1
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Lubejko ST, Livrizzi G, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561768. [PMID: 37873091 PMCID: PMC10592708 DOI: 10.1101/2023.10.10.561768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. Unexpectedly, given prior emphasis on descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We also report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings significantly revise current models of the DPMS and establish a novel supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Pagano RL, Dale CS, Campos ACP, Hamani C. Translational aspects of deep brain stimulation for chronic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1084701. [PMID: 36713643 PMCID: PMC9874335 DOI: 10.3389/fpain.2022.1084701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.
Collapse
Affiliation(s)
- Rosana L. Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Camila S. Dale
- Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | | | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada,Correspondence: Clement Hamani
| |
Collapse
|
6
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
7
|
Yu W, Pati D, Pina MM, Schmidt KT, Boyt KM, Hunker AC, Zweifel LS, McElligott ZA, Kash TL. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 2021; 109:1365-1380.e5. [PMID: 33740416 PMCID: PMC9990825 DOI: 10.1016/j.neuron.2021.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Sex differences in pain severity, response, and pathological susceptibility are widely reported, but the neural mechanisms that contribute to these outcomes remain poorly understood. Here we show that dopamine (DA) neurons in the ventrolateral periaqueductal gray/dorsal raphe (vlPAG/DR) differentially regulate pain-related behaviors in male and female mice through projections to the bed nucleus of the stria terminalis (BNST). We find that activation of vlPAG/DRDA+ neurons or vlPAG/DRDA+ terminals in the BNST reduces nociceptive sensitivity during naive and inflammatory pain states in male mice, whereas activation of this pathway in female mice leads to increased locomotion in the presence of salient stimuli. We additionally use slice physiology and genetic editing approaches to demonstrate that vlPAG/DRDA+ projections to the BNST drive sex-specific responses to pain through DA signaling, providing evidence of a novel ascending circuit for pain relief in males and contextual locomotor response in females.
Collapse
Affiliation(s)
- Waylin Yu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dipanwita Pati
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melanie M Pina
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karl T Schmidt
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen M Boyt
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoe A McElligott
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L Kash
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Zeng F, Zhang Q, Liu Y, Sun G, Li A, Talay RS, Wang J. AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain. Mol Brain 2021; 14:45. [PMID: 33653395 PMCID: PMC7923831 DOI: 10.1186/s13041-021-00757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Fullerton EF, Rubaharan M, Karom MC, Hanberry RI, Murphy AZ. Advanced age attenuates the antihyperalgesic effect of morphine and decreases μ-opioid receptor expression and binding in the rat midbrain periaqueductal gray in male and female rats. Neurobiol Aging 2021; 98:78-87. [PMID: 33249376 PMCID: PMC8673746 DOI: 10.1016/j.neurobiolaging.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
The present study investigated the impact of advanced age on morphine modulation of persistent inflammatory pain in male and female rats. The impact of age, sex, and pain on μ-opioid receptor (MOR) expression and binding in the ventrolateral periaqueductal gray (vlPAG) was also examined using immunohistochemistry and receptor autoradiography. Intraplantar administration of complete Freund's adjuvant induced comparable levels of edema and hyperalgesia in adult (2-3 mos) and aged (16-18 mos) male and female rats. Morphine potency was highest in adult males, with a greater than two-fold increase in morphine EC50 observed in adult versus aged males (3.83 mg/kg vs. 10.16 mg/kg). Adult and aged female rats also exhibited significantly higher EC50 values (7.76 mg/kg and 8.74 mg/kg, respectively) than adult males. The upward shift in EC50 from adult to aged males was paralleled by a reduction in vlPAG MOR expression and binding. The observed age-related reductions in morphine potency and vlPAG MOR expression and binding have significant implications in pain management in the aged population.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
10
|
McDermott MV, Afrose L, Gomes I, Devi LA, Bobeck EN. Opioid-Induced Signaling and Antinociception Are Modulated by the Recently Deorphanized Receptor, GPR171. J Pharmacol Exp Ther 2019; 371:56-62. [PMID: 31308196 PMCID: PMC6750184 DOI: 10.1124/jpet.119.259242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
ProSAAS is one of the most widely expressed proteins throughout the brain and was recently found to be upregulated in chronic fibromyalgia patients. BigLEN is a neuropeptide that is derived from ProSAAS and was recently discovered to be the endogenous ligand for the orphan G protein-coupled receptor GPR171. Although BigLEN-GPR171 has been found to play a role in feeding and anxiety behaviors, it has not yet been explored in pain and opioid modulation. The purpose of this study was to evaluate this novel neuropeptide-receptor system in opioid-induced antinociception. We found that GPR171 is expressed in GABAergic neurons within the periaqueductal gray, which is a key brain area involved in pain modulation and opioid functions. We also found that, although the GPR171 agonist and antagonist do not have nociceptive effects on their own, they oppositely regulate morphine-induced antinociception with the agonist enhancing and antagonist reducing antinociception. Lastly, we showed that the GPR171 antagonist or receptor knockdown decreases signaling by the mu-opioid receptor, but not the delta-opioid receptor. Taken together, these results suggest that antagonism of the GPR171 receptor reduces mu opioid receptor signaling and morphine-induced antinociception, whereas the GPR171 agonist enhances morphine antinociception, suggesting that GPR171 may be a novel target toward the development of pain therapeutics. SIGNIFICANCE STATEMENT: GPR171 is a recently deorphanized receptor that is expressed within the periaqueductal gray and can regulate mu opioid receptor signaling and antinociception. This research may contribute to the development of new therapeutics to treat pain.
Collapse
Affiliation(s)
- Max V McDermott
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Leela Afrose
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah (M.V.M., L.A., E.N.B.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
11
|
Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J. Inhibition of the Prefrontal Projection to the Nucleus Accumbens Enhances Pain Sensitivity and Affect. Front Cell Neurosci 2018; 12:240. [PMID: 30150924 PMCID: PMC6099095 DOI: 10.3389/fncel.2018.00240] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Cortical mechanisms that regulate acute or chronic pain remain poorly understood. The prefrontal cortex (PFC) exerts crucial control of sensory and affective behaviors. Recent studies show that activation of the projections from the PFC to the nucleus accumbens (NAc), an important pathway in the brain's reward circuitry, can produce inhibition of both sensory and affective components of pain. However, it is unclear whether this circuit is endogenously engaged in pain regulation. To answer this question, we disrupted this circuit using an optogenetic strategy. We expressed halorhodopsin in pyramidal neurons from the PFC, and then selectively inhibited the axonal projection from these neurons to neurons in the NAc core. Our results reveal that inhibition of the PFC or its projection to the NAc, heightens both sensory and affective symptoms of acute pain in naïve rats. Inhibition of this corticostriatal pathway also increased nociceptive sensitivity and the aversive response in a chronic neuropathic pain model. Finally, corticostriatal inhibition resulted in a similar aversive phenotype as chronic pain. These results strongly suggest that the projection from the PFC to the NAc plays an important role in endogenous pain regulation, and its impairment contributes to the pathology of chronic pain.
