1
|
Radfar F, Shahbazi M, Tahmasebi Boroujeni S, Arab Ameri E, Farahmandfar M. Moderate aerobic training enhances the effectiveness of insulin therapy through hypothalamic IGF1 signaling in rat model of Alzheimer's disease. Sci Rep 2024; 14:15996. [PMID: 38987609 PMCID: PMC11237031 DOI: 10.1038/s41598-024-66637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aβ25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aβ plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aβ25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.
Collapse
Affiliation(s)
- Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Mehdi Shahbazi
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran.
| | - Shahzad Tahmasebi Boroujeni
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Elahe Arab Ameri
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, 1417935837, Iran
| | - Maryam Farahmandfar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran.
| |
Collapse
|
2
|
Lardenoije R, Roubroeks JAY, Pishva E, Leber M, Wagner H, Iatrou A, Smith AR, Smith RG, Eijssen LMT, Kleineidam L, Kawalia A, Hoffmann P, Luck T, Riedel-Heller S, Jessen F, Maier W, Wagner M, Hurlemann R, Kenis G, Ali M, del Sol A, Mastroeni D, Delvaux E, Coleman PD, Mill J, Rutten BPF, Lunnon K, Ramirez A, van den Hove DLA. Alzheimer's disease-associated (hydroxy)methylomic changes in the brain and blood. Clin Epigenetics 2019; 11:164. [PMID: 31775875 PMCID: PMC6880587 DOI: 10.1186/s13148-019-0755-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is a complex multifactorial affliction, the pathogenesis of which is thought to involve gene-environment interactions that might be captured in the epigenome. The present study investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD. RESULTS We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35) in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (- 3.76% 5mC, pŠidák = 1.07E-06), CHRNB1 (+ 1.46% 5hmC, pŠidák = 4.01E-04), RHBDF2 (- 3.45% UC, pŠidák = 4.85E-06), and C3 (- 1.20% UC, pŠidák = 1.57E-03). In parallel, in an independent cohort, we compared the blood methylome of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pŠidák = 7.14E-04). CONCLUSIONS The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Janou A. Y. Roubroeks
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Markus Leber
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Holger Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Adam R. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Rebecca G. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lars M. T. Eijssen
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Bioinformatics—BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Amit Kawalia
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Tobias Luck
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Wolfgang Maier
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Muhammad Ali
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russian Federation
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Dolgoprudny Bilbao, Spain
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Elaine Delvaux
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Paul D. Coleman
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Institute of Psychiatry, King’s College London, London, UK
| | - Bart P. F. Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Daniël L. A. van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Roh HW, Hong CH, Lee S, Lee Y, Lee KS, Chang KJ, Oh BH, Choi SH, Kim SY, Back JH, Chung YK, Lim KY, Noh JS, Son SJ. Frontal Lobe Function and Risk of Hip Fracture in Patient With Alzheimer Disease: An Analysis of Linked Data. Medicine (Baltimore) 2015; 94:e1918. [PMID: 26559259 PMCID: PMC4912253 DOI: 10.1097/md.0000000000001918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To determine the association between frontal lobe function and risk of hip fracture in patients with Alzheimer disease (AD).Retrospective cohort study using multicenter hospital-based dementia registry and national health insurance claim data was done. Participants who had available data of neuropsychological test, national health insurance claim, and other covariates were included. A total of 1660 patients with AD were included based on Stroop Test results. A total of 1563 patients with AD were included based on the Controlled Oral Word Association Test (COWAT) results. Hip fracture was measured by validated identification criteria using national health insurance claim data. Frontal lobe function was measured by Stroop Test and COWAT at baseline.After adjusting for potential covariates, including cognitive function in other domains (language, verbal and nonverbal memory, and attention), the Cox proportional hazard regression analysis revealed that risk of a hip fracture was decreased with a hazard ratio (HR) of 0.98 per one point of increase in the Stroop Test (adjusted HR = 0.98, 95% confidence interval [CI]: 0.97-1.00) and 0.93 per one point increase in COWAT (adjusted HR = 0.93, 95% CI: 0.88-0.99).The risk of hip fracture in AD patients was associated with baseline frontal lobe function. The result of this research presents evidence of association between frontal lobe function and risk of hip fracture in patients with AD.
