1
|
Peruzzi P, von Euw D, Lacombe P. Differentiated cerebrovascular effects of physostigmine and tacrine in cortical areas deafferented from the nucleus basalis magnocellularis suggest involvement of basalocortical projections to microvessels. Ann N Y Acad Sci 2000; 903:394-406. [PMID: 10818530 DOI: 10.1111/j.1749-6632.2000.tb06391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinesterase inhibitors used to treat Alzheimer's disease according to the principle of cholinergic replacement therapy have proved to be less beneficial than expected. The present study was designed to investigate the cerebrovascular response to physostigmine and tacrine in the experimental model of lesioning of the nucleus basalis magnocellularis (NBM), a model involving a cholinergic deficit. Regional cerebral blood flow was measured by the [14C]iodoantipyrine tissue sampling technique in conscious rats infused with i.v. physostigmine (0.2 mg/kg/h), tacrine (8 mg/kg/h), or saline, 3-5 weeks after unilateral lesion of the NBM with ibotenic acid. Physostigmine and tacrine dose-dependently increased blood flow in most cortical and subcortical regions compared to the control group. However, physostigmine caused smaller blood flow increases in several areas, mostly cortical, of the lesioned compared to the intact hemisphere. The converse was observed with tacrine. A facilitated circulatory response appeared in cortical areas deafferented from the NBM, especially in the frontal cortex. These results provide evidence for distinct NBM-dependent components of the cortical cerebrovascular effects of physostigmine and tacrine. They suggest the involvement of different cellular postsynaptic targets of the NBM. The physostigmine-type effects could involve direct projects onto an inhibitory cortical interneuron supersensitized by deafferentation. This arrangement may explain why physostigmine and perhaps other cholinergic agonists are unable to specifically compensate for a deficit in NBM functioning. The tacrine-type effects presumably involve projections to the microvasculature, including perivascular astrocytes. The neurovascular junction would be sensitized by deafferentation from the NBM. Our data suggest that the regulatory mechanisms of blood flow originating in the NBM might constitute a target of neurodegenerative processes of Alzheimer's disease.
Collapse
Affiliation(s)
- P Peruzzi
- Laboratoire de Recherches Cérébrovasculaires, CNRS UPR 646, Université Paris 7, IFR 6, Circulation-Lariboisière, Faculté Lariboisière-Saint Louis, France
| | | | | |
Collapse
|
2
|
Stemmelin J, Cassel JC, Will B, Kelche C. Sensitivity to cholinergic drug treatments of aged rats with variable degrees of spatial memory impairment. Behav Brain Res 1999; 98:53-66. [PMID: 10210522 DOI: 10.1016/s0166-4328(98)00052-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a first step, the present experiment aimed at characterizing learning and memory capabilities, as well as some motor and sensorimotor faculties, in aged (24-26.5 months) Long-Evans female rats. As a second step, a psychopharmacological approach was undertaken in order to examine the sensitivity of aged rats to muscarinic blockade and to cholinomimetic treatments. Young adult (3-5.5 months) and aged rats were tested for beam-walking performance, locomotor activity in the home cage and an open field, and spatial learning/memory performance in a water maze and a radial maze. Spontaneous alternation rates were assessed in a T-maze. Statistical analysis discriminated between aged rats showing moderate impairment (AMI) and those showing severe impairment (ASI) in the water maze test. Beside their different degrees of impairment in the water maze, AMI and ASI rats were similarly (no significant difference) impaired in beam-walking capabilities, home cage activity and radial maze performance. In the spontaneous alternation task aged rats were not impaired and, in the open-field test, AMI rats were hypoactive, but not as much as ASI rats. Neither of the cognitive deficits was correlated with a locomotor or a sensorimotor variable, or with the body weight. When tested in the radial maze, a low dose of scopolamine (0.1 mg/kg i.p.) produced memory impairments which were significant in AMI and ASI rats, but not in young rats. Combined injections of scopolamine and physostigmine (0.05 and 0.1 mg/kg) or tacrine (THA, 3 mg/kg) showed physostigmine (0.1 mg/kg) to compensate for the scopolamine-induced impairments only in AMI rats. whereas THA was efficient in both AMI and ASI rats. The results indicate: (i) that rats with different degrees of spatial memory impairment in the water maze are similarly hypersensitive to muscarinic blockade when tested in a radial maze test; and (ii) that under the influence of a dose of scopolamine which is subamnesic in young rats, aged rats respond to anticholinesterase treatments according to the level of performance achieved in the water maze: moderately impaired rats are sensitive to both physostigmine and THA, whereas more severely impaired rats are sensitive only to THA.
