1
|
Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region. Front Neural Circuits 2017; 11:59. [PMID: 28912689 PMCID: PMC5582069 DOI: 10.3389/fncir.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023] Open
Abstract
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat's lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission in the spinal cord.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Riza P Turkson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Annette Taberner
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Alberto Pinzon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| |
Collapse
|
2
|
Sex differences in hypothalamic-mediated tonic norepinephrine release for thermal hyperalgesia in rats. Neuroscience 2016; 324:420-9. [DOI: 10.1016/j.neuroscience.2016.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
|
3
|
Jeong Y, Moes JR, Wagner M, Holden JE. The posterior hypothalamus exerts opposing effects on nociception via the A7 catecholamine cell group in rats. Neuroscience 2012; 227:144-53. [PMID: 23036619 DOI: 10.1016/j.neuroscience.2012.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/16/2023]
Abstract
Stimulation of the posterior hypothalamic area (PH) produces antinociception in rats and humans, but the precise mechanisms are unknown. The PH forms anatomical connections with the parabrachial area, which contains the pontine A7 catecholamine cell group, a group of spinally projecting noradrenergic neurons known to produce antinociception in the dorsal horn. The aim of the present study was to determine whether PH-induced antinociception is mediated in part through connections with the A7 cell group in female Sprague-Dawley rats, as measured by the tail flick and foot withdrawal latency. Stimulation of the PH with the cholinergic agonist carbachol (125 nmol) produced antinociception that was blocked by pretreatment with atropine sulfate. Intrathecal injection of the α(2)-adrenoceptor antagonist yohimbine reversed PH-induced antinociception, but the α(1)-adrenoceptor antagonist WB4101 facilitated antinociception. Intrathecal injection of normal saline had no effect. In a separate experiment, cobalt chloride, which reversibly arrests synaptic activity, was microinjected into the A7 cell group and blocked PH-induced antinociception. These findings provide evidence that the PH modulates nociception in part through connections with the A7 catecholamine cell group through opposing effects. Antinociception occurs from actions at α(2)-adrenoceptors in the dorsal horn, while concurrent hyperalgesia occurs from actions of norepinephrine at α(1)-adrenoceptors. This hyperalgesic response likely attenuates antinociception from PH stimulation.
Collapse
Affiliation(s)
- Y Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Korea.
| | | | | | | |
Collapse
|
4
|
Bajic D, Van Bockstaele EJ, Proudfit HK. Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience 2012; 224:145-59. [PMID: 22917613 DOI: 10.1016/j.neuroscience.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/05/2012] [Accepted: 08/09/2012] [Indexed: 11/15/2022]
Abstract
Stimulation of neurons in the ventrolateral periaqueductal gray (PAG) produces antinociception as well as cardiovascular depressor responses that are mediated in part by pontine noradrenergic neurons. A previous report using light microscopy has described a pathway from neurons in the ventrolateral PAG to noradrenergic neurons in the A5 cell group that may mediate these effects. The present study used anterograde tracing and electron microscopic analysis to provide more definitive evidence that neurons in the ventrolateral PAG form synapses with noradrenergic and non-catecholaminergic A5 neurons in Sasco Sprague-Dawley rats. Deposits of anterograde tracer, biotinylated dextran amine, into the rat ventrolateral PAG labeled a significant number of axons in the region of the rostral subdivision of the A5 cell group, and a relatively lower number in the caudal A5 cell group. Electron microscopic analysis of anterogradely-labeled terminals in both rostral (n=127) and caudal (n=70) regions of the A5 cell group indicated that approximately 10% of these form synapses with noradrenergic dendrites. In rostral sections, about 31% of these were symmetric synapses, 19% were asymmetric synapses, and 50% were membrane appositions without clear synaptic specializations. In caudal sections, about 22% were symmetric synapses, and the remaining 78% were appositions. In both rostral and caudal subdivisions of the A5, nearly 40% of the anterogradely-labeled terminals formed synapses with non-catecholaminergic dendrites, and about 45% formed axoaxonic synapses. These results provide direct evidence for a monosynaptic pathway from neurons in the ventrolateral PAG to noradrenergic and non-catecholaminergic neurons in the A5 cell group. Further studies should evaluate if this established monosynaptic pathway may contribute to the cardiovascular depressor effects or the analgesia produced by the activation of neurons in the ventrolateral PAG.