Collapse
Affiliation(s)
- Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China.,Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Harvey H Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Runtao Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Jahrane Antonio Dale
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Kevin Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States.,Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
12
|
Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain. J Neurosci 2018; 38:4829-4839. [PMID: 29695413 DOI: 10.1523/jneurosci.2731-17.2018] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopulations of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFC in brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3 inhibitory input to CP neurons ipsilateral to CCI. These results demonstrating region and laminar specific changes to mPFC-PAG neurons suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to persistence of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a significant unresolved medical problem that is refractory to traditional analgesics and can negatively affect emotional health. The role of central circuits in mediating the persistent nature of chronic pain remains unclear. Local circuits within the medial prefrontal cortex (mPFC) process ascending pain inputs and can modulate endogenous analgesia via direct projections to the periaqueductal gray (PAG). However, the mechanisms by which chronic pain alters intracortical circuitry of mPFC-PAG neurons are unknown. Here, we report specific changes to local circuits of mPFC-PAG neurons in mice displaying chronic pain behavior after nerve injury. These findings provide evidence for a neural mechanism by which chronic pain disrupts the descending analgesic system via functional changes to cortical circuits.
Collapse
|
13
|
Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. Corticostriatal Regulation of Acute Pain. Front Cell Neurosci 2017; 11:146. [PMID: 28603489 PMCID: PMC5445115 DOI: 10.3389/fncel.2017.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023] Open
Abstract
The mechanisms for acute pain regulation in the brain are not well understood. The prefrontal cortex (PFC) provides top-down control of emotional processes, and it projects to the nucleus accumbens (NAc). This corticostriatal projection forms an important regulatory pathway within the brain’s reward system. Recently, this projection has been suggested to control both sensory and affective phenotypes specifically associated with chronic pain. As this projection is also known to play a role in the transition from acute to chronic pain, we hypothesized that this corticostriatal circuit can also exert a modulatory function in the acute pain state. Here, we used optogenetics to specifically target the projection from the PFC to the NAc. We tested sensory pain behaviors with Hargreaves’ test and mechanical allodynia, and aversive pain behaviors with conditioned place preference (CPP) test. We found that the activation of this corticostriatal circuit gave rise to bilateral relief from peripheral nociceptive inputs. Activation of this circuit also provided important control for the aversive response to transient noxious stimulations. Hence, our results support a novel role for corticostriatal circuitry in acute pain regulation.
Collapse
Affiliation(s)
- Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Harvey H Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Jahrane Dale
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Kevin Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of MedicineNew York, NY, United States.,Department of Neuroscience and Physiology, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
14
|
Abstract
Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation.
Collapse
|
15
|
Zouikr I, James MH, Campbell EJ, Clifton VL, Beagley KW, Dayas CV, Hodgson DM. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure. PLoS One 2014; 9:e98382. [PMID: 24878577 PMCID: PMC4039471 DOI: 10.1371/journal.pone.0098382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
- * E-mail:
| | - Morgan H. James
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Erin J. Campbell
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Vicki L. Clifton
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kenneth W. Beagley
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher V. Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Deborah M. Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Loyd DR, Murphy AZ. The neuroanatomy of sexual dimorphism in opioid analgesia. Exp Neurol 2014; 259:57-63. [PMID: 24731947 DOI: 10.1016/j.expneurol.2014.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
The influence of sex has been neglected in clinical studies on pain and analgesia, with the vast majority of research conducted exclusively in males. However, both preclinical and clinical studies indicate that males and females differ in both the anatomical and physiological composition of central nervous system circuits that are involved in pain processing and analgesia. These differences influence not only the response to noxious stimuli, but also the ability of pharmacological agents to modify this response. Morphine is the most widely prescribed opiate for the alleviation of persistent pain in the clinic; however, it is becoming increasingly clear that morphine is less potent in women compared to men. This review highlights recent research identifying neuroanatomical and physiological dimorphisms underlying sex differences in pain and opioid analgesia, focusing on the endogenous descending pain modulatory circuit.
Collapse
Affiliation(s)
- Dayna R Loyd
- Pain Management Research Area, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
17
|
Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:436913. [PMID: 23983779 PMCID: PMC3747484 DOI: 10.1155/2013/436913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/23/2013] [Accepted: 07/11/2013] [Indexed: 01/28/2023]
Abstract
Neuropathic pain remains as one of the most difficult clinical pain syndromes to treat. Electroacupuncture (EA), involving endogenous opioids and neurotransmitters in the central nervous system (CNS), is reported to be clinically efficacious in various fields of pain. Although multiple experimental articles were conducted to assess the effect of EA-induced analgesia, no review has been published to assess the efficacy and clarify the mechanism of EA on neuropathic pain. To this aim, this study was firstly designed to evaluate the EA-induced analgesic effect on neuropathic pain and secondly to guide and help future efforts to advance the neuropathic pain treatment. For this purpose, articles referring to the analgesic effect of acupuncture on neuropathic pain and particularly the work performed in our own laboratory were analyzed. Based on the articles reviewed, the role of spinal opioidergic, adrenergic, serotonergic, cholinergic, and GABAergic receptors in the mechanism of EA-induced analgesia was studied. The results of this research demonstrate that μ and δ opioid receptors, α2-adrenoreceptors, 5-HT1A and 5-HT3 serotonergic receptors, M1 muscarinic receptors, and GABAA and GABAB GABAergic receptors are involved in the mechanisms of EA-induced analgesia on neuropathic pain.
Collapse
|
18
|
Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci 2013; 33:5638-46. [PMID: 23536078 DOI: 10.1523/jneurosci.4984-12.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Predictions about sensory input exert a dominant effect on what we perceive, and this is particularly true for the experience of pain. However, it remains unclear what component of prediction, from an information-theoretic perspective, controls this effect. We used a vicarious pain observation paradigm to study how the underlying statistics of predictive information modulate experience. Subjects observed judgments that a group of people made to a painful thermal stimulus, before receiving the same stimulus themselves. We show that the mean observed rating exerted a strong assimilative effect on subjective pain. In addition, we show that observed uncertainty had a specific and potent hyperalgesic effect. Using computational functional magnetic resonance imaging, we found that this effect correlated with activity in the periaqueductal gray. Our results provide evidence for a novel form of cognitive hyperalgesia relating to perceptual uncertainty, induced here by vicarious observation, with control mediated by the brainstem pain modulatory system.