Collapse
Affiliation(s)
- J Stemmelin
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 ULP/CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
3
|
Sihver W, Günther P, Schliebs R, Bigl V. Repeated administration of tacrine to normal rats: effects on cholinergic, glutamatergic, and GABAergic receptor subtypes in rat brain using receptor autoradiography. Neurochem Int 1997; 31:693-703. [PMID: 9364455 DOI: 10.1016/s0197-0186(97)00010-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tacrine, a potent acetylcholinesterase inhibitor, has been reported to improve cognitive function in patients with Alzheimer's disease. The present investigation was conducted to elucidate in vivo any interaction between tacrine-induced cortical cholinergic hyperactivity and glutamatergic and GABAergic neurotransmission, which might influence the therapeutic potential of tacrine. Seven days after a daily dosage of 10 mg/kg tacrine i.p. quantitative receptor autoradiography was performed in coronal sections throughout the brain. Repeated administration of tacrine resulted in decreased binding to high-affinity choline uptake, nicotinic and M2-muscarinic acetylcholine receptor sites in a number of cortical regions, while reductions in M1-muscarinic receptor binding were restricted to the cingulate and entorhinal cortex as well as caudate-putamen. Moreover, tacrine injections decreased cortical AMPA receptor binding throughout the brain, while NMDA, kainate, and GABAA receptor binding remained unchanged. Tacrine administration alters cortical AMPA receptor binding in the opposite direction to that observed in patients with Alzheimer's disease, suggesting that tacrine may exert a reversal in up/down-regulation of cortical glutamate receptor subtypes in Alzheimer patients. However, the drug-induced reductions in cortical high-affinity choline uptake sites as well as in nicotinic and in muscarinic acetylcholine receptor binding might partially counteract the cognition-enhancing effects of tacrine produced by acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- W Sihver
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Germany
| | | | | | | |
Collapse
|
4
|
McKenna MT, Proctor GR, Young LC, Harvey AL. Novel tacrine analogues for potential use against Alzheimer's disease: potent and selective acetylcholinesterase inhibitors and 5-HT uptake inhibitors. J Med Chem 1997; 40:3516-23. [PMID: 9357518 DOI: 10.1021/jm970150t] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several novel analogues of tacrine have been synthesized and tested for their ability to inhibit acetylcholinesterase, butyrylcholinesterase, and neuronal uptake of 5-HT (serotonin) and noradrenaline. Changes in the size of the carbocyclic ring of tacrine produced modest potency against cholinesterase enzymes. Addition of a fourth ring resulted in compounds with marked selectivity for acetylcholinesterase (AChE) over butyrylcholinesterase (BChE): e.g. 6-amino-4,5-benzo-5H-cyclopenta[1,2-b]-quinoline (14a) had an IC50 of 0.35 microM against AChE and 3.1 microM against BChE. Some tetracyclic compounds are 100-400 times more active than tacrine as inhibitors of neuronal uptake of serotonin, in particular 13-amino-6,7-dihydro-5H-benzo-[3,4]cyclohepta[1,2-b]quinoline (18), which had an IC50 of 20 nM. These compounds would be expected to facilitate both cholinergic and monoaminergic transmission. They should be worth investigating in models of memory impairment.
