.1016/s0169-328x(97)00348-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is compelling evidence that endogenous opioid peptides are regulated by exogenous opiates. Our previous studies have shown that the mu-opioid receptor protein and mRNA are down-regulated in the mediobasal hypothalamus of the female guinea pig following chronic morphine treatment. In addition, electrophysiological studies have shown that hypothalamic beta-endorphin (beta-EP) neurons express mu-opioid receptors that are uncoupled and down-regulated following chronic morphine treatment. Currently, we tested the hypothesis that chronic morphine, which produces down-regulation of mu-opioid receptors, causes a down-regulation of pro-opiomelanocortin (POMC, the precursor of beta-EP) mRNA expression in female guinea pig hypothalamus. Female guinea pigs were ovariectomized and implanted subcutaneously (s.c.) with 4 x 75 mg pellets for 2 days plus six more pellets of either morphine (n = 6) or placebo (n = 6) for another 5 days. Animals were sacrificed between 1000 and 1100 h on day 7. The expression of POMC mRNA were investigated using in situ hybridization histochemistry with a guinea pig specific 35S-labeled cRNA probe in hypothalamic tissue sections. POMC mRNA was localized to the arcuate nucleus (Arc) and median eminence (ME) of the medial basal hypothalamus. The distribution pattern was the same in both morphine and placebo control animals. However, the density of silver grains was less in morphine treated animals versus placebo control animals. Overall, the level of POMC mRNA was decreased by 22% in the Arc of morphine-treated guinea pigs as compared with the placebo controls (p < 0.05). This decrease in POMC mRNA expression was even greater in the caudal Arc (28%, p < 0.01) in morphine-treated animals. These results suggested that the biosynthetic activity of POMC neurons is down-regulated with chronic exposure to morphine.
Collapse
Affiliation(s)
- Y Fang
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
32
|
Tejwani GA, Rattan AK. Met-enkephalin alteration in the rat during chronic injection of morphine and/or midazolam. Brain Res 1997; 775:119-26. [PMID: 9439835 DOI: 10.1016/s0006-8993(97)00875-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently reported that the short-acting anesthetic and analgesic drug midazolam can produce analgesia and decrease morphine tolerance and dependence in the rat by interacting with the opioid system. This study was designed to investigate the effect of midazolam, morphine, and both together on met-enkephalin levels in the rat. Male Sprague-Dawley rats were divided into four groups: (1) saline-saline; (2) saline-morphine; (3) midazolam-saline, and (4) midazolam-morphine groups. First, a saline or midazolam injection was given intraperitoneally and after 30 min a second injection of saline or morphine was given subcutaneously once daily for 11 days. Animals were sacrificed on the 11th day 60 min after the last injection to measure met-enkephalin by radioimmunoassay. Morphine tolerant animals showed a significant increase in met-enkephalin levels in the cortex (137%) and midbrain (89%), and a significant decrease in met-enkephalin levels in the pituitary (74%), cerebellum (34%) and medulla (72%). Midazolam treated animals showed a significant decrease in met-enkephalin levels in the pituitary (63%), cortex (39%), medulla (58%), kidneys (36%), heart (36%) and adrenals (43%), and a significant increase in met-enkephalin levels in the striatum (54%) and pons (51%). When morphine and midazolam were injected together, midazolam antagonized the increase in met-enkephalin levels in cortex and midbrain region and the decrease in met-enkephalin level in the medulla region observed in morphine tolerant animals. These results indicate that morphine tolerance and dependence is associated with changes in the concentration of met-enkephalin in the brain. Midazolam may inhibit morphine tolerance and dependence by reversing some of the changes induced in met-enkephalin levels in brain by morphine in morphine tolerant and dependent animals.