Collapse
|
19
|
|
20
|
Silva JR, Silva ML, Prado WA. Analgesia Induced by 2- or 100-Hz Electroacupuncture in the Rat Tail-Flick Test Depends on the Activation of Different Descending Pain Inhibitory Mechanisms. THE JOURNAL OF PAIN 2011; 12:51-60. [DOI: 10.1016/j.jpain.2010.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/07/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
21
|
NSAIDs, Opioids, Cannabinoids and the Control of Pain by the Central Nervous System. Pharmaceuticals (Basel) 2010; 3:1335-1347. [PMID: 27713305 PMCID: PMC4033984 DOI: 10.3390/ph3051335] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 02/02/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) act upon peripheral tissues and upon the central nervous system to produce analgesia. A major central target of NSAIDs is the descending pain control system. The rostral structures of the descending pain control system send impulses towards the spinal cord and regulate the transmission of pain messages. Key structures of the descending pain control system are the periaqueductal gray matter (PAG) and the rostral ventromedial region of the medulla (RVM), both of which are critical targets for endogenous opioids and opiate pharmaceuticals. NSAIDs also act upon PAG and RVM to produce analgesia and, if repeatedly administered, induce tolerance to themselves and cross-tolerance to opioids. Experimental evidence shows that this is due to an interaction of NSAIDs with endogenous opioids along the descending pain control system. Analgesia by NSAIDs along the descending pain control system also requires an activation of the CB1 endocannabinoid receptor. Several experimental approaches suggest that opioids, NSAIDs and cannabinoids in PAG and RVM cooperate to decrease GABAergic inhibition and thus enhance the descending flow of impulses that inhibit pain.
Collapse
|
22
|
Gruber-Dujardin E. Role of the periaqueductal gray in expressing vocalization. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Marvizón JCG, Chen W, Murphy N. Enkephalins, dynorphins, and beta-endorphin in the rat dorsal horn: an immunofluorescence colocalization study. J Comp Neurol 2009; 517:51-68. [PMID: 19711397 DOI: 10.1002/cne.22130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To characterize neuronal pathways that release opioid peptides in the rat dorsal horn, multiple-label immunohistochemistry, confocal microscopy, and computerized co-localization measures were used to characterize opioid-containing terminals and cells. An antibody that selectively recognized beta-endorphin labeled fibers and neurons in the ventral horn as well as fibers in the lateral funiculus and lamina X, but practically no fibers in the dorsal horn. An anti-enkephalin antibody, which recognized Leu-, Met-, and Phe-Arg-Met-enkephalin, labeled the dorsolateral funiculus and numerous puncta in laminae I-III and V of the dorsal horn. An antibody against Phe-Arg-Met-enkephalin, which did not recognize Leu- and Met-enkephalin, labeled the same puncta. Antibodies against dynorphin and prodynorphin labeled puncta and fibers in laminae I, II, and V, as well as some fibers in the rest of the dorsal horn. Dynorphin and prodynorphin immunoreactivities colocalized in some puncta and fibers, but the prodynorphin antibody additionally labeled cell bodies. There was no co-localization of dynorphin (or prodynorphin) with enkephalin (or Phe-Arg-Met-enkephalin). Enkephalin immunoreactivity did not colocalize with the C-fiber markers calcitonin gene-related peptide (CGRP), substance P, and isolectin B4. In contrast, there was some colocalization of dynorphin and prodynorphin with CGRP and substance P, but not with isolectin B4. Both enkephalin and dynorphin partly colocalized with vesicular glutamate transporter 2, a marker of glutamatergic terminals. The prodynorphin-positive neurons in the dorsal horn were distinct from neurons expressing mu-opioid receptors, neurokinin 1 receptors, and protein kinase C-gamma. These results show that enkephalins and dynorphins are present in different populations of dorsal horn neurons. In addition, dynorphin is present in some C-fibers.
Collapse
Affiliation(s)
- Juan Carlos G Marvizón
- Center for the Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
24
|
Bagatskaya ЕV, Gura ЕV, Limansky YP. Analgesia Induced by Microwave Irradiation of an Acupuncture Point in Mice with Visceral Pain: Role of the Cerebral Opioid System. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization. Neuroscience 2009; 161:157-72. [PMID: 19298846 DOI: 10.1016/j.neuroscience.2009.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 01/25/2023]
Abstract
The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.
Collapse
|
26
|
The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast 2009; 2009:462879. [PMID: 19197373 PMCID: PMC2633449 DOI: 10.1155/2009/462879] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/17/2008] [Indexed: 01/11/2023] Open
Abstract
Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray (PAG) and its descending projections to the rostral ventromedial medulla (RVM) and spinal cord dorsal horn, as a primary anatomical pathway mediating opioid-based analgesia. Since these initial studies, the PAG-RVM-spinal cord pathway has been characterized anatomically and physiologically in a wide range of vertebrate species. Remarkably, the majority of these studies were conducted exclusively in males with the implicit assumption that the anatomy and physiology of this circuit were the same in females; however, this is not the case. It is well established that morphine administration produces greater antinociception in males compared to females. Recent studies indicate that the PAG-RVM pathway contributes to the sexually dimorphic actions of morphine. This manuscript will review our anatomical, physiological, and behavioral data identifying sex differences in the PAG-RVM pathway, focusing on its role in pain modulation and morphine analgesia.
Collapse
|
27
|
Parry D, MacMillan F, Koutsikou S, McMullan S, Lumb B. Separation of A- versus C-nociceptive inputs into spinal–brainstem circuits. Neuroscience 2008; 152:1076-85. [DOI: 10.1016/j.neuroscience.2008.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/20/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
|
28
|
Gabapentin evoked changes in functional activity in nociceptive regions in the brain of the anaesthetized rat: an fMRI study. Br J Pharmacol 2008; 153:1558-67. [PMID: 18264121 DOI: 10.1038/bjp.2008.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Gabapentin (GBP; 1-(aminomethyl)cyclohexane acetic acid) is used clinically in the treatment of pain. Nevertheless, the sites and mechanisms of action of GBP are poorly defined. Herein, the effects of GBP on brain activation have been studied. EXPERIMENTAL APPROACH Changes in blood oxygen level dependent (BOLD) haemodynamic signal following intravenous infusion of GBP (equivalent to 30 mg kg(-1) p.o., followed by 100 mg kg(-1) p.o.), compared to saline control, were studied in isofluorane anaesthetized rats (n=8 per group). Effects of GBP on mean arterial blood pressure (MAP) were also recorded. RESULTS Random effect analysis revealed that the lower dose of GBP produced significant (P<0.001) increases in BOLD signal intensity in several brain regions, including the thalamus and periaqueductal grey (PAG), compared to basal. This dose of GBP also produced significant (P<0.001) decreases in BOLD signal intensity in the amygdala and the entorhinal cortex. Increasing the dose of GBP (100 mg kg(-1)) produced significantly greater changes in BOLD signal intensity in several brain regions including the thalamus and PAG. MAP was not significantly altered by GBP, compared to saline. CONCLUSIONS AND IMPLICATIONS GBP had marked positive and negative effects on BOLD signal intensity in a number of brain regions in naïve rats. The activation of key areas involved in nociceptive processing indicate a supraspinal site of action of GBP and this may contribute to its well-described analgesic effects in animal models of pain and clinical studies.