Collapse
Affiliation(s)
- M T McKenna
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, U.K
| | | | | | | |
Collapse
|
5
|
Wang SJ, Huang CC, Hsu KS, Tsai JJ, Huang CC, Gean PW. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala. Neurosci Lett 1996; 214:87-90. [PMID: 8878090 DOI: 10.1016/0304-3940(96)12892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of tetrahydro-9-aminoacridine (THA) on beta-adrenoceptor activation-induced synaptic potentiation were studied in brain slices of the rat amygdala using intracellular recording techniques. To exclude the involvement of N-methyl-D-aspartate (NMDA) receptors, all the experiments were performed in the presence of NMDA receptor antagonist, D-APV (50 microM). Bath application of isoproterenol (Iso; 15 microM) results in a long-lasting enhancement of the amplitude of excitatory postsynaptic potentials (EPSPs) to 200 +/- 6% of baseline. Forskolin, which directly activates adenyl cyclase, produces a similar effect suggesting that Iso may act through a cyclic AMP-dependent mechanism. Pretreatment of the slices with THA (300 microM) completely abolishes the Iso- and forskolin-induced synaptic potentiation. We hypothesize that the locus of THA/beta-adrenoceptor interaction is presynaptic; the underlying mechanism is likely due to THA's depression of transmitter release via a presynaptic blockade of voltage-dependent Ca2+ channels.
Collapse
Affiliation(s)
- S J Wang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
6
|
Krzywkowski P, Potier B, Billard JM, Dutar P, Lamour Y. Synaptic mechanisms and calcium binding proteins in the aged rat brain. Life Sci 1996; 59:421-8. [PMID: 8761330 DOI: 10.1016/0024-3205(96)00321-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synaptic mechanisms were studied ex vivo in the aged rat hippocampus, using a slice preparation and intracellular electrophysiological recordings of the CA1 pyramidal neurons. A dramatic depression of the slow cholinergic excitatory postsynaptic potential (EPSP) and of the slow, GABAB-mediated inhibitory postsynaptic potential (IPSP) were observed. These age-related changes were consistently found in three different strains of rats. The mechanisms involve 1) changes in the properties of the postsynaptic muscarinic receptors, and possibly in acetylcholine release (for the postsynaptic muscarinic receptors, and possbily in acetylcholine release (for the cholinergic EPSP), and 2) alterations in the presynaptic GABAergic interneurons, as shown by a loss in calbindin immunoreactivity (for the GABAergic IPSP). The immunoreactivity for three calcium binding proteins (calbindin, parvalbumin and calretinin) was studied in the aged rat brain. Immunoreactivity for calbindin was dramatically reduced in the pyramidal neurons of the CA1 field and in a subpopulation of interneurons in the hippocampus. Immunoreactivity for parvalbumin was reduced in the medial septal area, and in the cingulate cortex, whereas no change was observed for calretinin. These age-related alterations could 1) modify the functions of the hippocampal networks, and possibly contribute to the age-related cognitive deficits, and 2) compromise intraneuronal calcium buffering, and thus make neurons more vulnerable to toxic insults.