Collapse
Affiliation(s)
- G A Tejwani
- Department of Pharmacology, Ohio State University, College of Medicine and Public Health, Columbus 43210-1239, USA.
| | | |
Collapse
|
33
|
Turchan J, Lasoń W, Budziszewska B, Przewłocka B. Effects of single and repeated morphine administration on the prodynorphin, proenkephalin and dopamine D2 receptor gene expression in the mouse brain. Neuropeptides 1997; 31:24-8. [PMID: 9574833 DOI: 10.1016/s0143-4179(97)90015-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effects of single (20 mg/kg i.p.) and repeated morphine administration (increasing doses: from 10 to 50 mg/kg i.p. twice daily for 7 days) on the proenkephalin (PENK), prodynorphin (PDYN) and dopamine D2 receptor (D2) mRNA levels in the nucleus accumbens and striatum of the mouse were investigated. As shown by an in situ hybridization, a single dose of morphine had no significant effect on the PDYN, PENK and D2 mRNA levels in the nucleus accumbens and striatum. Repeated treatment with morphine increased the PDYN mRNA level in both those structures after 2 and 72 h. In contrast to PDYN, the PENK mRNA level was reduced in the nucleus accumbens and remained unchanged in the striatum following repeated morphine administration. Repeated morphine had no effect on the D2 mRNA level in the nucleus accumbens and striatum after 2 h, and decreased it in the nucleus accumbens after 72 h only. The above results indicate that repeated morphine leads to long-lasting upregulation of the PDYN gene expression in the mouse nucleus accumbens and striatum; on the other hand, the PENK and D2 mRNA gene expressions are either inhibited or remain unchanged, significant changes being observed in the nucleus accumbens only.
Collapse
Affiliation(s)
- J Turchan
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Kraków, Poland
| | | | | | | |
Collapse
|
34
|
Abstract
Adrenocorticotropic hormone (ACTH) and alpha-melanocyte stimulating hormone (alpha-MSH) are centrally acting melanocortin peptides with numerous reported functions, including induction of excessive grooming and antipyresis, among others. Also reported is a role for melanocortins in aspects of opiate action. Although early work examined the effects of ACTH and MSH on opiate-induced behaviors, further progress has been limited. Recently, however, advances in the identification and characterization of melanocortin receptor (MC-R) subtypes have provided novel tools with which to study interactions between melanocortins and addiction. The present review discusses the effects of ACTH and MSH on opiate-induced behaviors and relates these findings to more recent reports on the regulation of melanocortin systems by exogenous opiates. Emerging from these data is the possibility that melanocortin receptor activation, specifically at the MC4-R subtype, may act to antagonize certain properties of exogenous opiates, including perhaps addiction.
Collapse
Affiliation(s)
- J D Alvaro
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | |
Collapse
|
35
|
Abstract
Previous studies indicate that an acute injection of morphine does not effect the level of opioid peptides and their mRNA in the brain. However, due to the presence of a large pool of mRNA and possible opposing changes in turnover rate it is often difficult to visualize the transitory and relatively small alterations in gene transcription by examining mRNA level. Therefore, in situ hybridization with probes directed against intronic sequences to measure the primary transcript of proenkephalin (PPE) mRNA (heteronucleic RNA, hnRNA) in the rat brain following morphine administration was used in this study. The distribution of the hybridization signal of probes against both the A and B intron of the PPE gene were identical and coincide with the distribution PPE mRNA. Thus, to increase the sensitivity of this assay both probes were concurrently hybridized. Female and male Sprague-Dawley rats were gonadectomized and injected with morphine (10 mg/kg, SC). We detected no changes in PPE mRNA levels in the striatum, olfactory tubercle (OT) and n. accumbens core (NAC) at any time following morphine administration. However, from 0.5 h until 24 h following morphine injection, the levels of PPE hnRNA in NAC and OT but not in the dorsal striatum were significantly decreased. The level of c-fos mRNA was increased only the dorsal striatum following morphine injections. These data show that morphine administration can acutely change opioid peptide gene transcription. The observed decrease of PPE hnRNA levels for 24 h following a single morphine injection may indicate its importance for the development of acute and chronic dependence. However, the significance of these alterations in PPE gene transcription in term of the acute effect of morphine is not clear, because the steady-state level of mRNA was not changed.