Collapse
|
29
|
Chen W, Song B, Marvizón JCG. Inhibition of opioid release in the rat spinal cord by alpha2C adrenergic receptors. Neuropharmacology 2008; 54:944-53. [PMID: 18343461 DOI: 10.1016/j.neuropharm.2008.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/01/2008] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
Abstract
Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic alpha2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of mu-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The alpha2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked mu-opioid receptor internalization with IC50s of 1.7 microM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited mu-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibitions produced by clonidine, guanfacine or UK-14304 were completely reversed by the selective alpha2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the alpha2A antagonist BRL-44408. These results show that alpha2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active.
Collapse
Affiliation(s)
- Wenling Chen
- Center for the Neurobiology of Stress and CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
30
|
Lao L, Song B, Chen W, Marvizón JCG. Noxious mechanical stimulation evokes the segmental release of opioid peptides that induce mu-opioid receptor internalization in the presence of peptidase inhibitors. Brain Res 2008; 1197:85-93. [PMID: 18207137 DOI: 10.1016/j.brainres.2007.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 11/28/2007] [Accepted: 12/21/2007] [Indexed: 11/15/2022]
Abstract
The internalization of mu-opioid receptors (MORs) provides an ideal way to locate areas of opioid peptide release. We used this method to study opioid release in the spinal cord evoked by noxious stimuli in anesthetized rats. Previous studies have shown that opioids released in the spinal cord produce MOR internalization only when they are protected from peptidase degradation. Accordingly, rats were implanted with chronic intrathecal catheters that were used to inject a mixture of peptidase inhibitors (amastatin, captopril and phosphoramidon) onto the lumbar spinal cord. Five minutes later, a noxious stimulus was delivered to the paw. Lumbar spinal segments were double-stained with antibodies against MORs and neurokinin 1 receptors (NK1Rs) using immunofluorescence. Mechanical stimulation of the hindpaw consisted of repeated 10 s clamps with a hemostat for 10 min. In the ipsilateral dorsal horn, the stimulus produced abundant NK1R internalization in segments L3-L6, and a more modest but significant MOR internalization in segments L5 and L6. In the contralateral dorsal horn, NK1R was substantially lower and MOR internalization was negligible. The same mechanical stimulus applied to a forepaw did not produce NK1R or MOR internalization in the lumbar spinal cord. Thermal stimulation consisted of immersing a hindpaw in water at 52 degrees C for 2 min. It produced substantial NK1R internalization ipsilaterally in segment L6, but no MOR internalization. These results show that mechanical stimulation induces segmental opioid release, i.e., in the dorsal horn receiving the noxious signals and not in other spinal segments.
Collapse
Affiliation(s)
- Lijun Lao
- Center for Neurobiology of Stress and CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
31
|
Chen W, Song B, Lao L, Pérez OA, Kim W, Marvizón JCG. Comparing analgesia and mu-opioid receptor internalization produced by intrathecal enkephalin: requirement for peptidase inhibition. Neuropharmacology 2007; 53:664-76. [PMID: 17845806 PMCID: PMC2083640 DOI: 10.1016/j.neuropharm.2007.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/10/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude mu-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or delta-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was 10 times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia.
Collapse
MESH Headings
- Analgesia
- Animals
- Data Interpretation, Statistical
- Enkephalins/administration & dosage
- Enkephalins/pharmacology
- Immunohistochemistry
- Injections, Spinal
- Male
- Microscopy, Confocal
- Oligopeptides/pharmacology
- Pain Measurement/drug effects
- Protease Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Wenling Chen
- Center for Neurovisceral Sciences and Women's Health and CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
32
|
Litvin Y, Pentkowski NS, Blanchard DC, Blanchard RJ. CRF type 1 receptors in the dorsal periaqueductal gray modulate anxiety-induced defensive behaviors. Horm Behav 2007; 52:244-51. [PMID: 17540371 PMCID: PMC1986744 DOI: 10.1016/j.yhbeh.2007.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
The dorsal periaqueductal gray (dPAG) is involved in defensive coping reactions to threatening stimuli. Corticotropin releasing factor (CRF) is substantially implicated as a direct modulator of physiological, endocrine and behavioral responses to a stressor. Previous findings demonstrate a direct role of the central CRF system in dPAG-mediated defensive reactions toward a threatening stimulus. These include anxiogenic behaviors in the elevated plus maze (EPM) in rats and defensive reactions in both the mouse defense test battery (MDTB) and rat exposure test (RET) paradigms in mice. Furthermore, CRF was shown to directly and dose-dependently excite PAG neurons in vitro. The aim of the present series of experiments was to directly evaluate the role of the CRF1 receptor (CRF1) in dPAG-induced defensive behaviors in the MDTB and the RET paradigms. For this purpose, cortagine, a novel CRF1-selective agonist, was directly infused into the dPAG. In the RET the high dose of cortagine (100 ng) significantly affected spatial avoidance measures and robustly increased burying behavior, an established avoidance activity, while having no effects on behaviors in the MDTB. Collectively, these results implicate CRF1 in the dPAG as a mediator of temporally and spatially dependent avoidance in response to controllable and constant stimuli.
Collapse
Affiliation(s)
- Yoav Litvin
- Department of Psychology, University of Hawaii at Manoa, 2430 Campus Rd., Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
33
|
Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 2007; 104:11056-61. [PMID: 17578917 PMCID: PMC1894566 DOI: 10.1073/pnas.0702413104] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placebo-induced expectancies have been shown to decrease pain in a manner reversible by opioid antagonists, but little is known about the central brain mechanisms of opioid release during placebo treatment. This study examined placebo effects in pain by using positron-emission tomography with [(11)C]carfentanil, which measures regional mu-opioid receptor availability in vivo. Noxious thermal stimulation was applied at the same temperature for placebo and control conditions. Placebo treatment affected endogenous opioid activity in a number of predicted mu-opioid receptor-rich regions that play central roles in pain and affect, including periaqueductal gray and nearby dorsal raphe and nucleus cuneiformis, amygdala, orbitofrontal cortex, insula, rostral anterior cingulate, and lateral prefrontal cortex. These regions appeared to be subdivided into two sets, one showing placebo-induced opioid activation specific to noxious heat and the other showing placebo-induced opioid reduction during warm stimulation in anticipation of pain. These findings suggest that a mechanism of placebo analgesia is the potentiation of endogenous opioid responses to noxious stimuli. Opioid activity in many of these regions was correlated with placebo effects in reported pain. Connectivity analyses on individual differences in endogenous opioid system activity revealed that placebo treatment increased functional connectivity between the periaqueductal gray and rostral anterior cingulate, as hypothesized a priori, and also increased connectivity among a number of limbic and prefrontal regions, suggesting increased functional integration of opioid responses. Overall, the results suggest that endogenous opioid release in core affective brain regions is an integral part of the mechanism whereby expectancies regulate affective and nociceptive circuits.
