1
|
Kim SY, Lim W. Break-up and recovery of harmony between direct and indirect pathways in the basal ganglia: Huntington's disease and treatment. Cogn Neurodyn 2024; 18:2909-2924. [PMID: 39555304 PMCID: PMC11564723 DOI: 10.1007/s11571-024-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) in the brain exhibit diverse functions for motor, cognition, and emotion. Such BG functions could be made via competitive harmony between the two competing pathways, direct pathway (DP) (facilitating movement) and indirect pathway (IP) (suppressing movement). As a result of break-up of harmony between DP and IP, there appear pathological states with disorder for movement, cognition, and psychiatry. In this paper, we are concerned about the Huntington's disease (HD), which is a genetic neurodegenerative disorder causing involuntary movement and severe cognitive and psychiatric symptoms. For the HD, the number of D2 SPNs ( N D 2 ) is decreased due to degenerative loss, and hence, by decreasing x D 2 (fraction of N D 2 ), we investigate break-up of harmony between DP and IP in terms of their competition degree C d , given by the ratio of strength of DP ( S DP ) to strength of IP ( S IP ) (i.e.,C d = S DP / S IP ). In the case of HD, the IP is under-active, in contrast to the case of Parkinson's disease with over-active IP, which results in increase in C d (from the normal value). Thus, hyperkinetic dyskinesia such as chorea (involuntary jerky movement) occurs. We also investigate treatment of HD, based on optogenetics and GP ablation, by increasing strength of IP, resulting in recovery of harmony between DP and IP. Finally, we study effect of loss of healthy synapses of all the BG cells on HD. Due to loss of healthy synapses, disharmony between DP and IP increases, leading to worsen symptoms of the HD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10125-w.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
2
|
Kim SY, Lim W. Quantifying harmony between direct and indirect pathways in the basal ganglia: healthy and Parkinsonian states. Cogn Neurodyn 2024; 18:2809-2829. [PMID: 39555274 PMCID: PMC11564607 DOI: 10.1007/s11571-024-10119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) show a variety of functions for motor and cognition. There are two competitive pathways in the BG; direct pathway (DP) which facilitates movement and indirect pathway (IP) which suppresses movement. It is well known that diverse functions of the BG may be made through "balance" between DP and IP. But, to the best of our knowledge, so far no quantitative analysis for such balance was done. In this paper, as a first time, we introduce the competition degree C d between DP and IP. Then, by employing C d , we quantify their competitive harmony (i.e., competition and cooperative interplay), which could lead to improving our understanding of the traditional "balance" so clearly and quantitatively. We first consider the case of normal dopamine (DA) level ofϕ ∗ = 0.3 . In the case of phasic cortical input (10 Hz), a healthy state withC d ∗ = 2.82 (i.e., DP is 2.82 times stronger than IP) appears. In this case, normal movement occurs via harmony between DP and IP. Next, we consider the case of decreased DA level, ϕ = ϕ ∗ ( = 0.3 ) x DA ( 1 > x DA ≥ 0 ). With decreasing x DA from 1, the competition degree C d between DP and IP decreases monotonically from C d ∗ , which results in appearance of a pathological Parkinsonian state with reduced C d . In this Parkinsonian state, strength of IP is much increased than that in the case of normal healthy state, leading to disharmony between DP and IP. Due to such break-up of harmony between DP and IP, impaired movement occurs. Finally, we also study treatment of the pathological Parkinsonian state via recovery of harmony between DP and IP.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
3
|
Xu M, Hu B, Wang Z, Zhu L, Lin J, Wang D. Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model. Cogn Neurodyn 2024; 18:1359-1378. [PMID: 38826645 PMCID: PMC11143146 DOI: 10.1007/s11571-023-09951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/04/2024] Open
Abstract
In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.
Collapse
Affiliation(s)
- Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
4
|
McLoughlin C, Lowery M. Impact of Network Topology on Neural Synchrony in a Model of the Subthalamic Nucleus-Globus Pallidus Circuit. IEEE Trans Neural Syst Rehabil Eng 2024; 32:282-292. [PMID: 38145524 DOI: 10.1109/tnsre.2023.3346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synchronous neural oscillations within the beta frequency range are observed across the parkinsonian basal ganglia network, including within the subthalamic nucleus (STN) - globus pallidus (GPe) subcircuit. The emergence of pathological synchrony in Parkinson's disease is often attributed to changes in neural properties or connection strength, and less often to the network topology, i.e. the structural arrangement of connections between neurons. This study investigates the relationship between network structure and neural synchrony in a model of the STN-GPe circuit comprised of conductance-based spiking neurons. Changes in net synaptic input were controlled for through a synaptic scaling rule, which facilitated separation of the effects of network structure from net synaptic input. Five topologies were examined as structures for the STN-GPe circuit: Watts-Strogatz, preferential attachment, spatial, stochastic block, k-regular random. Beta band synchrony generally increased as the number of connections increased, however the exact relationship was topology specific. Varying the wiring pattern while maintaining a constant number of connections caused network synchrony to be enhanced or suppressed, demonstrating the ability of purely structural changes to alter synchrony. This relationship was well-captured by the algebraic connectivity of the network, the second smallest eigenvalue of the network's Laplacian matrix. The structure-synchrony relationship was further investigated in a network model designed to emulate the action selection role of the STN-GPe circuit. It was found that increasing the number of connections and/or the overlap of action selection channels could lead to a rapid transition to synchrony, which was also predicted by the algebraic connectivity.