Collapse
Affiliation(s)
- R Y Yukhananov
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, IL 60153, USA
| | | |
Collapse
|
36
|
Guo HF, Tian J, Wang X, Fang Y, Hou Y, Han J. Brain substrates activated by electroacupuncture of different frequencies (I): Comparative study on the expression of oncogene c-fos and genes coding for three opioid peptides. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:157-66. [PMID: 9037529 DOI: 10.1016/s0169-328x(96)00170-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low and high frequency electroacupuncture (EA)-produced analgesia have been shown to be mediated by different brain substrates and different opioid peptides. In this study, Fos-like immunoreactivity (FLI) and in situ hybridization of the three opioid mRNAs were used to examine the effect of low (2 Hz) and high (100 Hz) frequency EA on neuronal activities, and the expression of opioid genes. 2 Hz and 100 Hz EA induced a markedly different spatial patterns of Fos expression in the rat brain, suggesting there are distinct neuronal pathways underlying EA of different frequencies. Likewise, 2 Hz and 100 Hz EA exert differential effects on opioid gene expression: while 2 Hz EA induced a more extensive and intensive preproenkephalin (PPE) mRNA expression than 100 Hz EA, it had no effect on preprodynorphin (PPD) mRNA expression which was significantly increased by 100 Hz EA stimulation. In contrast, EA of both frequencies did not affect POMC mRNA expression.
Collapse
Affiliation(s)
- H F Guo
- Neuroscience Research Center, Beijing Medical University, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Zhou Y, Spangler R, Maggos CE, LaForge KS, Ho A, Kreek MJ. Steady-state methadone in rats does not change mRNA levels of corticotropin-releasing factor, its pituitary receptor or proopiomelanocortin. Eur J Pharmacol 1996; 315:31-5. [PMID: 8960861 DOI: 10.1016/s0014-2999(96)00672-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Male Fischer rats received either methadone (a long-acting opioid agonist, 10 mg/kg/day) or saline (24 microliters/day) subcutaneously by osmotic minipumps for 7 days. Chronic steady-state methadone administration did not alter (a) corticotropin-releasing factor (CRF) mRNA in the hypothalamus, (b) proopiomelanocortin (POMC) and CRF type 1 receptor (CRF-R1) mRNAs in the anterior lobe and neurointermediate/posterior lobe of the pituitary, or (c) circulating levels of corticosterone. No change was found in levels of either POMC mRNA in the hypothalamus and amygdala, or CRF mRNA in the frontal cortex, olfactory bulb and amygdala. These results demonstrate that neither the activity of the hypothalamic-pituitary-adrenal axis, nor the beta-endorphin and CRF systems in the brain, are altered by steady-state occupancy of opioid receptors with the long-acting opioid agonist methadone.
Collapse
Affiliation(s)
- Y Zhou
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wardlaw SL, Kim J, Sobieszczyk S. Effect of morphine on proopiomelanocortin gene expression and peptide levels in the hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:140-7. [PMID: 8883945 DOI: 10.1016/0169-328x(96)00084-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Opiates have been reported to suppress POMC in the medial basal hypothalamus (MBH) but studies have been complicated by the fact that acutely, in the rat, opiates stimulate corticosterone and inhibit gonadal steroid release, which could both affect POMC in brain. We have therefore examined POMC gene expression and peptide levels in the MBH of castrated rats after 10 days of treatment with subcutaneous morphine or placebo pellets and after pellet removal. POMC mRNA was measured by solution hybridization assay and beta-endorphin (beta-EP) and alpha-MSH were measured by RIA. In castrated male rats, the mean POMC mRNA concentration in the MBH was 1.67 +/- 0.11 pg/microgram RNA in the control animals and decreased to 1.17 +/- 0.11 pg/microgram RNA in the morphine-treated animals (P < 0.01). Similarly in castrated, estradiol replaced female rats, the mean POMC mRNA level in the MBH was 1.36 +/- 0.19 pg/microgram RNA and decreased to 0.82 +/- 0.08 pg/microgram RNA after morphine treatment (P < 0.05). beta-EP levels were not significantly different in either study. When castrated male rats were similarly morphine pelleted and killed either on day 10 or 2 days later after pellet removal, the mean POMC mRNA level again fell from 1.83 +/- 0.21 in the controls to 1.28 +/- 0.20 pg/microgram RNA after 10 days of morphine; 2 days after pellet removal levels remained suppressed at 0.80 +/- 0.08 pg/microgram RNA (P < 0.01). In this study the concentrations of beta-EP and alpha-MSH were both noted to decline in the MBH after morphine treatment (P < 0.05). When the forms of beta-EP in the MBH were characterized by HPLC, a decrease in the concentration of beta-EP was again seen after morphine but no significant differences in the pattern of beta-EP processing or in the relative amounts of beta-EP1-31 compared to beta-EP1-27 and beta-EP1-26 were noted in morphine-treated animals. There was also no significant effect of 10(-6)-10(-4) M morphine on basal or KCl-stimulated release of beta-EP or gamma 3-MSH release from the perifused rat hypothalamus in vitro. We conclude that morphine suppresses POMC gene expression in the hypothalamus of chronically treated male and female rats. Persistent changes were also noted during morphine withdrawal. In some cases this was accompanied by a fall in beta-EP peptide content. These effects were seen in castrated animals with and without sex steroid replacement and are thus independent of the effects of morphine on the pituitary-gonadal axis. These results show that opiate drugs modify endogenous opioid systems in the brain and provide further support for the hypothesis that such changes may contribute to mechanisms of opiate dependence and withdrawal.