Collapse
Affiliation(s)
- D Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
5
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
6
|
Bruehl S, Chung OY. Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 2004; 28:395-414. [PMID: 15341037 DOI: 10.1016/j.neubiorev.2004.06.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 01/14/2023]
Abstract
Endogenous pain regulatory system dysfunction appears to play a role in the maintenance of chronic pain. An important component of the pain regulatory process is the functional interaction between the cardiovascular and pain regulatory systems, which results in an association between elevated resting blood pressure (BP) and diminished acute pain sensitivity. This BP/pain sensitivity relationship is proposed to reflect a homeostatic feedback loop helping restore arousal levels in the presence of painful stimuli. Evidence is emerging that this normally adaptive BP/pain sensitivity relationship is significantly altered in chronic pain conditions, affecting responsiveness to both acute and chronic pain stimuli. Several mechanisms that may underlie this adaptive relationship in healthy individuals are overviewed, including endogenous opioid, noradrenergic, and baroreceptor-related mechanisms. Theoretical models are presented regarding how chronic pain-related alterations in the mechanisms above and increased pain facilatory system activity (central sensitization) may contribute to altered BP/pain sensitivity interactions in chronic pain. Clinical implications are discussed.
Collapse
Affiliation(s)
- Stephen Bruehl
- Department of Anesthesiology, School of Medicine, Vanderbilt University, 1211 Twenty-First Avenue South, Nashville, TN 37212, USA.
| | | |
Collapse
|
7
|
Zhao ZQ, Lacey G, Hendry IA, Morton CR. Substance P release in the cat spinal cord upon afferent C-fibre stimulation is not attenuated by clonidine at analgesic doses. Neurosci Lett 2004; 361:216-9. [PMID: 15135932 DOI: 10.1016/j.neulet.2003.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In anaesthetized cats, antibody microprobes were used to measure the release of immunoreactive substance P (irSP) in the lumbar dorsal horn during electrical stimulation of primary afferent fibres at intensities suprathreshold for unmyelinated fibres. Release of irSP was detected in the region of the superficial dorsal horn. This evoked release was not reduced by clonidine hydrochloride, administered intravenously or by superfusion of the dorsal cord surface. Microprobes inserted during cord superfusion with lignocaine hydrochloride detected less irSP along their entire length, including in the region of evoked release. The results suggest that the analgesic action of clonidine does not involve reduced release of SP from the central terminals of nociceptors in the spinal cord.
Collapse
Affiliation(s)
- Zhi-Qi Zhao
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
8
|
Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess alpha2C-adrenergic receptors. J Neurosci 2003. [PMID: 12890778 DOI: 10.1523/jneurosci.23-17-06837.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thealpha2C subclass of adrenergic receptor (alpha2C-AR) mediates some of the antinociceptive actions of norepinephrine in the spinal cord. Axon terminals, which possess this receptor, are concentrated in the superficial dorsal horn and originate from spinal interneurons. We performed a series of combined tract-tracing and immunocytochemical studies to determine whether alpha2C-AR-immunoreactive axons target projection neurons that possess the neurokinin-1 (NK-1) receptor because such cells are likely to transmit nociceptive information to the brain. Spinomedullary neurons were labeled by stereotaxic injection of the B-subunit of cholera toxin (CTb) into the caudal ventrolateral medulla of three anesthetized adult rats. After 3 d, the animals were anesthetized again and fixed by perfusion. Sections were cut from midlumbar segments and reacted with antibodies to reveal alpha2C-ARs, CTb, and NK-1 receptors. Retrogradely labeled neurons possessing the NK-1 receptor (n = 45) were examined with confocal microscopy to investigate their relationship with alpha2C-AR-immunoreactive axons. Numerous alpha2C-AR axons were apposed to cell bodies and proximal dendrites of cells in lamina I and also to distal dendrites that originate from labeled cell bodies in lamina III/IV. A combined confocal and electron microscopic method confirmed that these appositions were synaptic. Additional experiments showed that virtually all alpha2C-AR terminals in contact with labeled cells are also immunoreactive for the vesicular glutamate transporter 2 and therefore are glutamatergic. These data suggest that norepinephrine can modulate excitatory synaptic transmission from spinal interneurons to projection cells by acting at alpha2C-ARs. This could be one of the mechanisms that underlie the antinociceptive actions of norepinephrine.