Collapse
Affiliation(s)
- Hyun Woong Roh
- From the Department of Psychiatry, Ajou University School of Medicine, Suwon (HWR, CHH, KJC, YKC, KYL, JSN, SJS); Health Administration, Department of Management & Administration, Backseok Arts University, Seoul (SJL); Department of Preventive Medicine and Public Health, Ajou University School of Medicine (YL); Institute on Aging, Ajou University Medical Center, Suwon (HWR, CHH, YL, KJC, SJS); Department of Psychiatry, CHA University College of Medicine, Gangnam Medical Center and CHAUM Life Center (KSL); Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul (BHO); Department of Neurology, Inha University School of Medicine, Incheon (SHC); Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul (SYK); and Health Insurance Police Research Institute, National Health Insurance Service, Seoul, Republic of Korea (JHB)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Baloyannis SJ, Mavroudis I, Mitilineos D, Baloyannis IS, Costa VG. The hypothalamus in Alzheimer's disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 2015; 30:478-87. [PMID: 25380804 PMCID: PMC10852817 DOI: 10.1177/1533317514556876] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by irreversible decline of mental faculties, emotional and behavioral changes, loss of motor skills, and dysfunction of autonomic nervous system and disruption of circadian rhythms (CRs). We attempted to describe the morphological findings of the hypothalamus in early cases of AD, focusing our study mostly on the suprachiasmatic nucleus (SCN), the supraoptic nucleus (SON), and the paraventricular nucleus (PVN). Samples were processed for electron microscopy and silver impregnation techniques. The hypothalamic nuclei demonstrated a substantial decrease in the neuronal population, which was particularly prominent in the SCN. Marked abbreviation of dendritic arborization, in association with spinal pathology, was also seen. The SON and PVN demonstrated a substantial number of dystrophic axons and abnormal spines. Alzheimer's pathology, such as deposits of amyloid-β peptide and neurofibrillary degeneration, was minimal. Electron microscopy revealed mitochondrial alterations in the cell body and the dendritic branches. The morphological alterations of the hypothalamic nuclei in early cases of AD may be related to the gradual alteration of CRs and the instability of autonomic regulation.
Collapse
Affiliation(s)
- Stavros J Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| | - Ioannis Mavroudis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Demetrios Mitilineos
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Ioannis S Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Vassiliki G Costa
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| |
Collapse
|
5
|
Loskutova N, Honea RA, Brooks WM, Burns JM. Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer's disease. J Alzheimers Dis 2010; 20:313-22. [PMID: 20164583 DOI: 10.3233/jad-2010-1364] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Accelerated bone loss is associated with Alzheimer's disease (AD). Although the central nervous system plays a direct role in regulating bone mass, primarily through the actions of the hypothalamus, there is little work investigating the possible role of neurodegeneration in bone loss. In this cross-sectional study, we examined the association between bone mineral density (BMD) and neuroimaging markers of neurodegeneration (i.e., global and regional measures of brain volume) in early AD and non-demented aging. Fifty-five non-demented and 63 early AD participants underwent standard neurological and neuropsychological assessment, structural MRI scanning, and dual energy x-ray absorptiometry. In early AD, voxel-based morphometry analyses demonstrated that low BMD was associated with low volume in limbic grey matter (GM) including the hypothalamus, cingulate, and parahippocampal gyri and in the left superior temporal gyrus and left inferior parietal cortex. No relationship between BMD and regional GM volume was found in non-demented controls. The hypothesis-driven region of interest analysis further isolating the hypothalamus demonstrated a positive relationship between BMD and hypothalamic volume after controlling for age and gender in the early AD group but not in non-demented controls. These results demonstrate that lower BMD is associated with lower hypothalamic volume in early AD, suggesting that central mechanisms of bone remodeling may be disrupted by neurodegeneration.
Collapse
Affiliation(s)
- Natalia Loskutova
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas School of Allied Health, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
6
|
Klevay LM. Alzheimer’s disease as copper deficiency. Med Hypotheses 2008; 70:802-7. [DOI: 10.1016/j.mehy.2007.04.051] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/16/2007] [Indexed: 12/31/2022]
|
7
|
Riudavets MA, Iacono D, Resnick SM, O’Brien R, Zonderman AB, Martin LJ, Rudow G, Pletnikova O, Troncoso JC. Resistance to Alzheimer's pathology is associated with nuclear hypertrophy in neurons. Neurobiol Aging 2007; 28:1484-92. [PMID: 17599696 PMCID: PMC2694127 DOI: 10.1016/j.neurobiolaging.2007.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/25/2007] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
This study focuses on the morphometric changes of neurons in asymptomatic Alzheimer's disease (AD), a state characterized by the presence of AD lesions in subjects without cognitive impairment. In autopsy brains, we used stereological methods to compare the cell body and nuclear volumes of anterior cingulate gyrus (ACG) and CA1 hippocampal neurons in asymptomatic AD subjects (n=9), subjects with AD dementia (AD, n=8), mild cognitive impairment (MCI, n=9), and age-matched controls (controls, n=9). In ACG, we observed a significant decrease in the neuronal volume of MCI and AD compared to controls; by contrast, no atrophy was present in asymptomatic AD. Moreover, we found a significant increase in nuclear volume in asymptomatic AD compared to controls (P<0.001), MCI (P<0.01) and AD (P<0.001) brains. Similar results were found in the CA1 region of the hippocampus. This nuclear hypertrophy may represent an early neuronal reaction to Abeta or Tau, or a compensatory mechanism which forestalls the progression of AD and allows the brain to resist the development of dementia.