Collapse
Affiliation(s)
- Tor D. Wager
- *Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027; and
- To whom correspondence should be addressed. E-mail:
| | - David J. Scott
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| | - Jon-Kar Zubieta
- Departments of Radiology and
- Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720
| |
Collapse
|
34
|
Moylan Governo RJ, Morris PG, Prior MJW, Marsden CA, Chapman V. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: A functional magnetic resonance imaging study. Pain 2006; 126:35-45. [PMID: 16843597 DOI: 10.1016/j.pain.2006.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/19/2006] [Accepted: 06/09/2006] [Indexed: 01/15/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of blood oxygen level dependent (BOLD) haemodynamic responses was used to study the effects of the noxious substance capsaicin on whole brain activation in isofluorane anaesthetised rats. Rats (n=8) received intradermal injection of capsaicin (30 microg/5 microl), or topical cream (0.1%) capsaicin and BOLD responses were acquired for up to 120 min. Effects of capsaicin versus placebo cream treatment on the BOLD response to a 15 g mechanical stimulus applied adjacent to the site of cream application were also studied. Both injection and cream application of capsaicin activated brain areas involved in pain processing, including the thalamus and periaqueductal grey (PAG) (p<0.05, corrected for multiple comparisons). Capsaicin also produced increases in BOLD signal intensity in other regions that contribute to pain processing, such as the parabrachial nucleus and superior colliculus. Mechanical stimulation in capsaicin-treated rats, but not placebo-treated rats, induced a significant decrease in BOLD signal intensity in the PAG (p<0.001). These data demonstrate that the noxious substance capsaicin produces brain activation in the midbrain regions and reveals the importance of the PAG in central sensitization.
Collapse
|
35
|
Loyd DR, Murphy AZ. Sex differences in the anatomical and functional organization of the periaqueductal gray-rostral ventromedial medullary pathway in the rat: a potential circuit mediating the sexually dimorphic actions of morphine. J Comp Neurol 2006; 496:723-38. [PMID: 16615128 PMCID: PMC2823481 DOI: 10.1002/cne.20962] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that morphine, administered systemically or directly into the periaqueductal gray (PAG), produces a significantly greater degree of antinociception in males in comparison with females. Because the midbrain PAG and its descending projections to the rostral ventromedial medulla (RVM) constitute an essential neural circuit for opioid-based analgesia, the present studies were conducted to determine whether sex differences in the anatomical organization of the PAG-RVM pathway, and its activation during persistent inflammatory pain, could account for sex-based differences in opioid analgesia. In the rat, retrograde tracing was combined with Fos immunocytochemistry to investigate sexual dimorphism in the organization of the PAG-RVM circuit and its activation by persistent inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA). The ability of morphine to suppress the activation of the PAG-RVM circuit was also examined. Sexually dimorphic retrograde labeling was observed within the dorsomedial and lateral/ventrolateral PAG at all rostrocaudal levels, with females having significantly more PAG-RVM output neurons in comparison with males. While no sex differences were noted in the activation of the PAG by persistent inflammatory pain, significantly more PAG-RVM cells were activated in males in comparison with females. Systemic administration of morphine significantly suppressed CFA-induced Fos in the PAG in males only. The results of these studies demonstrate that both the anatomical organization and the functional activation of the PAG-RVM circuit are sexually dimorphic and may provide the anatomical substrate for sex-based differences in morphine analgesia.
Collapse
Affiliation(s)
- Dayna R Loyd
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, Atlanta, 30302-4010, USA
| | | |
Collapse
|
36
|
De Luca-Vinhas MCZ, Macedo CE, Brandão ML. Pharmacological assessment of the freezing, antinociception, and exploratory behavior organized in the ventrolateral periaqueductal gray. Pain 2006; 121:94-104. [PMID: 16472918 DOI: 10.1016/j.pain.2005.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/24/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Opioid and serotonergic mechanisms of the ventrolateral periaqueductal gray (vlPAG) are recruited by conditioned freezing and antinociception. However, it is unclear whether freezing and antinociception induced by stimulation of the vlPAG are interrelated. To address this issue we looked at the effects of the opioid antagonist naltrexone, the 5-HT2 antagonist ketanserin, and the benzodiazepine agonist midazolam injected into the vlPAG on the freezing and antinociception induced by electrical stimulation of this region. This antinociception was evaluated by the tail-flick and formalin tests. To further characterize the involvement of the vlPAG in unconditioned fear, the effects of intra-vlPAG injections of midazolam on the exploratory behavior were also assessed in independent groups of rats submitted to the elevated plus-maze test (EPM). The data obtained showed that: (i) electrical stimulation of the vlPAG causes freezing blocked by midazolam but not by naltrexone and ketanserin; (ii) antinociception generated at the level of the vlPAG is inhibited by naltrexone, ketanserin, and midazolam; (iii) activation of benzodiazepine-mediated mechanisms in the vlPAG increased the exploratory behavior of rats in the closed arms but not the avoidance behavior of open arms of the EPM. Thus, freezing and antinociception generated in the vlPAG are dissociated pharmacologically. Whereas antinociception is a multimediated process sensitive to naltrexone, ketanserin, and midazolam, the freezing induced by vlPAG stimulation was reversed only by the benzodiazepine compound. As injections of midazolam into the vlPAG do not cause anxiolytic effects in the EPM, the aversive stimuli inherent of this test seem to bypass the vlPAG.
Collapse
|
37
|
Pertovaara A, Almeida A. Chapter 13 Descending inhibitory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:179-192. [PMID: 18808835 DOI: 10.1016/s0072-9752(06)80017-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
38
|
Coimbra NC, De Oliveira R, Freitas RL, Ribeiro SJ, Borelli KG, Pacagnella RC, Moreira JE, da Silva LA, Melo LL, Lunardi LO, Brandão ML. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp Neurol 2006; 197:93-112. [PMID: 16303128 DOI: 10.1016/j.expneurol.2005.08.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 07/15/2005] [Accepted: 08/18/2005] [Indexed: 01/17/2023]
Abstract
Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly in the pontine reticular formation, gigantocellularis nucleus, and nucleus raphe magnus. The midbrain tectum-gigantocellularis complex and midbrain tectum-nucleus raphe magnus neural pathways may provide an alternative output allowing the organization of the fear-induced anti-nociception by mesencephalic networks.