Collapse
|
7
|
Wang SJ, Huang CC, Gean PW. Investigations on the mechanism of tetrahydro-9-aminoacridine-induced presynaptic inhibition in the rat amygdala. Neuroscience 1996; 70:409-15. [PMID: 8848149 DOI: 10.1016/0306-4522(95)00376-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tetrahydro-9-aminoacridine, a centrally acting anticholinesterase, has been reported to improve clinical conditions of certain patients with Alzheimer's disease. A previous study from our laboratory suggested that tetrahydro-9-aminoacridine presynaptically inhibited synaptic transmission. In the present study, the mechanism responsible for presynaptic inhibition mediated by tetrahydro-9-aminoacridine was studied in the rat amygdalar slice preparation using intracellular recording techniques. Bath application of tetrahydro-9-aminoacridine reversibly suppressed the excitatory postsynaptic potential. Tetrahydro-9-aminoacridine's inhibitory action was unaffected by the pretreatment of slices with baclofen (5 microM), suggesting that it did not act by eliciting the release of GABA, which binds presynaptic GABAB receptors to inhibit glutamate release. The synaptic depressant effect of tetrahydro-9-aminoacridine was blocked in the presence of 4-aminopyridine. The action of 4-aminopyridine could be reversed by reducing extracellular Ca2+ concentrations from a control level of 2.5 to 0.5 mM, suggesting that tetrahydro-9-aminoacridine inhibits excitatory postsynaptic potentials by acting directly at the terminals to decrease a Ca2+ influx. The L-type Ca2+ channel blocker nifedipine (50 microM) had no effect on tetrahydro-9-aminoacridine-induced presynaptic inhibition. However, the depressant effect of tetrahydro-9-aminoacridine was partially occluded in slices pretreated with the N-type Ca2+ channel blocker omega-conotoxin GVIA (1 microM). It is concluded that a reduction in omega-conotoxin GVIA-sensitive Ca2+ currents contributes to tetrahydro-9-aminoacridine-mediated presynaptic inhibition. After exposure to bicuculline, a GABAA receptor antagonist, afferent stimulation evoked epileptiform bursts. Occasionally, spontaneous bursts similar in waveform to synaptically triggered bursts also occurred in disinhibited slices. Application of tetrahydro-9-aminoacridine reversibly reduced the burst duration in a concentration-dependent manner. These results suggest that tetrahydro-9-aminoacridine possesses anticonvulsant activity against disinhibited bursts.
Collapse
Affiliation(s)
- S J Wang
- Department of Pharmacology, National Cheng-Kung University, Tainan City, Taiwan
| | | | | |
Collapse
|
8
|
Bassant MH, Jazat-Poindessous F, Lamour Y. Metabolic response to tacrine (THA) and physostigmine in the aged rat brain. J Cereb Blood Flow Metab 1995; 15:1093-102. [PMID: 7593342 DOI: 10.1038/jcbfm.1995.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of the centrally acting anti-cholinesterases tacrine (tetrahydroaminoacridine, THA) and physostigmine (PHY), on local cerebral glucose utilization (LCGU) have been studied in 27-month-old rats, using the autoradiographic [14C]deoxyglucose technique. THA (10 mg/kg i.p.) increased LCGU significantly in 13 of the 54 regions studied (24%) including insular, parietal, temporal, and retrosplenial cortices, septohippocampal system, thalamus, lateral habenula, and superior colliculus. In these regions, the average THA-induced increase in LCGU was 24% above control. The whole brain mean LCGU was not significantly increased. PHY (0.5 mg/kg) increased LCGU in 18% of the regions (average elevation, 23%). The whole brain mean LCGU increased by 7% (p < 0.05). The regional distributions of THA- and PHY-induced increases in LCGU were extremely similar and overlapped the distribution of the M2 muscarinic receptors and that of acetylcholinesterase activity, suggesting that the major effects of THA and PHY on LCGU result from their anticholinesterase action. As compared to those of 3-month-old rats, both the number of regions affected and the amplitude of the metabolic activation were significantly less in aged rats. However, the drugs were still active in old rats and compensated for the age-related hypometabolism in some brain areas.
Collapse
|
9
|
Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 1995; 46:423-62. [PMID: 8532848 DOI: 10.1016/0301-0082(95)00012-k] [Citation(s) in RCA: 358] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inhibitory neurotransmitter GABA acts in the mammalian brain through two different receptor classes: GABAA and GABAB receptors. GABAB receptors differ fundamentally from GABAA receptors in that they require a G-protein. GABAB receptors are located pre- and/or post-synaptically, and are coupled to various K+ and Ca2+ channels presumably through both a membrane delimited pathway and a pathway involving second messengers. Baclofen, a selective GABAB receptor agonist, as well as GABA itself have pre- and post-synaptic effects. Pre-synaptic effects comprise the reduction of the release of excitatory and inhibitory transmitters. GABAergic receptors on GABAergic terminals may regulate GABA release, however, in most instances spontaneous inhibitory synaptic activity is not modulated by endogenous GABA. Post-synaptic GABAB receptor-mediated inhibition is likely to occur through a membrane delimited pathway activating K+ channels, while baclofen, in some neurons, may activate K+ channels through a second messenger pathway involving arachidonic acid. Some, but not all GABAB receptor-gated K+ channels have the typical properties of those G-protein-activated K+ channels which are also gated by other endogenous ligands of the brain. New, high affinity GABAB antagonists are now available, and some pharmacological evidence points to a receptor heterogeneity. The pharmacological distinction of receptor subtypes, however, has to await final support from a characterization of the molecular structure. The function importance of post-synaptic GABAB receptors is highlighted by a segregation of GABAA and GABAB synapses in the mammalian brain.