Collapse
Affiliation(s)
- S L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
39
|
Przewłocka B, Turchan J, Lasoń W, Przewłocki R. The effect of single and repeated morphine administration on the prodynorphin system activity in the nucleus accumbens and striatum of the rat. Neuroscience 1996; 70:749-54. [PMID: 9045086 DOI: 10.1016/s0306-4522(96)83012-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pharmacological data indicate that prodynorphin peptides and exogenous kappa agonists affect opioid tolerance and dependence. In order to elucidate the activity of the endogenous prodynorphin system during opiate tolerance and dependence, we investigated the effect of single and repeated morphine administration on the alpha-neoendorphin tissue level, its in vitro release, and the prodynorphin messenger RNA level in the nucleus accumbens and striatum of the rat. Acute and repeated morphine administration (14 days, increasing doses, 20-100 mg/kg, i.p.) increased the level of alpha-neoendorphin in the nucleus accumbens after 3 h; a similar effect was observed at 24 and 48 h after the last chronic morphine injection. On the other hand, the basal and stimulated (K+, 57 mM) release of alpha-neoendorphin from nucleus accumbens slices were significantly elevated only at 24 h after the last morphine injection. The prodynorphin messenger RNA hybridization signal in the nucleus accumbens was enhanced at 3 h after acute morphine injection, whereas repeated morphine administration decreased the messenger RNA level at that time point. Upon late chronic morphine withdrawal (at 24 and 48 h), the prodynorphin messenger RNA level in that tissue was significantly elevated. In the striatum, single morphine administration had no effect on the alpha-neoendorphin tissue level, release of the peptide, and prodynorphin messenger RNA level. On the other hand, chronic injection of morphine elevated all those parameters. The tissue level of alpha-neoendorphin was elevated at 3 h, and was back to normal at 24 and 48 h after the last drug injection. Both the basal and stimulated alpha-neoendorphin release from striatal slices was significantly increased at all the time points studied. Repeated morphine administration elevated the striatal prodynorphin messenger RNA level at 24 and 48 h after the drug withdrawal. Addition of morphine to the incubation medium reduced the basal release of alpha-neoendorphin in both the nucleus accumbens and striatal slices in naive animals, whereas the stimulated release was attenuated in the latter tissue only. The present study indicates that withdrawal of chronic morphine leads to enhancement of the prodynorphin neurons activity in the nucleus accumbens and striatum of the rat. It is suggested that these effects may participate in the mechanism of aversive reactions during withdrawal.
Collapse
Affiliation(s)
- B Przewłocka
- Neuropeptide Research Department, Polish Academy of Sciences, Kraków
| | | | | | | |
Collapse
|
40
|
Tolerance and Sensitization to Opiates: Relationship to Withdrawal. NEUROSCIENCE INTELLIGENCE UNIT 1996. [DOI: 10.1007/978-3-662-22218-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Devillers JP, Boisserie F, Laulin JP, Larcher A, Simonnet G. Simultaneous activation of spinal antiopioid system (neuropeptide FF) and pain facilitatory circuitry by stimulation of opioid receptors in rats. Brain Res 1995; 700:173-81. [PMID: 8624708 DOI: 10.1016/0006-8993(95)00948-p] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropeptide FF (NPFF) is a mammalian FMRFamide-like octapeptide with antiopioid properties that inhibits morphine-induced analgesia but also produces hyperalgesia. In the present study, a series of three experiments was carried out to investigate the interactions between opioid receptor stimulation and antiopioid systems. First, by using in vitro superfusion system with rat spinal cord slices, we showed that morphine stimulated NPFF release in a dose-dependent manner. The stimulating effect which was observed with morphine concentrations as low as 100 fM reached a maximum at 0.1 nM, then decreased and was ineffective at 10 microM. The morphine-induced release of NPFF was abolished by naloxone (1 microM) but unaltered by tetrodotoxin. Second, by an in vivo approach, we showed that a single heroin administration (2.5 mg/kg, s.c.) elicited in 30 min a drastic drop (38%) in spinal NPFF content. In a third experiment, we evaluated the capacity of naloxone in revealing an antiopioid component associated with opioid receptor stimulation. The administration of naloxone (1 mg/kg, s.c..) 25 min following that of heroin (2.5 mg/kg, s.c.) not only abolished the heroin-induced increase of tail-flick latency, but also lowered it under the basal value by 30%. These results indicate that opioid receptor stimulation activates both pain inhibitory and pain facilitatory systems in which NPFF may play a significant role and that opiate-induced analgesia is always partly masked.