Collapse
|
9
|
Olave MJ, Maxwell DJ. An investigation of neurones that possess the alpha 2C-adrenergic receptor in the rat dorsal horn. Neuroscience 2003; 115:31-40. [PMID: 12401319 DOI: 10.1016/s0306-4522(02)00407-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The function of the alpha(2C) subclass of adrenergic receptor in the spinal cord is unclear at present. Immunoreactivity for this receptor is found predominantly on axon terminals of the superficial dorsal horn but limited information is available about the properties and origin of these axons. The aim of this study was to determine which classes of neurone give rise to axons that possess this receptor and to investigate the synaptic organisation of these terminals. A series of double-labelling experiments was performed to investigate the relationship between the alpha(2C) receptor and each one of 14 chemical markers that label various types of axon terminal in the dorsal horn. Tissue was examined with two-colour confocal laser scanning microscopy. Quantitative analysis revealed that alpha(2C)-adrenergic receptors are not present on terminals of unmyelinated or peptidergic primary afferents and descending noradrenergic or serotoninergic axons. They were found on a proportion of terminals belonging to a mixed population of excitatory and inhibitory spinal interneurones, including those that contain neurotensin, somatostatin, enkephalin, GABA and neuropeptide Y. However, a greater proportion of terminals originating from excitatory interneurones were found to possess the receptor. Electron microscopic analysis revealed that alpha(2C)-adrenergic receptor immunoreactivity is predominantly associated with axon terminals that are presynaptic to dendrites but a small proportion of immunoreactive terminals formed axo-axonic synaptic arrangements. These studies indicate that noradrenaline can modulate transmission in the dorsal horn by acting through alpha(2C)-adrenergic receptors on terminals of spinal interneurones.
Collapse
Affiliation(s)
- M J Olave
- Spinal Cord Group, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
10
|
Bajic D, Van Bockstaele EJ, Proudfit HK. Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 2001; 104:181-97. [PMID: 11311541 DOI: 10.1016/s0306-4522(01)00052-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimulation of neurons in the ventrolateral periaqueductal gray produces antinociception that is mediated in part by pontine noradrenergic neurons. Previous light microscopic analysis provided suggestive evidence for a direct projection from neurons in the ventrolateral periaqueductal gray to noradrenergic neurons in the A7 cell group that innervate the spinal cord dorsal horn. Therefore, the present ultrastructural study used anterograde tracing combined with tyrosine hydroxylase immunoreactivity to provide definitive evidence that neurons in the ventrolateral periaqueductal gray form synapses with the somata and dendrites of noradrenergic neurons of the A7 cell group. Injections of the anterograde tracers biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin into the ventrolateral periaqueductal gray of Sasco Sprague-Dawley rats yielded a dense innervation in the region of the lateral pons containing the A7 cell group. Electron microscopic analysis of anterogradely labeled terminals (n=401) in the region of the A7 cell group indicated that approximately 10% of these formed plasmalemmal appositions to tyrosine hydroxylase-immunoreactive dendrites with no intervening astrocytic processes. About 23% of these were asymmetric synapses, 10% were symmetric synapses, and 67% did not exhibit clearly differentiated synaptic specializations. The majority of anterogradely labeled terminals (60%) formed plasmalemmal appositions with dendrites and somata that lacked detectable tyrosine hydroxylase immunoreactivity. About 35% of these were symmetric synapses, 9% were asymmetric synapses and 56% did not form synaptic specializations. Approximately 30% of all anterogradely labeled terminals displayed features characteristic of axo-axonic synapses.The present results provide direct ultrastructural evidence to support the hypothesis that the analgesia produced by stimulation of neurons in the ventrolateral periaqueductal gray is mediated, in part, by activation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group.
Collapse
Affiliation(s)
- D Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
11
|
Nuseir K, Proudfit HK. Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons. Neuroscience 2000; 96:773-83. [PMID: 10727795 DOI: 10.1016/s0306-4522(99)00603-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The A7 catecholamine cell group in the dorsolateral pontine tegmentum constitutes an important part of the descending pathways that modulate nociception. Evidence from immunocytochemical studies demonstrate that noradrenergic A7 neurons are densely innervated by GABA terminals arising from GABA neurons that are located in the dorsolateral pontine tegmentum medial to the A7 cell group. GABA(A) receptors are also located on the somata and dendrites of noradrenergic A7 neurons. These findings suggest that noradrenergic neurons in the A7 cell group may be under tonic inhibitory control by GABA neurons. To test this hypothesis, the GABA(A) antagonist bicuculline methiodide in doses of 0.2 or 1.0nmol was microinjected into sites located dorsal to the A7 cell group and the resulting effects on tail flick and nociceptive foot withdrawal responses were measured. Both doses of bicuculline produced significant increases in tail flick latencies and small, but significant, increases in foot withdrawal latencies. Intrathecal injection of the alpha(2)-adrenoceptor antagonist yohimbine, in a dose of 76.7nmol (30microg), attenuated the antinociceptive effect of bicuculline on both the tail and the feet. In contrast, the alpha(1)-adrenoceptor antagonist WB4101, in a nearly equimolar dose of 78.6nmol (30microg), increased the antinociceptive effect of bicuculline on both the tail and the feet. Intrathecal injection of the antagonists alone did not consistently alter nociceptive responses of either the feet or the tail. These findings suggest that noradrenergic neurons in the A7 cell group are tonically inhibited by local GABA neurons. Furthermore, these findings suggest that inhibition of GABA(A) receptors located on spinally-projecting A7 noradrenergic neurons disinhibits, or activates, two populations of A7 neurons that have opposing effects on nociception. One of these populations facilitates nociception by an action mediated by alpha(1)-adrenoceptors in the spinal cord dorsal horn and the other population inhibits nociception by an action mediated by alpha(2)-adrenoceptors.