Collapse
|
5
|
Cui Z, Wang J, Mao Z, Ling Z, Zhang J, Chen T. Long-term efficacy of deep brain stimulation of the subthalamic nucleus in patients with pharmacologically intractable epilepsy: A case series of six patients. Epileptic Disord 2023; 25:712-723. [PMID: 37518904 DOI: 10.1002/epd2.20129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Epilepsy is one of the widespread neurological illnesses, and about 20%-40% of epilepsy patients are pharmacoresistant. We aimed to assess the long-term efficacy of subthalamic nucleus (STN) deep brain stimulation (DBS) for drug-resistant epilepsy. METHODS We included pharmacologically intractable epilepsy patients who had STN-DBS at the Chinese People's Liberation Army General Hospital between June 2016 and December 2018. We retrospectively evaluated pre- and postoperative clinical outcomes, including seizure frequency, seizure type, anti-seizure medication, cognitive function, anatomical target coordinates, stimulation parameters, and adverse events following the surgical procedure. Six patients with a mean follow-up of 49.3 ± 10.2 months, were included. RESULTS Seizure frequency decreased by an average of 64.0% after STN-DBS at last year follow-up (p = .046), and one patient (1/6) achieved seizure-free status. For seizure type, anti-seizure medication, and cognitive function, there were no significant differences between pre-and post-operation (p > .05). In terms of stimulation parameters, the pulse width, amplitude, and frequency were 58.3 ± 9.4 μs, 2.5 ± .7 V, and 122.5 ± 15.7 Hz, respectively. None of the patients showed normal electroencephalography during the electroencephalography reexamination. There were no surgery-related complications, and chronic STN stimulation was generally well tolerated in five patients. However, one patient (1/6) had a difficulty of dyskinesia in the right arm. SIGNIFICANCE In conclusion, neuromodulation of the STN by DBS is a promising option for patients with pharmacologically intractable epilepsy, especially for whose epileptic zone originates mainly from the frontoparietal region and who are unsuitable for resective surgery. Further prospective multicenter studies with a larger sample size are necessary for further exploration.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Xu M, Hu B, Zhou W, Wang Z, Zhu L, Lin J, Wang D. The mechanism of Parkinson oscillation in the cortex: Possible evidence in a feedback model projecting from the globus pallidus to the cortex. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:6517-6550. [PMID: 37161117 DOI: 10.3934/mbe.2023281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The origin, location and cause of Parkinson's oscillation are not clear at present. In this paper, we establish a new cortex-basal ganglia model to study the origin mechanism of Parkinson beta oscillation. Unlike many previous models, this model includes two direct inhibitory projections from the globus pallidus external (GPe) segment to the cortex. We first obtain the critical calculation formula of Parkinson's oscillation by using the method of Quasilinear analysis. Different from previous studies, the formula obtained in this paper can include the self-feedback connection of GPe. Then, we use the bifurcation analysis method to systematically explain the influence of some key parameters on the oscillation. We find that the bifurcation principle of different cortical nuclei is different. In general, the increase of the discharge capacity of the nuclei will cause oscillation. In some special cases, the sharp reduction of the discharge rate of the nuclei will also cause oscillation. The direction of bifurcation simulation is consistent with the critical condition curve. Finally, we discuss the characteristics of oscillation amplitude. At the beginning of the oscillation, the amplitude is relatively small; with the evolution of oscillation, the amplitude will gradually strengthen. This is consistent with the experimental phenomenon. In most cases, the amplitude of cortical inhibitory nuclei (CIN) is greater than that of cortical excitatory nuclei (CEX), and the two direct inhibitory projections feedback from GPe can significantly reduce the amplitude gap between them. We calculate the main frequency of the oscillation generated in this model, which basically falls between 13 and 30 Hz, belonging to the typical beta frequency band oscillation. Some new results obtained in this paper can help to better understand the origin mechanism of Parkinson's disease and have guiding significance for the development of experiments.
Collapse
Affiliation(s)
- Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Weiting Zhou
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
7
|
Madadi Asl M, Asadi A, Enayati J, Valizadeh A. Inhibitory Spike-Timing-Dependent Plasticity Can Account for Pathological Strengthening of Pallido-Subthalamic Synapses in Parkinson's Disease. Front Physiol 2022; 13:915626. [PMID: 35665225 PMCID: PMC9160312 DOI: 10.3389/fphys.2022.915626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with dysfunction of the basal ganglia (BG) circuitry. Dopamine (DA) depletion in experimental PD models leads to the pathological strengthening of pallido-subthalamic synaptic connections, contributing to the emergence of abnormally synchronized neuronal activity in the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). Augmented GPe-STN transmission following loss of DA was attributed to heterosynaptic plasticity mechanisms induced by cortico-subthalamic inputs. However, synaptic plasticity may play a role in this process. Here, by employing computational modeling we show that assuming inhibitory spike-timing-dependent plasticity (iSTDP) at pallido-subthalamic synapses can account for pathological strengthening of pallido-subthalamic synapses in PD by further promoting correlated neuronal activity in the GPe-STN network. In addition, we show that GPe-STN transmission delays can shape bistable activity-connectivity states due to iSTDP, characterized by strong connectivity and strong synchronized activity (pathological states) as opposed to weak connectivity and desynchronized activity (physiological states). Our results may shed light on how abnormal reshaping of GPe-STN connectivity by synaptic plasticity during parkinsonism is related to the PD pathophysiology and contribute to the development of therapeutic brain stimulation techniques targeting plasticity-induced rewiring of network connectivity.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atefeh Asadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jamil Enayati
- Physics Department, College of Education, University of Garmian, Kalar, Iraq
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
8
|
Chakravarty K, Roy S, Sinha A, Nambu A, Chiken S, Hellgren Kotaleski J, Kumar A. Transient Response of Basal Ganglia Network in Healthy and Low-Dopamine State. eNeuro 2022; 9:ENEURO.0376-21.2022. [PMID: 35140075 PMCID: PMC8938981 DOI: 10.1523/eneuro.0376-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are crucial for a variety of motor and cognitive functions. Changes induced by persistent low-dopamine (e.g., in Parkinson's disease; PD) result in aberrant changes in steady-state population activity (β band oscillations) and the transient response of the BG. Typically, a brief cortical stimulation results in a triphasic response in the substantia nigra pars reticulata (SNr; an output of the BG). The properties of the triphasic responses are shaped by dopamine levels. While mechanisms underlying aberrant steady state activity are well studied, it is still unclear which BG interactions are crucial for the aberrant transient responses in the BG. Moreover, it is also unclear whether mechanisms underlying the aberrant changes in steady-state activity and transient response are the same. Here, we used numerical simulations of a network model of BG to identify the key factors that determine the shape of the transient responses. We show that an aberrant transient response of the SNr in the low-dopamine state involves changes in the direct pathway and the recurrent interactions within the globus pallidus externa (GPe) and between GPe and subthalamic nucleus (STN). However, the connections from D2-type spiny projection neurons (D2-SPN) to GPe are most crucial in shaping the transient response and by restoring them to their healthy level, we could restore the shape of transient response even in low-dopamine state. Finally, we show that the changes in BG that result in aberrant transient response are also sufficient to generate pathologic oscillatory activity in the steady state.