Collapse
Affiliation(s)
- U Misgeld
- Institute of Physiology I, University of Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Wang SJ, Huang CC, Gean PW. Tetrahydro-9-aminoacridine presynaptically inhibits glutamatergic transmission in the rat amygdala. Brain Res Bull 1995; 37:325-7. [PMID: 7542994 DOI: 10.1016/0361-9230(95)00010-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of the centrally active anticholinesterase inhibitor tetrahydro-9-aminoacridine (THA) on synaptic transmission was studied in rat amygdala neurons in the in vitro slice preparation. THA reversibly suppressed the excitatory postsynaptic potential (EPSP) in a concentration-dependent manner. Postsynaptic depolarization induced by alpha-amino-5-methyl-4-isoxazole propionate (AMPA) was not decreased by THA. These results demonstrate that THA has a presynaptic inhibitory action on the physiology of synaptic transmission in the amygdala. Pretreating the slices with atropine did not affect THA's effect, indicating that the presynaptic muscarinic receptors are not involved.
Collapse
Affiliation(s)
- S J Wang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan City, Taiwan, Republic of China
| | | | | |
Collapse
|
11
|
Wagstaff AJ, McTavish D. Tacrine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer's disease. Drugs Aging 1994; 4:510-40. [PMID: 7521234 DOI: 10.2165/00002512-199404060-00006] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tacrine is a centrally acting cholinesterase inhibitor with additional pharmacological activity on monoamine levels and ion channels. It has been postulated that some or all of these additional properties may also be relevant to the mode of action of the drug. There are wide interindividual variations in pharmacological and clinical response to tacrine, possibly related to interindividual variation in bioavailability. Tacrine appears to improve cognitive function and behavioural deficits in a proportion of patients with Alzheimer's disease, at dosages of 80 to 160 mg/day. In the best designed trials, 30 to 51% of evaluable patients showed an improvement of at least 4 points on the cognitive subscale of the Alzheimer's Disease Assessment Scale, versus 16 to 25% of placebo recipients. A similar proportion of tacrine recipients were judged to have improved when global assessment scales were used. There was a significant dose-response relationship up to 160 mg/day. However, large numbers of patients were withdrawn during the trials, many because of tacrine-associated increases in transaminase levels. Elevated liver enzyme levels occurred in about 50% of tacrine recipients (reaching clinical significance in about 25%). Cholinergic symptoms also occurred more often in tacrine recipients than in those receiving placebo. A gradual increase in tacrine dosage, at 6-week intervals, is recommended when initiating therapy, and weekly serum transaminase monitoring is required for 6 weeks after each dosage increase. Despite the limitations implied by the low proportion of responders and high incidence of hepatic adverse effects associated with therapy, tacrine appears to make a measurable difference in both cognitive and behavioural function in a proportion of patients with Alzheimer's disease--a welcome advance in an area previously devoid of acceptable treatment options.