Collapse
Affiliation(s)
- K Nuseir
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
12
|
Holden JE, Schwartz EJ, Proudfit HK. Microinjection of morphine in the A7 catecholamine cell group produces opposing effects on nociception that are mediated by alpha1- and alpha2-adrenoceptors. Neuroscience 1999; 91:979-90. [PMID: 10391476 DOI: 10.1016/s0306-4522(98)00673-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stimulation of neurons in the ventromedial medulla produces antinociception in part by inhibiting nociceptive dorsal horn neurons. This antinociceptive effect is mediated in part by spinally projecting noradrenergic neurons located in the A7 catecholamine cell group. Methionine-enkephalin-immunoreactive neurons in the ventromedial medulla project to an area that includes the A7 cell group, and these enkephalin neurons may mediate part of the antinociception produced by stimulation of sites in the ventromedial medulla. This possibility was tested by determining the effects of microinjecting morphine near the A7 cell group on nociceptive foot and tail responses. Microinjection of a 3.75 nmol dose of morphine in the A7 region did not alter nociceptive responses, but a higher dose of 7.5 nmol facilitated these responses. In contrast, a higher dose of 15 nmol of morphine did not alter nociceptive responses. Selective alpha-adrenoceptor antagonists were injected intrathecally to determine whether the hyperalgesia produced by morphine is mediated by spinally projecting noradrenergic A7 neurons. Intrathecal injection of the alpha2-adrenoceptor antagonist yohimbine did not alter the hyperalgesic effect produced by the 7.5 nmol dose of morphine, but the alpha1 antagonist WB4101 reversed the hyperalgesia and produced antinociception that lasted for nearly 30 min. Although the 15 nmol dose of morphine did not alter nociceptive responses, intrathecal injection of yohimbine after the microinjection of morphine produced a significant facilitation of nociception, and intrathecal injection of WB401 produced a significant antinociceptive effect. Intrathecal injection of the antagonists alone did not consistently alter nociception. These findings, and those of published reports, suggest that morphine indirectly activates two populations of spinally projecting A7 noradrenergic neurons that have opposing effects on nociception. One of these populations facilitates nociception by an action mediated by alpha1-adrenoceptors in the spinal cord dorsal horn and the other population inhibits nociception by an action mediated by alpha2-adrenoceptors. These results suggest that some of the methionine-enkephalin neurons located in the ventromedial medulla that project to the A7 cell group can exert bidirectional control of nociceptive responses.
Collapse
Affiliation(s)
- J E Holden
- Department of Medical-Surgical Nursing, University of Illinois at Chicago, 60612, USA
| | | | | |
Collapse
|
13
|
Proudfit HK, Monsen M. Ultrastructural evidence that substance P neurons form synapses with noradrenergic neurons in the A7 catecholamine cell group that modulate nociception. Neuroscience 1999; 91:1499-513. [PMID: 10391454 DOI: 10.1016/s0306-4522(98)00716-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Potent antinociception can be produced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group and this effect is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. Microinjection of substance P near A7 neurons also produces antinociception that is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. These observations suggest that substance P produces antinociception by activating noradrenergic A7 neurons. However, it is not known whether this effect of substance P is produced by a direct or an indirect action on A7 neurons. Although light microscopic studies have demonstrated the existence of both substance P-containing axon terminals and neurokinin-1 receptors in the region of the A7 cell group, it is not known whether substance P terminals form synapses with noradrenergic A7 neurons. These experiments used double-labeling immunocytochemical methods and electron microscopic analysis to determine whether substance P-containing axons form synapses with noradrenergic neurons in the A7 cell group. Pre-embedding immunocytochemistry, combined with light and electron microscopic analysis, was used to provide ultrastructural evidence for synaptic connections between substance P-immunoreactive terminals labeled with immunoperoxidase and tyrosine hydroxylase-immunoreactive A7 neurons labeled with silver-enhanced immunogold. Tyrosine hydroxylase labeling was found in perikarya and dendrites in the A7 region, and substance P labeling was found in axons and synaptic terminals. Substance P-labeled terminals formed asymmetric synapses with tyrosine hydroxylase-labeled dendrites, but only a few of these were present on tyrosine hydroxylase-labeled somata. Substance P-labeled terminals also formed asymmetric synapses with unlabeled dendrites, and many unlabeled terminals formed both symmetric and asymmetric synapses with tyrosine hydroxylase-labeled dendrites. These results demonstrate that substance P neurons form a significant number of synapses with the dendrites of noradrenergic A7 neurons and support the conclusion that microinjection of substance P in the A7 cell group produces antinociception by direct activation of spinally projecting noradrenergic neurons.