Collapse
Affiliation(s)
- J P Devillers
- INSERM U. 259, Université de Bordeaux II, Laboratoire de Psychobiologie des comportements adaptatifs, France
| | | | | | | | | |
Collapse
|
42
|
Trujillo KA, Bronstein DM, Sanchez IO, Akil H. Effects of chronic opiate and opioid antagonist treatment on striatal opioid peptides. Brain Res 1995; 698:69-78. [PMID: 8581505 DOI: 10.1016/0006-8993(95)00809-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has long been speculated that feedback inhibition of endogenous opioid neurons may have a role in opiate tolerance and dependence. However, in studies in which opiates or opioid antagonists have been administered to animals, mixed results have been obtained on the ability of these drugs to regulate endogenous opioids. The present studies were undertaken to determine the effects of chronic administration of opiate drugs on opioid peptides. These studies focused on the regulation of prodynorphin (Prodyn) and proenkephalin (Proenk) peptides in striatal tissue. Morphine, whether administered by chronic infusion or repeated injection, was found to increase the concentration of Prodyn peptides in striatum. Increases were statistically significant in the sensorimotor dorsal striatum (caudate-putamen) but not in the limbic-motor ventral striatum (nucleus accumbens-olfactory tubercle). No changes in Prodyn peptides were found following chronic administration of the opioid antagonist naltrexone. No changes in the Proenk peptide MERGL were found following chronic treatment with morphine or naltrexone. These studies are consistent with the suggestion that Prodyn neurons may have a role in the consequences of long-term opiate administration.
Collapse
Affiliation(s)
- K A Trujillo
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720, USA.
| | | | | | | |
Collapse
|
43
|
Zagon IS, McLaughlin PJ. Gene-peptide relationships in the developing rat brain: the response of preproenkephalin mRNA and [Met5]-enkephalin to acute opioid antagonist (naltrexone) exposure. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:111-20. [PMID: 8774952 DOI: 10.1016/0169-328x(95)00119-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[Met5]-enkephalin, encoded by the preproenkephalin (PPE) gene, serves as a growth factor during brain development in addition to its role as a neurotransmitter. This study examined the relationship of gene and peptide expression in the developing (postnatal day 6) rat brain by disrupting peptide-receptor interaction with either a brief (4-6 h) or continuous opioid receptor blockade using a single injection of 1 or 50 mg/kg naltrexone (NTX), respectively; such perturbations result in growth inhibition or acceleration, respectively. In the caudate putamen, an area that has completed neurogenesis by postnatal day 6 and has an abundance of PPE mRNA and enkephalins in adulthood, NTX did not influence PPE mRNA in either NTX group, or the enkephalin levels in the 1 mg/kg NTX group. [Met5]-enkephalin values in the neostriatum, however, were 67-183% greater than controls in rats given 50 mg/kg NTX, beginning 5 min after drug injection. In the cerebellum, PPE mRNA expression was depressed from 5 min to 4 h in the 1 mg/kg NTX group, and was normal thereafter; mRNA levels in the 50 mg/kg NTX group were markedly subnormal for 24 h. Enkephalin levels were significantly depressed within 5 min of drug injection and remained so for 4 h in the 1 mg/kg NTX group, but were elevated to approximately 135% of control values at 8, 16, and 24 h. Enkephalin levels were not changed in the cerebellum of the 50 mg/kg NTX group, or in the plasma of either NTX group. These data suggest that a single exposure to NTX can affect transcriptional and translational mechanisms related to PPE mRNA and opioid peptide expression in a rapid and sustained manner, and that this treatment elicits a specific pattern of alterations dependent upon the brain region sampled, drug dosage, and/or the duration of opioid receptor blockade. Additionally, our results indicate that the decreased DNA synthesis in external germinal cells occurring after opioid receptor blockade as recorded earlier may be related to an increase in the potent opioid growth factor, [Met5]-enkephalin.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, Pennsylvania State University, Hershey 17033, USA
| | | |
Collapse
|
44
|
Abstract