Collapse
Affiliation(s)
| | - Sangheeta Roy
- TCS Research, Tata Consultancy Services, Kolkata, 700160, India
| | - Aniruddha Sinha
- TCS Research, Tata Consultancy Services, Kolkata, 700160, India
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Jeanette Hellgren Kotaleski
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, SE 171 77, Sweden
| | - Arvind Kumar
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| |
Collapse
|
9
|
Hu B, Xu M, Zhu L, Lin J, Zhizhi Wang, Wang D, Zhang D. A bidirectional Hopf bifurcation analysis of Parkinson's oscillation in a simplified basal ganglia model. J Theor Biol 2021; 536:110979. [PMID: 34942160 DOI: 10.1016/j.jtbi.2021.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we study the parkinson oscillation mechanism in a computational model by bifurcation analysis and numerical simulation. Oscillatory activities can be induced by abnormal coupling weights and delays. The bidirectional Hopf bifurcation phenomena are found in simulations, which can uniformly explain the oscillation mechanism in this model. The Hopf1 represents the transition between the low firing rate stable state (SS) and oscillation state (OS), the Hopf2 represents the transition between the high firing rate stable state (HSS) and the OS, the mechanisms of them are different. The Hopf1 and Hopf2 bifurcations both show that when the state transfers from the stable region to the oscillation region, oscillatory activities always originate from the beta frequency band, and then gradually evolve into the alpha frequency band, the theta frequency band and delta frequency band in this model. We find that the changing trends of the DF and oscillation amplitude (OSAM) are contrary, oscillation activities in lower frequency band are more stable than that in higher frequency band. The effect of the delay in inhibitory pathways is greater than that of in excitatory pathways, and appropriate delays improve the discharge activation level (DAL) of the system. In all, we infer that oscillations can be induced by the follow factors: 1. Improvement of the DAL of the globus pallidus externa (GPe); 2. Reduce the DAL of the GPe from the HSS or the discharge saturation state; 3. The GPe can also resonate with the subthalamic nucleus (STN).
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
10
|
Manos T, Diaz-Pier S, Tass PA. Long-Term Desynchronization by Coordinated Reset Stimulation in a Neural Network Model With Synaptic and Structural Plasticity. Front Physiol 2021; 12:716556. [PMID: 34566681 PMCID: PMC8455881 DOI: 10.3389/fphys.2021.716556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Several brain disorders are characterized by abnormal neuronal synchronization. To specifically counteract abnormal neuronal synchrony and, hence, related symptoms, coordinated reset (CR) stimulation was computationally developed. In principle, successive epochs of synchronizing and desynchronizing stimulation may reversibly move neural networks with plastic synapses back and forth between stable regimes with synchronized and desynchronized firing. Computationally derived predictions have been verified in pre-clinical and clinical studies, paving the way for novel therapies. However, as yet, computational models were not able to reproduce the clinically observed increase of desynchronizing effects of regularly administered CR stimulation intermingled by long stimulation-free epochs. We show that this clinically important phenomenon can be computationally reproduced by taking into account structural plasticity (SP), a mechanism that deletes or generates synapses in order to homeostatically adapt the firing rates of neurons to a set point-like target firing rate in the course of days to months. If we assume that CR stimulation favorably reduces the target firing rate of SP, the desynchronizing effects of CR stimulation increase after long stimulation-free epochs, in accordance with clinically observed phenomena. Our study highlights the pivotal role of stimulation- and dosing-induced modulation of homeostatic set points in therapeutic processes.
Collapse
Affiliation(s)
- Thanos Manos
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Laboratoire de Physique Théorique et Modélisation, CNRS, UMR 8089, CY Cergy Paris Université, Cergy-Pontoise Cedex, France
| | - Sandra Diaz-Pier
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Hu B, Xu M, Wang Z, Jiang D, Wang D, Zhang D. The theoretical mechanism of Parkinson's oscillation frequency bands: a computational model study. Cogn Neurodyn 2020; 15:721-731. [PMID: 34367370 DOI: 10.1007/s11571-020-09651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Excessive synchronous oscillation activities appear in the brain is a key pathological feature of Parkinson's disease, the mechanism of which is still unclear. Although some previous studies indicated that β oscillation (13-30 Hz) may directly originate in the network composed of the subthalamic nucleus (STN) and external globus pallidus (GPe) neurons, specific onset mechanisms of which are unclear, especially theoretical evidences in numerical simulation are still little. In this paper, we employ a STN-GPe mean-field model to explore the onset mechanism of Parkinson's oscillation. In addition to β oscillation, we find that some other common oscillation frequency bands can appear in this network, such as the α oscillation band (8-12 Hz), the θ oscillation band (4-7 Hz) and δ oscillation band (1-3 Hz). In addition to the coupling weight between the STN and GPe, the delay is also a critical factor to affect oscillatory activities, which can not be neglected compared to other parameters. Through simulation and analysis, we propose two possible theories may induce the system to transfer from the stable state to the oscillatory state in this model: (1). The oscillation activity can be induced when the firing activation level of the population increases to large enough; (2). In some special cases, the population may stay in the high firing rate stable state and the mean discharge rate of which is too large to induce oscillations, then oscillation activities may be induced as the MD decreases to moderate value. In most situations, the change trends of the MD and oscillation dominant frequency are contrary, which may be an important physiological phenomenon shown in this model. The delays and firing rates were obtained by simulating, which may be verified in the experiment in the future.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China.,Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Danhua Jiang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
12
|
Cortical Control of Subthalamic Neuronal Activity through the Hyperdirect and Indirect Pathways in Monkeys. J Neurosci 2020; 40:7451-7463. [PMID: 32847963 DOI: 10.1523/jneurosci.0772-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys (Macaca fuscata) in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABAA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABAA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively.SIGNIFICANCE STATEMENT Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.