Collapse
Affiliation(s)
- H K Proudfit
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA
| | | |
Collapse
|
14
|
Zhang KM, Wang XM, Peterson AM, Chen WY, Mokha SS. alpha2-adrenoceptors modulate NMDA-evoked responses of neurons in superficial and deeper dorsal horn of the medulla. J Neurophysiol 1998; 80:2210-4. [PMID: 9772273 DOI: 10.1152/jn.1998.80.4.2210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular single unit recordings were made from neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in 21 male rats anesthetized with urethan. NMDA produced an antagonist-reversible excitation of 46 nociceptive as well as nonnociceptive neurons. Microiontophoretic application of a preferential alpha2-adrenoceptor (alpha2AR) agonist, (2-[2, 6-dichloroaniline]-2-imidazoline) hydrochloride (clonidine), reduced the NMDA-evoked responses of 86% (6/7) of nociceptive-specific (NS) neurons, 82% (9/11) of wide dynamic range (WDR) neurons, and 67% (4/6) of low-threshold (LT) neurons in the superficial dorsal horn. In the deeper dorsal horn, clonidine inhibited the NMDA-evoked responses of 94% (16/17) of NS and WDR neurons and 60% (3/5) of LT neurons. Clonidine facilitated the NMDA-evoked responses in 14% (1/17) of NS, 9% (1/11) of WDR, and 33% (2/6) of LT neurons in the superficial dorsal horn. Idazoxan, an alpha2AR antagonist, reversed the inhibitory effect of clonidine in 90% (9/10) of neurons, whereas prazosin, an alpha1-adrenoceptor antagonist with affinity for alpha2BAR, and alpha2CAR, were ineffective. We suggest that activation of alpha2ARs produces a predominantly inhibitory modulation of the NMDA-evoked responses of nociceptive neurons in the medullary dorsal horn.
Collapse
Affiliation(s)
- K M Zhang
- Department of Anatomy and Physiology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | |
Collapse
|
15
|
Winkler H. Membrane composition of adrenergic large and small dense cored vesicles and of synaptic vesicles: consequences for their biogenesis. Neurochem Res 1997; 22:921-32. [PMID: 9239747 DOI: 10.1023/a:1022410506476] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The membrane proteins of adrenergic large dense cored vesicles, in particular those of chromaffin granules, have been characterized in detail. With the exception of the nucleotide carrier all major peptides have been cloned. There has been a controversy whether these vesicles contain antigens like synaptophysin, synaptotagmin and VAMP or synaptobrevin found in high concentration in synaptic vesicles. One can now conclude that large dense core vesicles also contain these peptides although in lower concentrations. The biosynthesis of large dense core vesicles is analogous to that of other peptide secreting vesicles of the regulated pathway. One cannot yet definitely define the biosynthesis of small dense core vesicles which apparently have a very similar membrane composition to that of large dense core vesicles. They may form directly from large dense core vesicles when their membranes have been retrieved after exocytosis. These membranes may become sorted in an endosomal compartment where peptides may be deleted or added. Such an addition could be derived from synaptophysin-rich vesicles present in adrenergic axons. However small dense core vesicle peptides may also be transported axonally independent of large dense core vesicles. For proving one of these possibilities some crucial experiments have been suggested.
Collapse
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| |
Collapse
|
16
|
Abstract
We review many of the recent findings concerning mechanisms and pathways for pain and its modulation, emphasizing sensitization and the modulation of nociceptors and of dorsal horn nociceptive neurons. We describe the organization of several ascending nociceptive pathways, including the spinothalamic, spinomesencephalic, spinoreticular, spinolimbic, spinocervical, and postsynaptic dorsal column pathways in some detail and discuss nociceptive processing in the thalamus and cerebral cortex. Structures involved in the descending analgesia systems, including the periaqueductal gray, locus ceruleus, and parabrachial area, nucleus raphe magnus, reticular formation, anterior pretectal nucleus, thalamus and cerebral cortex, and several components of the limbic system are described and the pathways and neurotransmitters utilized are mentioned. Finally, we speculate on possible fruitful lines of research that might lead to improvements in therapy for pain.