The numerous endogenous opioid peptides (beta-endorphin, enkephalins, dynorphins ... ) and the exogenous opioids (such as morphine) exert their effects through the activation of receptors belonging to four main types, mu, delta, kappa and epsilon. Opioidergic neurones and opioid receptors are largely distributed centrally and peripherally. It is thus not surprising that opioids have numerous pharmacological effects and that endogenous opioids are thought to be involved in the physiological control of various functions, among which nociception is particularly emphasized. Some opioid targets may be components of homeostatic systems tending to reduce the effects of opioids. "Anti-opioid" properties have been attributed to various peptides, especially cholecystokinin (CCK), neuropeptide FF (NPFF) and melanocyte inhibiting factor (MIF)-related peptides. In addition, a particular place should be attributed, paradoxically, to opioid peptides themselves among the anti-opioid peptides. These peptides can oppose some of the acute effects of opioids, and a hyperactivation of anti-opioid peptidergic neurones due to the chronic administration of opioids may be involved in the development of opioid tolerance and/or dependence. In fact, CCK, NPFF and the MIF family of peptides have complex properties and can act as opioid-like as well as anti-opioid peptides. Thus, "opioid modulating peptides" would be a better term to designate these peptides, which probably participate, together with the opioid systems, in multiple feed-back loops for the maintenance of homeostasis. "Opioid modulating peptides" have generally been shown to act through the activation of their own receptors. For example, CCK appears to exert its anti-opioid actions mainly through the activation of CCK-B receptors, whereas its opioid-like effects seem to result from the stimulation of CCK-A receptors. However, the partial agonistic properties at opioid receptors of some MIF-related peptides very likely contribute to their ability to modulate the effects of opioids. CCK- and NPFF-related drugs have potential therapeutic interest as adjuncts to opioids for alleviating pain and/or for the treatment of opioid abuse.
Collapse
|
45
|
Shen KF, Crain SM. Specific N- or C-terminus modified dynorphin and beta-endorphin peptides can selectively block excitatory opioid receptor functions in sensory neurons and unmask potent inhibitory effects of opioid agonists. Brain Res 1995; 673:30-8. [PMID: 7757476 DOI: 10.1016/0006-8993(94)01380-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently showed that the opioid alkaloids, etorphine, dihydroetorphine and diprenorphine, have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse sensory dorsal root ganglion (DRG) neurons. Pretreatment of naive nociceptive types of neurons with pM concentrations of these antagonists blocks excitatory prolongation of the calcium-dependent component of the action potential duration (APD) elicited by pM-nM morphine or other bimodally acting mu, delta and kappa opioid agonists and unmasks inhibitory APD shortening which usually requires much higher (ca. microM) concentrations. The present study demonstrates that pM concentrations of [des-Tyr1] fragments of dynorphin and beta-endorphin, as well as beta-endorphin-(1-27), can also selectively block excitatory opioid receptor functions in DRG neurons and unmask potent inhibitory effects of low concentrations of bimodally acting mu, delta and kappa opioid peptides and alkaloid agonists. These N- or C-terminus modified dynorphin or beta-endorphin peptides can be readily formed in neurons by specific peptidase activities. Since sustained activation of excitatory opioid receptor functions is essential for the development of tolerance/dependence in chronic morphine-treated DRG neurons in culture, the present in vitro study may help to account for the unexplained efficacy of [des-Tyr1] dynorphin fragments, as well as the endogenous opioids dynorphin A and beta-endorphin, in suppressing development and expression of naloxone-precipitated withdrawal and morphine tolerance in vivo.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Cells, Cultured
- Dose-Response Relationship, Drug
- Dynorphins/chemistry
- Dynorphins/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Mice
- Morphine/pharmacology
- Neurons/drug effects
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/drug effects
- beta-Endorphin/chemistry
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- K F Shen
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
46
|
Stinus L, Allard M, Gold L, Simonnet G. Changes in CNS neuropeptide FF-like material, pain sensitivity, and opiate dependence following chronic morphine treatment. Peptides 1995; 16:1235-41. [PMID: 8545244 DOI: 10.1016/0196-9781(95)02019-s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tolerance and dependence to opiates may be an adaptive process that limits excessive effects of morphine on the CNS. Because no consistent opiate receptor reduction in chronically treated rats seems to underlie the hyposensitivity to morphine, an alternative hypothesis has postulated a role of "antiopioid" peptides. It is possible to speculate that the administration of morphine stimulates antiopioid systems such as neuropeptide FF (NPFF), as part of an homeostatic mechanism contributing to the development of