Collapse
|
13
|
Koelman LA, Lowery MM. Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network. Front Comput Neurosci 2019; 13:77. [PMID: 31749692 PMCID: PMC6848887 DOI: 10.3389/fncom.2019.00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Increased beta-band oscillatory activity in the basal ganglia network is associated with Parkinsonian motor symptoms and is suppressed with medication and deep brain stimulation (DBS). The origins of the beta-band oscillations, however, remains unclear with both intrinsic oscillations arising within the subthalamic nucleus (STN)-external globus pallidus (GPe) network and exogenous beta-activity, originating outside the network, proposed as potential sources of the pathological activity. The aim of this study was to explore the relative contribution of autonomous oscillations and exogenous oscillatory inputs in the generation of pathological oscillatory activity in a biophysically detailed model of the parkinsonian STN-GPe network. The network model accounts for the integration of synaptic currents and their interaction with intrinsic membrane currents in dendritic structures within the STN and GPe. The model was used to investigate the development of beta-band synchrony and bursting within the STN-GPe network by changing the balance of excitation and inhibition in both nuclei, and by adding exogenous oscillatory inputs with varying phase relationships through the hyperdirect cortico-subthalamic and indirect striato-pallidal pathways. The model showed an intrinsic susceptibility to beta-band oscillations that was manifest in weak autonomously generated oscillations within the STN-GPe network and in selective amplification of exogenous beta-band synaptic inputs near the network's endogenous oscillation frequency. The frequency at which this resonance peak occurred was determined by the net level of excitatory drive to the network. Intrinsic or endogenously generated oscillations were too weak to support a pacemaker role for the STN-GPe network, however, they were considerably amplified by sparse cortical beta inputs and were further amplified by striatal beta inputs that promoted anti-phase firing of the cortex and GPe, resulting in maximum transient inhibition of STN neurons. The model elucidates a mechanism of cortical patterning of the STN-GPe network through feedback inhibition whereby intrinsic susceptibility to beta-band oscillations can lead to phase locked spiking under parkinsonian conditions. These results point to resonance of endogenous oscillations with exogenous patterning of the STN-GPe network as a mechanism of pathological synchronization, and a role for the pallido-striatal feedback loop in amplifying beta oscillations.
Collapse
Affiliation(s)
- Lucas A. Koelman
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
14
|
The onset mechanism of Parkinson's beta oscillations: A theoretical analysis. J Theor Biol 2019; 470:1-16. [PMID: 30858065 DOI: 10.1016/j.jtbi.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022]
Abstract
In this paper, we build a basal ganglia-cortex-thalamus model to study the oscillatory mechanisms and boundary conditions of the beta frequency band (13-30 Hz) that appears in the subthalamic nucleus. First, a theoretical oscillatory boundary formula is obtained in a simplified model by using the Laplace transform and linearization process of the system at fixed points. Second, we simulate the oscillatory boundary conditions through numerical calculations, which fit with our theoretical results very well, at least in the changing trend. We find that several critical coupling strengths in the model exert great effects on the oscillations, the mechanisms of which differ but can be explained in detail by our model and the oscillatory boundary formula. Specifically, we note that the relatively small or large sizes of the coupling strength from the fast-spiking interneurons to the medium spiny neurons and from the cortex to the fast-spiking interneurons both have obvious maintenance roles on the states. Similar phenomena have been reported in other neurological diseases, such as absence epilepsy. However, some of those interesting mutual regulation mechanisms in the model have rarely been considered in previous studies. In addition to the coupling weight in the pathway, in this work, we show that the delay is a key parameter that affects oscillations. On the one hand, the system needs a minimum delay to generate oscillations; on the other hand, in the appropriate range, a longer delay leads to a higher activation level of the subthalamic nucleus. In this paper, we study the oscillation activities that appear on the subthalamic nucleus. Moreover, all populations in the model show the dynamic behaviour of a synchronous resonance. Therefore, we infer that the mechanisms obtained can be expanded to explore the state of other populations, and that the model provides a unified framework for studying similar problems in the future. Moreover, the oscillatory boundary curves obtained are all critical conditions between the stable state and beta frequency oscillation. The method is also suitable for depicting other common frequency bands during brain oscillations, such as the alpha band (8-12 Hz), theta band (4-7 Hz) and delta band (1-3 Hz). Thus, the results of this work are expected to help us better understand the onset mechanism of parkinson's oscillations and can inspire related experimental research in this field.
Collapse
|
15
|
Hu B, Diao X, Guo H, Deng S, Shi Y, Deng Y, Zong L. The beta oscillation conditions in a simplified basal ganglia network. Cogn Neurodyn 2019; 13:201-217. [PMID: 30956724 PMCID: PMC6426900 DOI: 10.1007/s11571-018-9514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is a type of motor dysfunction disease that is induced mainly by abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons. Periodic oscillatory activities with frequencies of 13-30 Hz are the main physiological characteristics of Parkinson's disease. In this paper, we built a class of STN-GP networks to explore beta oscillation conditions. A theoretical formula was obtained for generating oscillations without internal GP connections. Based on this formula, we studied the effects of cortex inputs, striatum inputs, coupling weights and delays on oscillation conditions, and the theoretical results are in good agreement with the numerical results. The onset mechanism can be explained by the model, and the internal GP connection has little effect on oscillations. Finally, we compared oscillation conditions with those in previous studies and found that the delays and coupling weights required for generating oscillations may decrease as the number of nuclei increases. We hope that the results obtained will inspire future theoretical and experimental studies.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiyezi Diao
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Heng Guo
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shasha Deng
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu Shi
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuqi Deng
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liqing Zong
- Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
16
|
Pautrat A, Rolland M, Barthelemy M, Baunez C, Sinniger V, Piallat B, Savasta M, Overton PG, David O, Coizet V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. eLife 2018; 7:36607. [PMID: 30149836 PMCID: PMC6136891 DOI: 10.7554/elife.36607] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pain is a prevalent symptom of Parkinson's disease, and is effectively treated by deep brain stimulation of the subthalamic nucleus (STN). However, the link between pain and the STN remains unclear. In the present work, using in vivo electrophysiology in rats, we report that STN neurons exhibit complex tonic and phasic responses to noxious stimuli. We also show that nociception is altered following lesions of the STN, and characterize the role of the superior colliculus and the parabrachial nucleus in the transmission of nociceptive information to the STN, physiologically from both structures and anatomically in the case of the parabrachial nucleus. We show that STN nociceptive responses are abnormal in a rat model of PD, suggesting their dependence on the integrity of the nigrostriatal dopaminergic system. The STN-linked nociceptive network that we reveal is likely to be of considerable clinical importance in neurological diseases involving a dysfunction of the basal ganglia.