Collapse
Affiliation(s)
- W D Willis
- Department of Anatomy & Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
17
|
Holstege JC, Van Dijken H, Buijs RM, Goedknegt H, Gosens T, Bongers CM. Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J Comp Neurol 1996; 376:631-52. [PMID: 8978475 DOI: 10.1002/(sici)1096-9861(19961223)376:4<631::aid-cne10>3.0.co;2-p] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, the distribution of dopamine (DA) was identified light microscopically in all segments of the rat, cat, and monkey spinal cord by using immunocytochemistry with antibodies directed against dopamine. Only fibers and (presumed) terminals were found to be immunoreactive for DA. Strongest DA labeling was present in the sympathetic intermediolateral cell column (IML). Strong DA labeling, consisting of many varicose fibers, was found in all laminae of the dorsal horn, including the central canal area (region X), but with the exception of the substantia gelatinosa, which was only sparsely labeled, especially in rat and monkey. In the motoneuronal cell groups DA labeling was also strong and showed a fine granular appearance. The sexually dimorphic cremaster nucleus and Onuf's nucleus (or its homologue) showed a much stronger labeling than the surrounding somatic motoneurons. In the parasympathetic area at sacral levels, labeling was moderate. The remaining areas, like the intermediate zone (laminae VI-VIII), were only sparsely innervated. The dorsal nucleus (column of Clarke) showed the fewest DA fibers, as did the central cervical nucleus, suggesting that cerebellar projecting cells were avoided by the DA projection. In all species, the descending fibers were located mostly in the dorsolateral funiculus, but laminae I and III also contained many rostrocaudally oriented fibers. It is concluded that DA is widely distributed within the spinal cord, with few differences between species, emphasizing that DA plays an important role as one of the monoamines that influences sensory input as well as autonomic and motor output at the spinal level.
Collapse
Affiliation(s)
- J C Holstege
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Westlund KN, Craig AD. Association of spinal lamina I projections with brainstem catecholamine neurons in the monkey. Exp Brain Res 1996; 110:151-62. [PMID: 8836680 DOI: 10.1007/bf00228547] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In addition to giving primary projections to the parabrachial and periaqueductal gray regions, ascending lamina I projections course through and terminate in brainstem regions known to contain catecholaminergic cells. For this reason, double-labeling experiments were designed for analysis with light and electron microscopy. The lamina I projections in the Cynomolgus monkey were anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) and catecholamine-containing neurons were labeled immunocytochemically for tyrosine hydroxylase (TH). Light level double-labeling experiments revealed that the terminations of the lamina I ascending projections through the medulla and pons strongly overlap with the localization of catecholamine cells in: the entire rostrocaudal extent of the ventrolateral medulla (A1 caudally, C1 rostrally); the solitary nucleus and the dorsomedial medullary reticular formation (A2 caudally, C2 rostrally); the ventrolateral pons (A5); the locus coeruleus (A6); and the subcoerulear region, the Kölliker-Fuse nucleus, and the medial and lateral parabrachial nuclei (A7). At the light microscopic level, close appositions between PHA-L-labeled lamina I terminal varicosities and TH-positive dendrites and somata were observed, particularly in the A1, A5 and the A7 cell groups on the contralateral side. At the electron microscopic level, examples of lamina I terminals were found synapsing on cells of the ventrolateral catecholamine cell groups in preliminary studies. The afferent input relayed by these lamina I projections could provide information about pain, temperature, and metabolic state as described previously. Lamina I input could impact interactions of the catecholamine system with higher brain centers modulating complex autonomic, endocrine, sensory, motor, limbic and cortical functions such as memory and learning. Nociceptive lamina I input to catecholamine cell regions with projections back to the spinal cord could form a feedback loop for control of spinal sensory, autonomic and motor activity.
Collapse
Affiliation(s)
- K N Westlund
- University of Texas Medical Branch, Marine Biomedical Institute, Galveston 77555-1069, USA.
| | | |
Collapse
|
19
|
Affiliation(s)
- A W Duggan
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Royal (Dick) School of Veterinary Studies, Summerhall, UK
| |
Collapse
|
20
|
Lang CW, Hope PJ, Grubb BD, Duggan AW. Lack of effect of microinjection of noradrenaline or medetomidine on stimulus-evoked release of substance P in the spinal cord of the cat: a study with antibody microprobes. Br J Pharmacol 1994; 112:951-7. [PMID: 7522862 PMCID: PMC1910218 DOI: 10.1111/j.1476-5381.1994.tb13173.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Experiments were performed on barbiturate anaesthetized, spinalized cats to investigate the effect of microinjected noradrenaline or medetomidine on the release of immunoreactive substance P in the dorsal spinal cord following peripheral nerve stimulation. The presence of immunoreactive substance P was assessed with microprobes bearing C-terminus-directed antibodies to substance P. 2. Noradrenaline or medetomidine were microinjected into the grey matter of the spinal cord, near microprobe insertion sites, at depths of 2.5, 2.0, 1.5 and 1.0 mm below the spinal cord surface with volumes of approximately 0.125 microliters and a concentration of 10(-3) M. 3. In the untreated spinal cord, electrical stimulation of the ipsilateral tibial nerve (suprathreshold for C-fibres) elicited release of immunoreactive substance P which was centred in and around lamina II. Neither noradrenaline nor medetomidine administration in the manner described produced significant alterations in this pattern of nerve stimulus-evoked release. 4. In agreement with recent ultrastructural studies these results do not support a control of substance P release by catecholamines released from sites near to the central terminals of small diameter primary afferent fibres.