tolerance. To test this hypothesis, pain sensitivity, opiate dependence, and CNS NPFF-IR levels were estimated at different times after implantation of morphine pellets (2 x 75 mg; NIDA). Three hours after morphine pellet treatment the analgesic effect was maximum and it decreased rapidly during the following 12 h. Naloxone-precipitated withdrawal syndrome was detected as soon as 3 h after morphine pellet implantation and was maximal after 24 h. NPFF-IR levels were measured in the spinal cord, brain stem, and hypothalamus. A significant decrease of NPFF-IR was observed 1 h after morphine pellet implantation (-25% to -45% depending on the structures) followed by a drastic increase of NPFF-IR levels (+60 to +140%) between 3 and 6 h. NPFF-IR levels rapidly returned to baseline after 24-36 h. It is suggested that the activity of these NPFF-IR neurones may increase gradually as a consequence of the continuous stimulation of opiate receptors and be part of an adaptive process that is able to counteract morphine effects and to induce dependence and tolerance to the analgesic effects of opiates.
Collapse
Affiliation(s)
- L Stinus
- Université de Bordeaux II, Laboratoire de Neuropsychobiologie des Désadaptations, INSERM U-378 and U-259, France
| | | | | | | |
Collapse
|
47
|
Jaffe SB, Sobieszczyk S, Wardlaw SL. Effect of opioid antagonism on beta-endorphin processing and proopiomelanocortin-peptide release in the hypothalamus. Brain Res 1994; 648:24-31. [PMID: 7922523 DOI: 10.1016/0006-8993(94)91900-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that chronic opioid receptor blockade has significant effects on POMC gene expression and peptide levels in the hypothalamus. We have now examined the effects of the opioid antagonist naltrexone on beta-EP processing in the hypothalamus and on the release of 2 POMC-derived peptides, beta-EP and gamma 3-MSH, from the perifused hypothalamus in vitro. The beta-EP immunoactivity in the medial basal hypothalamus (MBH) of 7 rats infused for 1 week with naltrexone by osmotic minipump, was individually analyzed by HPLC and compared to 7 control rats. The mean ratio of beta-EP1-31 compared to beta-EP1-27 plus beta-EP1-26 was 2.34 +/- 0.41 in the naltrexone treated rats, significantly higher than the ratio of 1.26 +/- 0.09 in the control rats (P < 0.02). Thus in the setting of chronic opioid antagonism although beta-EP content decreases, there is relatively more beta-EP1-31, the biologically active opioid form of the peptide, compared to the C-terminally cleaved forms of beta-EP which have reduced biological activity. To study the effects of naltrexone on beta-EP and gamma 3-MSH release, hypothalami were perifused in vitro with 10(-6) M naltrexone. Basal release of gamma 3-MSH was significantly higher from the naltrexone treated brains compared to the controls (221 +/- 20 pg/60 min vs. 161 +/- 6.7 pg/60 min) (P < 0.01); KCl stimulated gamma 3-MSH was also significantly higher in the naltrexone group (951 +/- 94 vs. 543 +/- 85 pg/60 min) (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S B Jaffe
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | |
Collapse
|
48
|
Devillers JP, Mazarguil H, Allard M, Dickenson AH, Zajac JM, Simonnet G. Characterization of a potent agonist for NPFF receptors: binding study on rat spinal cord membranes. Neuropharmacology 1994; 33:661-9. [PMID: 7936102 DOI: 10.1016/0028-3908(94)90172-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Specific receptors for the octapeptide FLFQPQRFamide (NPFF), a mammalian FMRFamide-like neuropeptide with anti-opiate properties have been identified in rat central nervous system. However, exploration of the biological role of this peptide requires a peptidase-resistant agonist. In this study, the stability and binding characteristics of [125I]DYLMeFQPQRFamide, a radioiodinated analogue of NPFF, on rat spinal cord tissue were determined and compared with those of [125I]YLFQPQRFamide, the reference ligand which previously permitted to characterize NPFF binding sites. In a binding assay, [125I]DYLMeFQPQRFamide remained intact in the presence of membranes without peptidase inhibitors, whereas [125I]YLFQPQRFamide was completely hydrolysed. The specific binding was time-dependent, dose-dependent, saturable and reversible. [125I]DYLMeFQPQRFamide shared the same binding characteristics as [125I]YLFQPQRFamide (Kd = 0.07 nM; Bmax = 14.7 fmol/mg protein). Binding was not affected by various spinal cord opioids or peptides. Autoradiographic studies indicated that binding sites were mainly located in the most external layers of dorsal horn where high densities of NPFF binding sites have previously been described. [125I]YLFQPQRFamide and [125I]DYLMeFQPQRFamide binding sites were both GTP-regulated. These findings indicate that DYLMeFQPQRFamide should be of value in studies on NPFF-mediated actions in vivo.