Collapse
Affiliation(s)
- Arnaud Pautrat
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Marta Rolland
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Margaux Barthelemy
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
| | - Valérie Sinniger
- Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France.,Service d'Hépato-Gastroentérologie, CHU Grenoble Alpes, Grenoble, France
| | - Brigitte Piallat
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Marc Savasta
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Olivier David
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Veronique Coizet
- Inserm, Grenoble, France.,Grenoble Institute of Neurosciences, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
17
|
Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain Struct Funct 2018; 223:3959-3973. [PMID: 30109491 DOI: 10.1007/s00429-018-1726-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Individual axons that form the hyperdirect pathway in Macaca fascicularis were visualized following microiontophoretic injections of biotinylated dextran amine in layer V of the primary motor cortex (M1). Twenty-eight singly labeled axons were reconstructed in 3D from serial sections. The M1 innervation of the subthalamic nucleus (STN) arises essentially from collaterals of long-ranged corticofugal axons en route to lower brainstem regions. Typically, after leaving M1, these large caliber axons (2-3 µm) enter the internal capsule and travel between caudate nucleus and putamen without providing any collateral to the striatum. More ventrally, they emit a thin collateral (0.5-1.5 µm) that runs lateromedially within the dorsal region of the STN, providing boutons en passant in the sensorimotor territory of the nucleus. In some cases, the medial tip of the collateral enters the lenticular fasciculus dorsally and yields a few beaded axonal branches in the zona incerta. In other cases, the collateral runs caudally and innervates the ventrolateral region of the red nucleus where large axon varicosities (up to 1.7 µm in diameter) are observed, many displaying perisomatic arrangements. Our ultrastructural analysis reveals a high synaptic incidence (141%) of cortical VGluT1-immunoreactive axon varicosities on distal dendrites of STN neurons, and on various afferent axons. Our single-axon reconstructions demonstrate that the so-called hyperdirect pathway derives essentially from collaterals of long-ranged corticofugal axons that are rarely exclusively devoted to the STN, as they also innervate the red nucleus and/or the zona incerta.
Collapse
|
18
|
Hu B, Shi Q, Guo Y, Diao X, Guo H, Zhang J, Yu L, Dai H, Chen L. The oscillatory boundary conditions of different frequency bands in Parkinson's disease. J Theor Biol 2018; 451:67-79. [PMID: 29727632 DOI: 10.1016/j.jtbi.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13-30 Hz), the alpha band (8-12 Hz), the theta band (4-7 Hz) and the delta band (1-3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson's disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson's disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson's disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qianqian Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyezi Diao
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Yu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Dai
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
19
|
|
20
|
Iwamuro H, Tachibana Y, Ugawa Y, Saito N, Nambu A. Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys. Eur J Neurosci 2017; 46:2684-2701. [PMID: 29044874 PMCID: PMC5725726 DOI: 10.1111/ejn.13738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
Abstract
To understand how the information derived from different motor cortical areas representing different body parts is organized in the basal ganglia, we examined the neuronal responses in the subthalamic nucleus (STN), and the external (GPe) and internal (GPi) segments of the globus pallidus (input, relay and output nuclei, respectively) to stimulation of the orofacial, forelimb and hindlimb regions of the primary motor cortex (MI) and supplementary motor area (SMA) in macaque monkeys under the awake state. Most STN and GPe/GPi neurons responded exclusively to stimulation of either the MI or SMA, and one‐fourth to one‐third of neurons responded to both. STN neurons responding to the hindlimb, forelimb and orofacial regions of the MI were located along the medial–lateral axis in the posterolateral STN, while neurons responding to the orofacial region of the SMA were located more medially than the others in the anteromedial STN. GPe/GPi neurons responding to the hindlimb, forelimb and orofacial regions of the MI were found along the dorsal–ventral axis in the posterolateral GPe/GPi, and neurons responding to the corresponding regions of the SMA were similarly but less clearly distributed in more anteromedial regions. Moreover, neurons responding to the distal and proximal forelimb MI regions were found along the lateral–medial axis in the STN and the ventral–dorsal axis in the GPe/GPi. Most STN and GPe/GPi neurons showed kinaesthetic responses with similar somatotopic maps. These observations suggest that the somatotopically organized inputs from the MI and SMA are well preserved in the STN and GPe/GPi with partial convergence.
Collapse
Affiliation(s)
- Hirokazu Iwamuro
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Research and Therapeutics for Movement Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihisa Tachibana
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University and Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
21
|
Shouno O, Tachibana Y, Nambu A, Doya K. Computational Model of Recurrent Subthalamo-Pallidal Circuit for Generation of Parkinsonian Oscillations. Front Neuroanat 2017; 11:21. [PMID: 28377699 PMCID: PMC5359256 DOI: 10.3389/fnana.2017.00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is a movement disorder caused by dopamine depletion in the basal ganglia. Abnormally synchronized neuronal oscillations between 8 and 15 Hz in the basal ganglia are implicated in motor symptoms of Parkinson's disease. However, how these abnormal oscillations are generated and maintained in the dopamine-depleted state is unknown. Based on neural recordings in a primate model of Parkinson's disease and other experimental and computational evidence, we hypothesized that the recurrent circuit between the subthalamic nucleus (STN) and the external segment of the globus pallidus (GPe) generates and maintains parkinsonian oscillations, and that the cortical excitatory input to the STN amplifies them. To investigate this hypothesis through computer simulations, we developed a spiking neuron model of the STN-GPe circuit by incorporating electrophysiological properties of neurons and synapses. A systematic parameter search by computer simulation identified regions in the space of the intrinsic excitability of GPe neurons and synaptic strength from the GPe to the STN that reproduce normal and parkinsonian states. In the parkinsonian state, reduced firing of GPe neurons and increased GPe-STN inhibition trigger burst activities of STN neurons with strong post-inhibitory rebound excitation, which is usually subject to short-term depression. STN neuronal bursts are shaped into the 8–15 Hz, synchronous oscillations via recurrent interactions of STN and GPe neurons. Furthermore, we show that cortical excitatory input to the STN can amplify or suppress pathological STN oscillations depending on their phase and strength, predicting conditions of cortical inputs to the STN for suppressing oscillations.