Collapse
Affiliation(s)
- C W Lang
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall
| | | | | | | |
Collapse
|
21
|
Doyle CA, Maxwell DJ. Light- and electron-microscopic analysis of neuropeptide Y-immunoreactive profiles in the cat spinal dorsal horn. Neuroscience 1994; 61:107-21. [PMID: 7969886 DOI: 10.1016/0306-4522(94)90064-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The organization of neuropeptide Y-containing profiles in the dorsal horn of cat lumbosacral spinal cord was examined in an immunocytochemical study employing a specific antiserum against neuropeptide Y. Light-microscopic inspection revealed heavy concentrations of immunoreactive axons and varicosities within the superficial layers of the dorsal horn (laminae I and II) and only low to moderate numbers of positive terminals in the deeper layers (laminae III-VI). Neuropeptide-Y immunoreactivity in the superficial laminae occurred primarily as single punctate terminals, although in sagittal sections long rostrocaudally orientated fibres were also found. Immunoreactive fibres in the deeper layers were usually long and beaded. Two-hundred and eight neuropeptide Y-immunoreactive profiles throughout laminae I-VI were examined through serial sections with the electron microscope, and the overwhelming majority (n = 194) was confirmed to be axon terminals, most of which (95%) formed synaptic junctions. These terminals were packed with small irregularly shaped agranular vesicles, together with a number of large dense-core vesicles. Immunoreactivity was homogeneously scattered throughout the cytoplasm, and was also associated with the dense-core vesicles. A few neuropeptide Y-containing profiles (n = 14) were difficult to classify but they could have been vesicle-containing dendrites. The postsynaptic targets of neuropeptide Y-positive terminals were similar throughout each dorsal horn lamina. Most frequently, neuropeptide Y-positive boutons formed axodendritic and axosomatic synaptic junctions (range = 64% of synapses in laminae V/VI to 83% in lamina III). A smaller proportion of synapses were found upon other axon terminals and in laminae I-III the postsynaptic axon terminals were sometimes the central boutons of glomeruli. A number of terminals, especially those in lamina II, formed multiple synapses which often comprised a triadic arrangement. These findings suggest that neuropeptide Y regulates spinal sensory transmission through both a postsynaptic action upon dorsal horn neurons and a presynaptic action upon primary afferent terminals.
Collapse
Affiliation(s)
- C A Doyle
- Department of Preclinical Veterinary Sciences, University of Edinburgh, U.K
| | | |
Collapse
|
22
|
Doyle CA. Relationships between spinocervical tract neurons and descending catecholamine-containing axons in the cat. Neurosci Lett 1994; 171:217-20. [PMID: 7916139 DOI: 10.1016/0304-3940(94)90643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lumbosacral (L6-S1) spinal cord neurons in the cat were retrogradely labelled after uptake of horseradish peroxidase by their severed axons in the upper cervical (C3-C4) dorsolateral funiculus. Sections of L6-S1 containing labelled neurons were then processed immunocytochemically using antibodies against dopamine-beta-hydroxylase or tyrosine hydroxylase, two enzymes responsible for the synthesis of catecholamines. Two hundred and ninety eight retrogradely-labelled cells within laminae III-V of the dorsal horn were examined under high power (x 1000) with the light microscope. In Triton X-100-treated material, only 13% of these cells had catecholamine-containing varicosities closely apposed to their somata and proximal dendrites, which suggests that in comparison with the postsynaptic dorsal column pathway, spinocervical tract neurons are only sparsely innervated by descending catecholaminergic axons.