Collapse
Affiliation(s)
- A J Wagstaff
- Adis International Limited, Auckland, New Zealand
| | | |
Collapse
|
12
|
Mott DD, Lewis DV. The pharmacology and function of central GABAB receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:97-223. [PMID: 7822122 DOI: 10.1016/s0074-7742(08)60304-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In conclusion, GABAB receptors enable GABA to modulate neuronal function in a manner not possible through GABAA receptors alone. These receptors are present at both pre- and postsynaptic sites and can exert both inhibitory and disinhibitory effects. In particular, GABAB receptors are important in regulating NMDA receptor-mediated responses, including the induction of LTP. They also can regulate the filtering properties of neural networks, allowing peak transmission in the frequency range of theta rhythm. Finally, GABAB receptors are G protein-coupled to a variety of intracellular effector systems, and thereby have the potential to produce long-term changes in the state of neuronal activity, through actions such as protein phosphorylation. Although the majority of the effects of GABAB receptors have been reported in vitro, recent studies have also demonstrated that GABAB receptors exert electrophysiological actions in vivo. For example, GABAB receptor antagonists reduce the late IPSP in vivo and consequently can decrease inhibition of spontaneous neuronal firing following a stimulus (Lingenhöhl and Olpe, 1993). In addition, blockade of GABAB receptors can increase spontaneous activity of central neurons, suggesting the presence of GABAB receptor-mediated tonic inhibition (Andre et al., 1992; Lingenhöhl and Olpe, 1993). Despite these electrophysiological effects, antagonism of GABAB receptors has generally been reported to produce few behavioral actions. This lack of overt behavioral effects most likely reflects the modulatory nature of the receptor action. Nevertheless, two separate behavioral studies have recently reported an enhancement of cognitive performance in several different animal species following blockade of GABAB receptors (Mondadori et al., 1992; Carletti et al., 1993). Because of their small number of side effects, GABAB receptor antagonists may represent effective therapeutic tools for modulation of cognition. Alternatively, the lack of overt behavioral effects of GABAB receptors may indicate that these receptors are more important in pathologic rather than normal physiological states (Wojcik et al., 1989). For example, a change in receptor affinity or receptor number brought on by the pathology could enhance the effectiveness of GABAB receptors. Of significance, CGP 35348 has been shown to block absence seizures in genetically seizure prone animals, while inducing no seizures in control animals (Hosford et al., 1992; Liu et al., 1992). Thus, GABAB receptors may represent effective sites for pharmacological regulation of absence seizures. Perhaps further behavioral effects of these receptors will become apparent only after additional studies have been performed using the highly potent antagonists that have been recently introduced.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D D Mott
- Department of Pediatrics (Neurology), Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
13
|
Bassant MH, Jazat F, Lamour Y. Tetrahydroaminoacridine and physostigmine increase cerebral glucose utilization in specific cortical and subcortical regions in the rat. J Cereb Blood Flow Metab 1993; 13:855-64. [PMID: 8360291 DOI: 10.1038/jcbfm.1993.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of the anticholinesterases tetrahydroaminoacridine (THA) and physostigmine on local cerebral glucose utilization (LCGU) were studied in the conscious rat, using the autoradiographic [14C]deoxyglucose technique. THA (5 mg/kg i.p.) increased LCGU significantly in 8 of the 43 regions studied. A higher dose of THA (10 mg/kg) produced a metabolic activation in 19 of the 43 regions. LCGU increased in cortical areas (including parietal and temporal cortices), the septohippocampal system, the thalamus, the lateral habenula, the basolateral amygdala, the superior colliculus, and the substantia nigra. Scopolamine (4 mg/kg i.p.) reversed the THA-induced LCGU increase. Physostigmine (0.2 and 0.5 mg/kg) increased LCGU in 15 and 22 regions, respectively. The average magnitude of the change induced by 0.5 mg/kg of physostigmine was similar to that observed after THA at 10 mg/kg, but the topography of the effects was somewhat different. Physostigmine increased LCGU in the preoptic magnocellular area, the brainstem, and the cerebellum but not in the parietal cortex. The effects in the septohippocampal system were smaller than those induced by THA. The regional topography of the LCGU increase overlapped the distribution of the M2 muscarinic receptors and that of acetylcholinesterase activity. These data suggest that the major effects of THA and physostigmine on LCGU result from their anticholinesterase action.
Collapse
|
14
|
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|