Collapse
Affiliation(s)
- Osamu Shouno
- Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan; Honda Research Institute Japan Co., Ltd.Saitama, Japan
| | - Yoshihisa Tachibana
- Division of System Neurophysiology, Department of Physiological Sciences, National Institute for Physiological Sciences, Graduate University for Advanced Studies Aichi, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, Department of Physiological Sciences, National Institute for Physiological Sciences, Graduate University for Advanced Studies Aichi, Japan
| | - Kenji Doya
- Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
22
|
Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. eNeuro 2017; 3:eN-NWR-0156-16. [PMID: 28101525 PMCID: PMC5228592 DOI: 10.1523/eneuro.0156-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Collapse
|
23
|
Janssen MLF, Temel Y, Delaville C, Zwartjes DGM, Heida T, De Deurwaerdère P, Visser-Vandewalle V, Benazzouz A. Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated. Brain Struct Funct 2016; 222:2473-2485. [PMID: 28013397 DOI: 10.1007/s00429-016-1351-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
The subthalamic nucleus (STN) receives monosynaptic glutamatergic afferents from different areas of the cortex, known as the "hyperdirect" pathway. The STN has been divided into three distinct subdivisions, motor, limbic, and associative parts in line with the concept of parallel information processing. The extent to which the parallel information processing coming from distinct cortical areas overlaps in the different territories of the STN is still a matter of debate and the proposed role of dopaminergic neurons in maintaining the coherence of responses to cortical inputs in each territory is not documented. Using extracellular electrophysiological approaches, we investigated to what degree the motor and non-motor regions in the STN are segregated in control and dopamine (DA) depleted rats. We performed electrical stimulation of different cortical areas and recorded STN neuronal responses. We showed that motor and non-motor cortico-subthalamic pathways are not fully segregated, but partially integrated in the rat. This integration was mostly present through the indirect pathway. The spatial distribution and response latencies were the same in sham and 6-hydroxydopamine lesioned animals. The inhibitory phase was, however, less apparent in the lesioned animals. In conclusion, this study provides the first evidence that motor and non-motor cortico-subthalamic pathways in the rat are not fully segregated, but partially integrated. This integration was mostly present through the indirect pathway. We also show that the inhibitory phase induced by GABAergic inputs from the external segment of the globus pallidus is reduced in the DA-depleted animals.
Collapse
Affiliation(s)
- Marcus L F Janssen
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Daphne G M Zwartjes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems group, Twente University, 7500 AE, Enschede, The Netherlands
| | - Tjitske Heida
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems group, Twente University, 7500 AE, Enschede, The Netherlands
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | | | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.
| |
Collapse
|
24
|
van Dijk KJ, Janssen MLF, Zwartjes DGM, Temel Y, Visser-Vandewalle V, Veltink PH, Benazzouz A, Heida T. Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse Current Source Density Method. Front Neural Circuits 2016; 10:87. [PMID: 27857684 PMCID: PMC5093117 DOI: 10.3389/fncir.2016.00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural populations. Approach: Motor cortex evoked local field potentials and unit activity were measured in the subthalamic region, with a 3D measurement grid consisting of 320 measurement points and high spatial resolution. This allowed us to visualize the evoked synaptic input by estimating the current source density (CSD) from the measured local field potentials, using the inverse CSD method. At the same time, the neuronal output of the cells within the grid is assessed by calculating post stimulus time histograms. Main results: The CSD method resulted in clear and distinguishable sources and sinks of the neuronal input activity in the STN after motor cortex stimulation. We showed that the center of the synaptic input of the STN from the motor cortex is located dorsal to the input from globus pallidus. Significance: For the first time we have performed CSD analysis on motor cortex stimulation evoked LFP responses in the rat STN as a proof of principle. Our results suggest that the CSD method can be used to gain new insights into the spatial extent of synaptic pathways in brain structures.
Collapse
Affiliation(s)
- Kees J van Dijk
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Marcus L F Janssen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurology, Maastricht University Medical CenterMaastricht, Netherlands; University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293Bordeaux, France
| | - Daphne G M Zwartjes
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Yasin Temel
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands
| | | | - Peter H Veltink
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Abdelhamid Benazzouz
- University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293 Bordeaux, France
| | - Tjitske Heida
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| |
Collapse
|
25
|
Marchand WR, Dilda V. New Models of Frontal-Subcortical Skeletomotor Circuit Pathology in Tardive Dyskinesia. Neuroscientist 2016; 12:186-98. [PMID: 16684965 DOI: 10.1177/1073858406288727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tardive dyskinesia (TD) is a hyperkinetic movement disorder that can occur as a side effect of treatment with antipsychotic medications. Because antipsychotics block the D2 family of dopamine receptors in the striatum, it has long been suspected this blockade contributes to the development of TD. Specifically, increased sensitivity of the dopamine receptors following chronic blockade has been thought to result in abnormal functioning of the frontal-subcortical (FSC) skeletomotor circuit and the symptoms of TD. However, this hypothesis remains unproven. In recent years, substantial research has focused on the basal ganglia and FSC circuits. This research has resulted in the development of the focused selection model of skeletomotor circuit function. This hypothesis provides a compelling model of neurocircuit abnormalities in TD. A greater understanding of the neuropathology of TD may lead to the development of better treatment and prevention strategies for this disorder. Furthermore, this information may contribute to a more complete understanding of normal skeletomotor circuit function and the role of circuit pathology in numerous neuropsychiatric conditions.