Collapse
Affiliation(s)
- N C Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Morfologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto (SP), Avenida dos Bandeirantes, 3900, 14049-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shin MS, Helmstetter FJ. Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala. Brain Res 2005; 1064:56-65. [PMID: 16289487 DOI: 10.1016/j.brainres.2005.09.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Previous studies from our laboratory have shown that application of the mu opioid agonist DAMGO into the basolateral region of the amygdala (BLA) suppresses the radiant heat tail flick (TF) reflex in anesthetized rats. This antinociceptive effect can be blocked by lesions of brainstem regions such as the periaqueductal gray (PAG) or the rostral ventromedial medulla (RVM) or by functional inactivation of neurons in these regions, suggesting the activation of brainstem-descending antinociceptive systems from the amygdala. However, little is known about the direct interaction of DAMGO with mu receptors in the amygdala. In the present series of experiments, the BLA was pretreated with opioid receptor antagonists and a G protein inhibitor prior to TF testing with application of DAMGO into the same site. Rats pretreated with the non-selective opioid antagonist naltrexone (1.25-3.75 microg/0.25 microl per side) or the G protein inhibitor pertussis toxin (0.25 microg) failed to show inhibition of TF reflexes following infusion of DAMGO (0.168-0.50 microg), indicating that DAMGO works through G-protein-coupled opioid receptors in the BLA. Furthermore, pretreatment with the mu antagonist beta-FNA (1.00-2.00 microg) attenuated antinociception induced by DAMGO injection, suggesting DAMGO's action on mu receptors in the BLA. Accordingly, we confirm a direct interaction of DAMGO with G-protein-coupled mu receptors in the BLA contributing to induction of opioid antinociception in the amygdala.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/metabolism
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/metabolism
- Anesthetics, Local/administration & dosage
- Anesthetics, Local/metabolism
- Animals
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism
- Male
- Microinjections
- Neurons/drug effects
- Neurons/metabolism
- Pain/metabolism
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Rats
- Rats, Long-Evans
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Maeng-Sik Shin
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | |
Collapse
|
40
|
SONG B, MARVIZÓN JCG. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord. Neuroscience 2005; 136:549-62. [PMID: 16203108 PMCID: PMC1435407 DOI: 10.1016/j.neuroscience.2005.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/28/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022]
Abstract
Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn mediate analgesia, inhibition of spinal opioid release could contribute to the hyperalgesic actions of spinal N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
| | - J. C. G. MARVIZÓN
- *Corresponding author. Tel: +1-310-478-3711x41850; fax: +1-310-312-9289. E-mail address: (J. C. G. Marvizón)
| |
Collapse
|
41
|
Whiteside GT, Boulet JM, Walker K. The role of central and peripheral mu opioid receptors in inflammatory pain and edema: a study using morphine and DiPOA ([8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid). J Pharmacol Exp Ther 2005; 314:1234-40. [PMID: 15937151 DOI: 10.1124/jpet.105.088351] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of opioid receptors located in the central nervous system (CNS) and peripheral nervous system in inflammatory pain is well established. In contrast, although it is has been shown that mu agonists can reduce other manifestations of inflammation, such as edema, the mechanism of action remains unclear. In this study, we have activated mu receptors located centrally, those located peripherally, and those located both centrally and peripherally and compared the effects on pain and edema using the rat carrageenan model of acute inflammation. Activation of mu receptors located only in the periphery, by administration of the peripheralized mu agonist [8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid (DiPOA) or local administration of morphine, resulted in antihyperalgesia (30 mg/kg DiPOA, 83% inhibition; 100 microg/rat morphine, 75% inhibition) without affecting edema. In contrast, activation of both central and peripheral mu receptors using systemically administered morphine resulted in antihyperalgesia (1 mg/kg, 80% inhibition) and inhibition of edema (10 mg/kg, 54% inhibition). Finally, activation of only receptors located in the CNS, by central administration of DiPOA or systemic administration of morphine after block of only the peripheral mu receptors using q-naltrexone, resulted in a significant reduction in edema. Our findings confirm the role of peripheral mu receptors in the pathology of pain associated with acute inflammation and argue against the involvement of these receptors in edema formation. Furthermore, our data demonstrate that activation of mu receptors in the brain inhibits carrageenan-induced edema and suggest that the antiedematous effect of morphine is due to action at central receptors alone.
Collapse
|
42
|
Vanegas H, Schaible HG. Descending control of persistent pain: inhibitory or facilitatory? ACTA ACUST UNITED AC 2005; 46:295-309. [PMID: 15571771 DOI: 10.1016/j.brainresrev.2004.07.004] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/30/2022]
Abstract
The periaqueductal gray matter (PAG) and the nucleus raphe magnus and adjacent structures of the rostral ventromedial medulla (RVM), with their projections to the spinal dorsal horn, constitute the "efferent channel" of a pain-control system that "descends" from the brain onto the spinal cord. Considerable evidence has recently emerged regarding participation of this system in persistent pain conditions such as inflammation and neuropathy. Herein, this evidence is reviewed and organized to support the idea that persistent nociception simultaneously triggers descending facilitation and inhibition. In models of inflammation, descending inhibition predominates over facilitation in pain circuits with input from the inflamed tissue, and thus attenuates primary hyperalgesia, while descending facilitation predominates over inhibition in pain circuits with input from neighboring tissues, and thus facilitates secondary hyperalgesia. Both descending facilitation and inhibition mainly stem from RVM. The formalin-induced primary hyperalgesia, although considered a model for inflammation, is mainly facilitated from RVM. Also, formalin-induced secondary hyperalgesia is facilitated by RVM. Again, formalin triggers a concomitant but concealed descending inhibition. The (primary) hyperalgesia and allodynia of the neuropathic syndrome are also facilitated from RVM. Simultaneously, there is an inhibition of secondary neuronal pools that is partly supported from the PAG. Because in all these models of peripheral damage descending facilitation and inhibition are triggered simultaneously, it will be important to elucidate why inhibition predominates in some neuronal pools and facilitation in others. Therapies that enhance descending inhibition and/or attenuate descending facilitation are furthermore an important target for research in the future.