Collapse
Affiliation(s)
- Miguel Angel Riudavets
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diego Iacono
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M. Resnick
- Laboratory of Personality and Cognition, National Institute of Aging, Baltimore, MD, USA
| | - Richard O’Brien
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan B. Zonderman
- Laboratory of Personality and Cognition, National Institute of Aging, Baltimore, MD, USA
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gay Rudow
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C. Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author at: Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Ross 558, 720 Rutland Avenue, Baltimore, MD, USA 21205. Tel: +1410 955 5632; fax: +1410 955 3250, E-mail address: (JC Troncoso)
| |
Collapse
|
8
|
Abstract
The neurohypophyseal hormones arginine-vasopressin (AVP) and oxytocin (OT) are produced in the neurons of the hypothalamic supraoptic (SON) and paraventricular (PVN) nucleus and in the much smaller cells of the suprachiasmatic (SCN) nucleus. The SON is the main source of plasma AVP. Part of the AVP and OT neurons of the PVN join the hypothalamo-neurohypophyseal tract, whereas others send projections to the median eminence or various brain areas, where AVP and OT are involved in a number of central functions as neurotransmitters/neuromodulators. AVP and OT from the PVN can also regulate via the autonomous innervation endocrine glands and fat tissue. OT is produced for a major part in the PVN but some OT neurons are present in the SON. Moreover, both AVP and OT containing neurons are observed in the "accessory nuclei", i.e. islands situated between the SON and PVN. The SCN is the biological clock, and the number of AVP expressing neurons in the SCN shows both diurnal and seasonal rhythms. In addition to these hypothalamic areas, AVP and OT may be found to a lesser extent in some other brain areas, such as the bed nucleus of the stria terminalis, diagonal band of Broca, nucleus basalis of Meynert, lateral septal nucleus, globus pallidus and the anterior amygdaloid nucleus, as well as in the peripheral tissues. The AVP and OT containing neurons should not be considered as one system. Prominent functional differences exist between the different nuclei. The heterogeneity also becomes clear from the marked differences in the neurohypophyseal peptides containing neurons of the SON, PVN and SCN during aging, and in the most prevalent age-related neurodegenerative diseases, i.e. Alzheimer's disease (AD). For those reasons, we will discuss the SON, PVN and SCN separately.
Collapse
Affiliation(s)
- Tatjana A Ishunina
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Young KW, Greenwood CE. Shift in diurnal feeding patterns in nursing home residents with Alzheimer's disease. J Gerontol A Biol Sci Med Sci 2001; 56:M700-6. [PMID: 11682578 DOI: 10.1093/gerona/56.11.m700] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Individuals with Alzheimer's disease (AD) are highly susceptible to weight loss and malnutrition, which, to date, have not been associated with decreased food consumption. The current study examined food intake patterns and how they change in relation to body mass index (BMI), behavioral function, and cognitive status in institutionalized seniors with AD. METHODS Twenty-one consecutive days of investigator-weighed food intake collections were conducted on 25 subjects with likely AD residing at a home for the aged. All subjects maintained the ability to self-feed. RESULTS Eighty-eight percent of participants did not meet targeted energy needs, including an estimated 37% prevalence of protein inadequacy. Subjects with increased behavioral difficulties, based on the London Psychogeriatric Rating Scale, had reduced meal-related intakes that were highly associated with decreased energy consumption at dinner. With behavioral changes, particularly increased mental disorganization and confusion, there was a shift in circadian eating patterns such that the greatest proportion of daily energy was consumed at breakfast. Individuals with low BMIs tended to be those with more behavioral difficulties, such that BMI was also associated with the shift in overall eating patterns. CONCLUSIONS Changes in behavioral function in seniors with AD result in a circadian shift in intake patterns with the preponderance of calories consumed at breakfast in those with increased behavioral difficulties. This shift in eating patterns associates both with poor overall intake and poor BMI.