Collapse
Affiliation(s)
- William R Marchand
- George E. Wahlen VAMC and the University of Utah, Salt Lake City, 84148, USA
| | | |
Collapse
|
26
|
Kumaravelu K, Brocker DT, Grill WM. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 2016; 40:207-29. [PMID: 26867734 PMCID: PMC4975943 DOI: 10.1007/s10827-016-0593-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/28/2022]
Abstract
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.
Collapse
Affiliation(s)
- Karthik Kumaravelu
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Pavlides A, Hogan SJ, Bogacz R. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS Comput Biol 2015; 11:e1004609. [PMID: 26683341 PMCID: PMC4684204 DOI: 10.1371/journal.pcbi.1004609] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 01/20/2023] Open
Abstract
In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe). Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.
Collapse
Affiliation(s)
- Alex Pavlides
- MRC Unit for Brain Network Dynamics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - S. John Hogan
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Rafal Bogacz
- MRC Unit for Brain Network Dynamics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Péron J, Frühholz S, Ceravolo L, Grandjean D. Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding. Soc Cogn Affect Neurosci 2015; 11:349-56. [PMID: 26400857 DOI: 10.1093/scan/nsv118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
Abstract
Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson's disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions.
Collapse
Affiliation(s)
- Julie Péron
- Neuroscience of Emotion and Affective Dynamics laboratory, Department of Psychology and Swiss Centre for Affective Sciences, Campus Biotech, University of Geneva, Switzerland
| | - Sascha Frühholz
- Neuroscience of Emotion and Affective Dynamics laboratory, Department of Psychology and Swiss Centre for Affective Sciences, Campus Biotech, University of Geneva, Switzerland
| | - Leonardo Ceravolo
- Neuroscience of Emotion and Affective Dynamics laboratory, Department of Psychology and Swiss Centre for Affective Sciences, Campus Biotech, University of Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics laboratory, Department of Psychology and Swiss Centre for Affective Sciences, Campus Biotech, University of Geneva, Switzerland
| |
Collapse
|
29
|
Callahan JW, Abercrombie ED. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease. J Physiol 2015; 593:3727-38. [PMID: 25952461 DOI: 10.1113/jp270268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/05/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronized state. Here we report novel findings in the R6/2 transgenic mouse model of Huntington's disease (HD) by demonstrating that STN activity is reduced and less phase-locked to cortical low-frequency oscillations. The spectral power of low-frequency oscillations in ECoG recordings of R6/2 mice is diminished while the spectral power of higher frequencies is augmented and such altered cortical patterning could lead to decreased synchrony in corticosubthalamic circuits. Our data establish that cortical entrainment of STN neural activity is disrupted in R6/2 mice and may be one of the mechanisms contributing to disordered motor control in HD. ABSTRACT Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder in which impairments in the processing of information between the cortex and basal ganglia are fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a pivotal role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in a hyperkinetic movement syndrome, similar to the HD phenotype. The aim of the present study was to examine the relationship between neuronal activity in the STN and cortex in an animal model of HD. We performed in vivo extracellular recordings in the STN to measure single-unit activity and local field potentials in the R6/2 transgenic mouse model of HD. These recordings were obtained during epochs of simultaneously acquired electrocorticogram (ECoG) in discrete brain states representative of global cortical network synchronization or desynchronization. Cortically patterned STN neuronal activity was less phase-locked in R6/2 mice, which is likely to result in less efficient coding of cortical inputs by the basal ganglia. In R6/2 mice, the power of the ECoG in lower frequencies (0.5-4 Hz) was diminished while the power expressed in higher frequencies (13-100 Hz) was increased. In addition, the spontaneous activity of STN neurons in R6/2 mice was reduced and neurons exhibited a more irregular firing pattern. Glutamatergic STN neurons provide the major excitatory drive to the output nuclei of the basal ganglia and altered discharge patterns could lead to aberrant basal ganglia output and disordered motor control in HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Elizabeth D Abercrombie
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
30
|
Callahan JW, Abercrombie ED. Age-dependent alterations in the cortical entrainment of subthalamic nucleus neurons in the YAC128 mouse model of Huntington's disease. Neurobiol Dis 2015; 78:88-99. [PMID: 25772440 DOI: 10.1016/j.nbd.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD. The aim of the present study was to examine whether changes in the fidelity of information transmission between the cortex and the STN emerge as a function of phenotypic severity in the YAC128 mouse model of HD. We obtained in vivo extracellular recordings in the STN and concomitant electrocorticogram (ECoG) recordings during discrete brain states that reflected global cortical network synchronization or desynchronization. At early ages in YAC128 mice, both the cortex and the STN exhibited patterns of hyperexcitability. As symptom severity progressed, cortical entrainment of STN activity was disrupted and there was an increase in the proportion of non-oscillating, tonically firing STN neurons that were less phase-locked to cortical activity. Concomitant to the dissipation of STN entrainment, there was a reduction in the evoked response of STN neurons to focal cortical stimulation. The spontaneous discharge of STN neurons in YAC128 mice also decreased with age and symptom severity. These results indicate dysfunction in the flow of information within the corticosubthalamic circuit and demonstrate progressive age-related disconnection of the hyperdirect pathway in a transgenic mouse model of HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Elizabeth D Abercrombie
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
31
|
Abstract
The development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing "indirect-pathway," the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior. Here, we integrate recent studies using techniques, such as viral tracing, transgenic mice, electrophysiology, and behavioral approaches, to create a revised framework for understanding how the GPe relates to behavior in both health and disease.