Collapse
Affiliation(s)
- Horacio Vanegas
- Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 21827, Caracas 1020A, Venezuela.
| | | |
Collapse
|
43
|
Ossipov MH, Lai J, King T, Vanderah TW, Porreca F. Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers 2005; 80:319-24. [PMID: 15795927 DOI: 10.1002/bip.20254] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The opioid analgesics, commonly exemplified by morphine, represent the best option for the treatment of severe pain and for the management of chronic pain states, of both malignant and nonmalignant origin. It is well recognized that the prolonged use of opioids is associated with a requirement for ever-increasing doses in order to maintain pain relief at an acceptable and consistent level. This phenomenon is termed analgesic tolerance. While the concept that tolerance can develop as a result of cellular adaptations to the presence of the opioid has been proposed, it is now becoming abundantly clear that tolerance may also be related to a state of hyperalgesia that results from exposure to the opioid itself. Patients who receive long-term opioid therapy sometimes develop unexpected, abnormal pain. Similar paradoxical opioid-induced pain has been confirmed in a number of animal studies, even during the period of continuous opioid delivery. A number of recent studies have demonstrated that such pain may be secondary to neuroplastic changes that occur in the brain and spinal cord. One such change may be the activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM) elicited in part by increased activity of cholecystokinin (CCK) in the RVM. A cascade of pronociceptive events may follow, such as opioid-induced upregulation of spinal dynorphin levels that promotes enhanced input from primary afferent nociceptors. This mechanism appears to depend on intact descending pathways from the RVM, since interrupting this pathway abolishes enhanced abnormal pain. Furthermore, extended opioid exposure also can elicit increased calcitonin gene related peptide (CGRP) and substance P expression in the dorsal root ganglia. It is probable that increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance because the same manipulations that block abnormal pain also block antinociceptive tolerance. Taken together, such studies show that opioids elicit systems-level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin, and enhanced, evoked release of excitatory transmitters from primary afferents. These adaptive changes in response to sustained exposure to opioids indicate the need for the evaluation of the clinical consequences of long-term opioid administration. Additionally, these findings suggest a need for novel chemistry involving design of agents that may counteract opiate-induced neuroplastic adaptations resulting in pain relief without analgesic tolerance.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
44
|
de Luca MCZ, Brandão ML, Motta VA, Landeira-Fernandez J. Antinociception induced by stimulation of ventrolateral periaqueductal gray at the freezing threshold is regulated by opioid and 5-HT2A receptors as assessed by the tail-flick and formalin tests. Pharmacol Biochem Behav 2003; 75:459-66. [PMID: 12873638 DOI: 10.1016/s0091-3057(03)00145-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been suggested that antinociception is part of the animal's defensive reaction to threatening situations. Chemical or electrical stimulation of the ventrolateral portion of the periaqueductal gray (vlPAG) produces both defensive freezing behavior and antinociception, supporting the view that the vlPAG is a critical structure in the coordination of the defensive reaction. The present study indicated that electrical stimulation of the vlPAG, at a current intensity sufficient to induce defensive freezing, caused a decrease in reactivity to a phasic escapable noxious stimulus (as measured in the tail-flick test) and to a tonic, inescapable noxious stimulus (as measured in the formalin test). These antinociceptive effects were reversed by microinjections of the opioid antagonist naltrexone or the specific 5-HT2A receptor antagonist ketanserin into the stimulation sites. These results suggest that (a) activation of neural circuits of the vlPAG, responsible for the production of freezing behavior, reduces the reactivity to nociceptive stimuli (as evaluated by the tail-flick and formalin tests) and that (b) opioid- and 5-HT2A-mediated mechanisms are called into action for regulating the antinociceptive response that accompanies the freezing behavior induced by vlPAG stimulation.
Collapse
Affiliation(s)
- Maria Cecília Zanoto de Luca
- Laboratório de Psicobiologia, Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
45
|
Haake M, Thon A, Bette M. Absence of spinal response to extracorporeal shock waves on the endogenous opioid systems in the rat. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:279-284. [PMID: 11316537 DOI: 10.1016/s0301-5629(00)00317-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracorporeal shock wave therapy (ESWT) seems to be a new therapeutic strategy for chronic pain due to tendopathies. Neurophysiological mechanisms of action for pain relief following ESWT are still unknown. The aim of this study was to investigate if the analgesic effect of ESWT is caused by modulation of the endogenous spinal opioid system. Rats were treated with two different energy flux densities (0.04 and 0.11mJ/mm(2)) and immunohistochemical analysis of met-enkephalin (MRGL) and dynorphin (Dyn) was performed at 4 or 72 h after ESWT. ESWT had no modulatory influence on the expression of the spinal opioid systems. Different energy doses or repetitive treatment did not alter MRGL or Dyn immunoreactivity in the spinal cord. Furthermore, a delayed effect of ESWT at 72 h after treatment was not detectable. We conclude from these findings that the analgesic effects of ESWT treatment are not supported by endogenous opioids.
Collapse
Affiliation(s)
- M Haake
- Orthopädische Klinik, Philipps-Universität Marburg, Baldingerstrasse 1, D-35043 Marburg, Germany.
| | | | | |
Collapse
|
46
|
Morgan MM, Whitney PK. Immobility accompanies the antinociception mediated by the rostral ventromedial medulla of the rat. Brain Res 2000; 872:276-81. [PMID: 10924709 DOI: 10.1016/s0006-8993(00)02502-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rostral ventromedial medulla (RVM) is part of a descending pain modulatory system that runs from the periaqueductal gray (PAG) to the spinal cord. The objective of the present study was to determine whether the antinociception mediated by the RVM is associated with locomotor changes as has been reported for the PAG [42]. Kainate (4, 20, or 40 pmol), morphine (1, 5, or 10 microg), or saline (0.2 or 0. 5 microl) was injected into the RVM and locomotion and nociception assessed. Microinjections of kainate and morphine that produced antinociception almost invariably inhibited locomotor activity. In some rats this immobility consisted of no movements when placed in the center of the open field chamber. These data are consistent with the immobility and antinociception produced by activation of the ventrolateral PAG and indicate that the descending ventrolateral PAG/RVM system integrates a behavioral response of which antinociception is only one component.