Collapse
Affiliation(s)
- K W Young
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
10
|
Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer's disease. Neurobiol Dis 2001; 8:492-503. [PMID: 11442356 DOI: 10.1006/nbdi.2001.0395] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that mice over-expressing the human amyloid precursor protein gene with the double Swedish mutation of familial Alzheimer's disease (mtAPP), which exhibit progressive deposition of amyloid beta-peptide in hippocampal and cortical brain regions, have an impaired ability to maintain a sustained glucocorticoid response to stress. Corticotropin releasing hormone (CRH), which initiates neuroendocrine responses to stress by activating the hypothalamic-pituitary-adrenal (HPA) axis, is expressed in brain regions prone to degeneration in Alzheimer's disease. We therefore tested the hypothesis that CRH can modify neuronal vulnerability to amyloid beta-peptide toxicity. In primary neuronal culture, CRH was protective against cell death caused by an amyloid-beta peptide, an effect that was blocked by a CRH receptor antagonist and by an inhibitor of cyclic AMP-dependent protein kinase. The increased resistance of CRH-treated neurons to amyloid toxicity was associated with stabilization of cellular calcium homeostasis. Moreover, CRH protected neurons against death caused by lipid peroxidation and the excitotoxic neurotransmitter glutamate. The level of mRNA encoding CRH was unchanged in mtAPP mouse brain, whereas the levels of mRNAs encoding glucocorticoid and mineralocorticoid receptors were subtly altered. Our results suggest that disturbances in HPA axis function can occur independently of alterations in CRH mRNA levels in Alzheimer's disease brain and further suggest an additional role for CRH in protecting neurons against cell death.
Collapse
Affiliation(s)
- W A Pedersen
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
11
|
Van der Woude PF, Goudsmit E, Wierda M, Purba JS, Hofman MA, Bogte H, Swaab DF. No vasopressin cell loss in the human hypothalamus in aging and Alzheimer's disease. Neurobiol Aging 1995; 16:11-8. [PMID: 7723930 DOI: 10.1016/0197-4580(95)80003-a] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The total number of immunocytochemically identified vasopressin (AVP) cells was determined morphometrically in the paraventricular (PVN) and dorsolateral part of the supraoptic nucleus (dl-SON) of the human hypothalamus in 30 subjects ranging in age from 15 to 97 years, including 10 Alzheimer's disease (AD) patients. The aim of the present study was to test the hypothesis that the increased activity of AVP neurons reported earlier is accompanied by an absence of cell loss in these nuclei in senescence and AD. The results show that numbers of immunoreactive AVP cells in the PVN and dl-SON do not decline during aging or in AD. During aging, the number of neurons expressing AVP even increased in the PVN of control subjects. The nuclear diameter of the AVP cells in the PVN and dl-SON showed an increase in old AD patients. It is concluded that no cell loss occurs in the AVP cell population in the PVN and dl-SON during aging and in AD, and that AVP expression increases in the PVN during normal aging, but not in AD.
Collapse
Affiliation(s)
- P F Van der Woude
- Graduate School of Neurosciences, Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The supraoptic (SON) and paraventricular nuclei (PVN) of the human hypothalamus are production sites of vasopressin (AVP) and oxytocin (OXT). Although the hypothalamus is affected in Alzheimer's disease (AD), previous work has not only shown that in these two nuclei no neurons are lost, neither during aging nor in AD, but that the number of AVP-expressing neurons and their nucleolar size had even increased with age. These observations indicated that the peptide synthesis of the AVP neurons was activated in the oldest age-groups. Recently published, qualitative observations, using the area of the Golgi Apparatus (GA) as a sensitive parameter for neurosecretory activity, confirmed the activation of SON and PVN neurons with age in human; however, in this report the neurons were not identified according to their neuropeptide content. In the present quantitative study we determined whether the AVP neurons were indeed activated as a result of the aging process in controls and AD patients. We applied a polyclonal antiserum directed against the medial cisternae of the GA on formalin-fixed, paraffin-embedded tissue sections taken from the dorsolateral SON (dl-SON) of 10 controls and 10 AD patients, and performed our measurements in this area that is known to be predominantly occupied (90-95%) by AVP neurons. In addition, the sparse OXT cells present in the area of study, were excluded from the measurements on the basis of alternative sections stained for OXT. In the dl-SON, the area occupied by the GA and the cellular profile area per patient were quaNtified by means of image analysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P J Lucassen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | |
Collapse
|