Collapse
|
49
|
Tirumalai PS, Howells RD. Regulation of calbindin-D28K gene expression in response to acute and chronic morphine administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 23:144-50. [PMID: 8028477 DOI: 10.1016/0169-328x(94)90220-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of acute and chronic morphine administration on calbindin-D28K (calbindin) gene expression has been studied. One group of adult male rats received a single injection of morphine (10 mg/kg, s.c.) or saline and were sacrificed 1 or 4 h later. Another group was injected with escalating doses of morphine sulfate twice daily for 15 days to induce tolerance and physical dependence. Rats were sacrificed 1 h after the last injection. In a third group, the effect of naloxone-precipitated withdrawal on gene expression in morphine-addicted rats was also analyzed 1 h after naloxone (1 mg/kg, i.p.). The cerebellum and remaining brain (minus the cerebellum) were removed, and total RNA was extracted and used for analysis. Calbindin mRNA levels in cerebellum were decreased to 30%-40% control at 1 and 4 h after a single morphine injection. Co-administration of the opiate antagonist, naloxone, reversed the effect of morphine. Tolerance developed to the acute effects in that levels were not altered significantly 1 h after morphine injection in chronically-treated rats. Unlike the cerebellum, calbindin mRNA in the remainder of the brain (minus the cerebellum) was unchanged 1 and 4 h following morphine administration to drug-naive rats, but was increased more than 2-fold compared to controls 1 h after morphine injection in chronically treated animals. Naloxone-precipitated withdrawal caused a small (20%) but significant decrease in calbindin mRNA in the cerebellum, with no change in the brain (minus the cerebellum).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P S Tirumalai
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
50
|
Garcia de Yebenes E, Pelletier G. Opioid regulation of proopiomelanocortin (POMC) gene expression in the rat brain as studied by in situ hybridization. Neuropeptides 1993; 25:91-4. [PMID: 8413862 DOI: 10.1016/0143-4179(93)90087-q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proopiomelanocortin (POMC) is the precursor of the potent opioid peptide beta-endorphin as well as a number of other active peptides. On the basis of neuroanatomical data indicating the presence of contacts between POMC neurons in the rat arcuate nucleus, it has been proposed that POMC neurons could be autoregulated. In order to investigate the role of opiates in the regulation of POMC gene expression in the rat arcuate nucleus, we studied the effects of chronic administration of the opioid drug morphine and an opiate receptor antagonist naloxone on POMC mRNA levels as measured by in situ hybridization, 4-day treatment with naloxone (4 mg/kg/day) produced a 60% increase in the number of silver grains overlying POMC neurons. Conversely, morphine (40 mg/kg/day) also administered during 4 days decreased the hybridization signal by 30%. The concomitant administration of morphine and naloxone completely prevented the effect of morphine on POMC gene expression indicating that the inhibitory influence of morphine is likely to be mediated by opioid receptors. The data obtained clearly indicate that activation of opioid receptors decreased the biosynthetic activity of POMC neurons and that conversely opiate receptor blockade caused an increase in the activity of these neurons. They are consistent with the hypothesis of an autoregulation of the POMC neuronal system by endogenous opiate peptide(s).
Collapse
|