Collapse
Affiliation(s)
- M M Morgan
- Department of Psychology, Washington State University, 14204 NE Salmon Creek Ave. Vancouver, WA 98686, USA.
| | | |
Collapse
|
47
|
Abstract
Diffuse noxious inhibitory controls (DNIC), which involve supraspinal structures and modulate the transmission of nociceptive signals, were investigated at different stages during the development of adjuvant-induced monoarthritis in the rat. After behavioral evaluation, recordings of trigeminal convergent neurons were performed in anesthetized animals with acute (24-48 hr) or chronic (3-4 weeks) monoarthritis of the ankle. Inhibitions of C-fiber-evoked neuronal responses during and after the application of noxious conditioning stimuli to the ankle were measured to evaluate DNIC. The conditioning stimuli consisted of mechanical (maximal flexion and graded pressures) and graded thermal stimuli and were applied alternately to normal and arthritic ankles. Behaviorally, the two groups of animals exhibited a similar increased sensitivity to mechanical stimuli applied to the arthritic joint (i.e., an increased ankle-bend score and a decreased vocalization threshold to pressure stimuli). However, they showed different electrophysiological profiles. In the animals with acute monoarthritis, the DNIC-induced inhibitions produced by mechanical or thermal stimulation of the arthritic joint were significantly increased at all intensities compared with the normal joint. In contrast, in the chronic stage of monoarthritis, the DNIC-induced inhibitions triggered by thermal or pressure stimuli were similar for both ankles, except with the most intense mechanical stimuli. This discrepancy between the behavioral and electrophysiological findings suggests that inputs activated during chronic monoarthritis may fail to recruit DNIC and may thus be functionally different from those activated in the acute stage of inflammation.
Collapse
|
48
|
Renno WM, Mahmoud MS, Hamdi A, Beitz AJ. Quantitative immunoelectron microscopic colocalization of GABA and enkephalin in the ventrocaudal periaqueductal gray of the rat. Synapse 1999; 31:216-28. [PMID: 10029240 DOI: 10.1002/(sici)1098-2396(19990301)31:3<216::aid-syn7>3.0.co;2-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present ultrastructural study in the ventrocaudal periaqueductal gray (PAG) of the rat, the relationship and the association between GABAergic and enkephalinergic neuronal elements were investigated using postembedding colocalization immunogold electron microscopic technique in order to establish the precise relationship between these two important neurotransmitters in this part of the brain stem. The GABA-like neuronal elements were immunoreacted with 20 nm gold particles and the enkephalin (ENK)-like immunoreactive neurons were labeled with 10 nm gold particles. Double labeling of sections with ENK and GABA produced colocalization in 23.3% and 1.2% of axon terminals and dendrites, respectively. Most of the double-labeled terminals contained more GABA-like than ENK-like immunolabeling. Approximately 19.4% of the labeled axon terminals and 8.5% of the labeled dendrites contained only GABA-like immunoreactivity, while 24% of the immunolabeled dendrites were immunoreactive with only ENK-like immunoreactivity. The synapses between the two kinds of immunolabeled neuronal profiles appear to be both asymmetrical and symmetrical. GABA-like immunolabeled terminals contained small, clear, pleomorphic or round vesicles and were found to make synapses with ENK-like immunolabeled and nonimmunolabeled dendrites, whereas most of the ENK-like immunolabeled axon terminals contained dense-cored vesicles. Approximately half of the axon terminals (51%) and dendrites (56%) in the ventrolateral PAG were not labeled for either GABA or for ENK immunoreactivity. The results are discussed in terms of GABAergic inhibition of antinociceptive mechanisms in the ventrolateral PAG and of the activation of these mechanisms by ENK neurotransmitter.
Collapse
Affiliation(s)
- W M Renno
- Department of Anatomy, College of Medicine, King Saudi University, Abha, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
49
|
Maione S, Marabese I, Leyva J, Palazzo E, de Novellis V, Rossi F. Characterisation of mGluRs which modulate nociception in the PAG of the mouse. Neuropharmacology 1998; 37:1475-83. [PMID: 9886670 DOI: 10.1016/s0028-3908(98)00126-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The contribution of metabotropic glutamate receptors (mGluRs) to the modulation of nociception by the periaqueductal gray (PAG) matter was investigated in mice. Intra-PAG microinjection of (IS,3R)-ACPD, an agonist of groups I and II mGluRs, as well as (S)-3,5-DHPG, a selective agonist of group I mGluRs, increased the latency of the nociceptive reaction (NR) in the hot plate test. (RS)-AIDA, an antagonist of group I mGluRs, antagonized the effect of (S)-3,5-DHPG, but changed the effect induced by (1S,3R)-ACPD in that a decrease in the latency for the NR could now be observed. L-CCG-I and L-SOP, which are agonists of groups II and III mGluRs respectively, decreased the latency of the NR. (2S)-alpha-EGlu and (RS)-alpha-MSOP, which are antagonists of groups II and III mGluRs, respectively, antagonized the effect of L-CCG-I and L-SOP. (RS)-AIDA and (RS)-alpha-MSOP alone decreased and increased, respectively, the latency of the NR with the highest doses used. (2S)-alpha-EGlu alone did not change significantly the latency of the NR. Intra-PAG microinjection of LH, an agonist of ionotropic glutamate receptors, induced a dose-dependent analgesia which was blocked by pretreatment with DL-AP5, a selective antagonist of NMDA receptors. No mGluRs antagonists were able to prevent LH-induced analgesia. These results emphasize the possible involvement of mGluRs in the modulation of nociception. It seems that activation of group I mGluRs potentiates, while groups II and III mGluRs decrease, the activity of the PAG for the modulation of nociception.
Collapse
Affiliation(s)
- S Maione
- Institute of Pharmacology and Toxicology, Faculty of Medicine and Surgery, 2nd University of Naples, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Wei H, Panula P, Pertovaara A. A differential modulation of allodynia, hyperalgesia and nociception by neuropeptide FF in the periaqueductal gray of neuropathic rats: interactions with morphine and naloxone. Neuroscience 1998; 86:311-9. [PMID: 9692764 DOI: 10.1016/s0306-4522(98)00027-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of neuropeptide FF in the periaqueductal gray on pain behaviour was studied in rats with a chronic neuropathy induced by unilateral ligation of two spinal nerves. Neuropeptide FF produced in a non-monotonic fashion a significant attenuation of tactile allodynia. The antiallodynic effect was not significantly modulated by naloxone administered systemically or intracerebrally. The dose of neuropeptide FF producing a significant antiallodynic effect was not antinociceptive in a test of mechanical or thermal nociception. The thermal antinociceptive effect induced by morphine administered in the periaqueductal gray was significantly attenuated by neuropeptide FF, whereas that induced by systemically administered morphine was not. The interaction of neuropeptide FF with intracerebrally or systemically administered morphine in a test of tactile allodynia was not significant. The results indicate that neuropeptide FF in the periaqueductal gray may produce a selective attenuation of tactile allodynia in neuropathic rats. This antiallodynic effect is at least partly independent of naloxone-sensitive opioid receptors. Furthermore, neuropeptide FF in the periaqueductal gray attenuates antinociception induced by intracerebrally but not systemically administered morphine.
Collapse
Affiliation(s)
- H Wei
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | | | | |
Collapse
|