Collapse
Affiliation(s)
- C A Doyle
- Department of Preclinical Veterinary Sciences, University of Edinburgh, UK
| |
Collapse
|
23
|
Broman J. Neurotransmitters in subcortical somatosensory pathways. ANATOMY AND EMBRYOLOGY 1994; 189:181-214. [PMID: 7913798 DOI: 10.1007/bf00239008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Investigations during recent years indicate that many different neuroactive substances are involved in the transmission and modulation of somesthetic information in the central nervous system. This review surveys recent developments within the field of somatosensory neurotransmission, emphasizing immunocytochemical findings. Increasing evidence indicates a widespread role for glutamate as a fast-acting excitatory neurotransmitter at different levels in somatosensory pathways. Several studies have substantiated a role for glutamate as a neurotransmitter in primary afferent neurons and in corticofugal projections, and also indicate a neurotransmitter role for glutamate in ascending somatosensory pathways. Other substances likely to be involved in somatosensory neurotransmission include the neuropeptides. Many different peptides have been detected in primary afferent neurons with unmyelinated or thinly myelinated axons, and are thus likely to be directly involved in primary afferent neurotransmission. Some neurons giving rise to ascending somatosensory pathways, primarily those with cell bodies in the dorsal horn, are also immunoreactive for peptides. Recent investigations have shown that the expression of neuropeptides, both in primary afferent and ascending tract neurons, may change as a result of various kinds of peripheral manipulation. The occurrence of neurotransmitters in intrinsic neurons and neurons providing modulating inputs to somatosensory relay nuclei (the dorsal horn, the lateral cervical nucleus, the dorsal column nuclei and the ventrobasal thalamus) is also reviewed. Neurotransmitters and modulators in such neurons include acetylcholine, monoamines, GABA, glycine, glutamate, and various neuropeptides.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| |
Collapse
|
24
|
Doyle CA, Maxwell DJ. Direct catecholaminergic innervation of spinal dorsal horn neurons with axons ascending the dorsal columns in cat. J Comp Neurol 1993; 331:434-44. [PMID: 8099918 DOI: 10.1002/cne.903310312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous ultrastructural studies have shown that catecholamine-containing nerve terminals in the spinal dorsal horn form synaptic junctions with dendrites and somata, but the identity of the neurons giving rise to these structures is largely unknown. In this study we have investigated the possibility that spinomedullary neurons, which project through the dorsal columns to the dorsal column nuclei, are synaptic targets for descending catecholaminergic axons. Neurons with axons ascending the dorsal columns were retrogradely labelled after uptake of horseradish peroxidase by their severed axons in the thoracic (T10-T12) or cervical (C2-C3) dorsal columns. After the retrogradely labelled neurons were visualized, the tissue was immunocytochemically stained with antisera raised against tyrosine hydroxylase or dopamine-beta-hydroxylase. Three hundred forty-three retrogradely labelled neurons within laminae III-V of the lumbosacral dorsal horn were examined under high power with the light microscope. In Triton X-100 treated material, over 60% of cells were found to have dopamine-beta-hydroxylase-immunoreactive varicosities closely apposed to their somata and proximal dendrites. The number of contacts per cell varied from 1 to 22, with a mean number of 4.5. Fewer cells (34%) received contacts from axons immunoreactive for tyrosine hydroxylase as a consequence of the weaker immunoreaction produced by this antiserum. Correlated light and electron microscopic analysis confirmed that many of these contacts were regions of synaptic specialization and that immunostained boutons contained pleomorphic (round to oval) agranular vesicles together with several dense core vesicles. These observations suggest that catecholamines regulate sensory transmission through this spinomedullary pathway by a direct postsynaptic action upon its cells of origin. Such an action would be predicted to suppress transmission generally through this pathway.
Collapse
Affiliation(s)
- C A Doyle
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, United Kingdom
| | | |
Collapse
|
25
|
Ridet JL, Rajaofetra N, Teilhac JR, Geffard M, Privat A. Evidence for nonsynaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions. Neuroscience 1993; 52:143-57. [PMID: 8381923 DOI: 10.1016/0306-4522(93)90189-m] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the synaptic incidence of the contacts established by serotonergic and noradrenergic descending fibers in the dorsal horn of the rat spinal cord. Serial electron microscopic sections were performed. Synapses were scarce. The majority of serotonergic and noradrenergic varicosities (more than 60%) are characterized by nonsynaptic contacts. Numerous glial profiles, and particularly astrocytic profiles, were observed in apposition with serotonergic and noradrenergic varicosities. The proportion of astroglia was higher around serotonergic and noradrenergic varicosities devoid of synaptic specialization. The length of the contact between immunoreactive nonsynaptic varicosities and astrocytes was twice as long as that between synaptic varicosities and astrocytes. Thus, the modulation of sensitive messages by serotonin and noradrenaline through pauci-synaptic varicosities in the dorsal horn of the spinal cord could be an example of the concept of "volume transmission" [Fuxe and Agnati (1991) Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission, Advances in Neuroscience, Vol. 1, pp. 1-9.] in the central nervous system. Analysis of the microenvironment of serotonergic and noradrenergic varicosities led us to make the hypothesis that glial cells, particularly astrocytes, could play some role in volume transmission.
Collapse
Affiliation(s)
- J L Ridet
- INSERM U.336 EPHE, Développement, Plasticité et Vieillissement du Système Nerveux, Université Montpellier II (U.S.T.L.), Montpellier, France
| | | | | | | | | |
Collapse
|