Collapse
|
32
|
Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 2015; 85:364-76. [PMID: 25578364 PMCID: PMC4304914 DOI: 10.1016/j.neuron.2014.12.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Ebert M, Hauptmann C, Tass PA. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit. Front Comput Neurosci 2014; 8:154. [PMID: 25505882 PMCID: PMC4245901 DOI: 10.3389/fncom.2014.00154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022] Open
Abstract
Synchronization of populations of neurons is a hallmark of several brain diseases. Coordinated reset (CR) stimulation is a model-based stimulation technique which specifically counteracts abnormal synchrony by desynchronization. Electrical CR stimulation, e.g., for the treatment of Parkinson's disease (PD), is administered via depth electrodes. In order to get a deeper understanding of this technique, we extended the top-down approach of previous studies and constructed a large-scale computational model of the respective brain areas. Furthermore, we took into account the spatial anatomical properties of the simulated brain structures and incorporated a detailed numerical representation of 2 · 104 simulated neurons. We simulated the subthalamic nucleus (STN) and the globus pallidus externus (GPe). Connections within the STN were governed by spike-timing dependent plasticity (STDP). In this way, we modeled the physiological and pathological activity of the considered brain structures. In particular, we investigated how plasticity could be exploited and how the model could be shifted from strongly synchronized (pathological) activity to strongly desynchronized (healthy) activity of the neuronal populations via CR stimulation of the STN neurons. Furthermore, we investigated the impact of specific stimulation parameters especially the electrode position on the stimulation outcome. Our model provides a step forward toward a biophysically realistic model of the brain areas relevant to the emergence of pathological neuronal activity in PD. Furthermore, our model constitutes a test bench for the optimization of both stimulation parameters and novel electrode geometries for efficient CR stimulation.
Collapse
Affiliation(s)
- Martin Ebert
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany ; Department of Physics, Institute of Nuclear Physics, University of Cologne Cologne, Germany
| | - Christian Hauptmann
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany ; Department of Neurosurgery, Stanford University Stanford, CA, USA ; Department of Neuromodulation, University of Cologne Cologne, Germany
| |
Collapse
|
34
|
Liebig L, von Ameln-Mayerhofer A, Hentschke H. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro. Exp Brain Res 2014; 233:137-47. [PMID: 25234400 DOI: 10.1007/s00221-014-4095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.
Collapse
Affiliation(s)
- Luise Liebig
- Experimental Anaesthesiology Section, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | | | | |
Collapse
|
35
|
Pan MK, Tai CH, Liu WC, Pei JC, Lai WS, Kuo CC. Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. J Clin Invest 2014; 124:4629-41. [PMID: 25202982 DOI: 10.1172/jci75587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/31/2014] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent hypokinetic movement disorder, and symptomatic PD pathogenesis has been ascribed to imbalances between the direct and indirect pathways in the basal ganglia circuitry. Here, we applied glutamate receptor blockers to the subthalamic nucleus (STN) of parkinsonian rats and evaluated locomotor behaviors via single-unit and local-field recordings. Using this model, we found that inhibition of NMDAergic cortico-subthalamic transmission ameliorates parkinsonian motor deficits without eliciting any vivid turning behavior and abolishes electrophysiological abnormalities, including excessive subthalamic bursts, cortico-subthalamic synchronization, and in situ beta synchronization in both the motor cortex and STN. Premotor cortex stimulation revealed that cortico-subthalamic transmission is deranged in PD and directly responsible for the excessive stimulation-dependent bursts and time-locked spikes in the STN, explaining the genesis of PD-associated pathological bursts and synchronization, respectively. Moreover, application of a dopaminergic agent via a microinfusion cannula localized the therapeutic effect to the STN, without correcting striatal dopamine deficiency. Finally, optogenetic overactivation and synchronization of cortico-subthalamic transmission alone sufficiently and instantaneously induced parkinsonian-associated locomotor dysfunction in normal mice. In addition to the classic theory emphasizing the direct-indirect pathways, our data suggest that deranged cortico-subthalamic transmission via the NMDA receptor also plays a central role in the pathophysiology of parkinsonian motor deficits.
Collapse
|
36
|
Kita T, Osten P, Kita H. Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 2014; 522:4043-56. [PMID: 25048050 DOI: 10.1002/cne.23655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Abstract
The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico-subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico-subthalamic projections have a large-scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed.
Collapse
Affiliation(s)
- Takako Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | |
Collapse
|
37
|
Kang G, Lowery MM. Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson's disease: a simulation study. Front Comput Neurosci 2014; 8:32. [PMID: 24678296 PMCID: PMC3958751 DOI: 10.3389/fncom.2014.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/25/2014] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that subthalamic nucleus (STN)-Deep Brain Stimulation (DBS) may exert at least part of its therapeutic effect through the antidromic suppression of pathological oscillations in the cortex in 6-OHDA treated rats and in parkinsonian patients. STN-DBS may also activate STN neurons by initiating action potential propagation in the orthodromic direction, similarly resulting in suppression of pathological oscillations in the STN. While experimental studies have provided strong evidence in support of antidromic stimulation of cortical neurons, it is difficult to separate relative contributions of antidromic and orthodromic effects of STN-DBS. The aim of this computational study was to examine the effects of antidromic and orthodromic activation on neural firing patterns and beta-band (13-30 Hz) oscillations in the STN and cortex during DBS of STN afferent axons projecting from the cortex. High frequency antidromic stimulation alone effectively suppressed simulated beta activity in both the cortex and STN-globus pallidus externa (GPe) network. High frequency orthodromic stimulation similarly suppressed beta activity within the STN and GPe through the direct stimulation of STN neurons driven by DBS at the same frequency as the stimulus. The combined effect of both antidromic and orthodromic stimulation modulated cortical activity antidromically while simultaneously orthodromically driving STN neurons. While high frequency DBS reduced STN beta-band power, low frequency stimulation resulted in resonant effects, increasing beta-band activity, consistent with previous experimental observations. The simulation results indicate effective suppression of simulated oscillatory activity through both antidromic stimulation of cortical neurons and direct orthodromic stimulation of STN neurons. The results of the study agree with experimental recordings of STN and cortical neurons in rats and support the therapeutic potential of stimulation of cortical neurons.
Collapse
Affiliation(s)
- Guiyeom Kang
- UCD School of Electrical, Electronic and Communications Engineering, University College Dublin Dublin, Ireland
| | - Madeleine M Lowery
- UCD School of Electrical, Electronic and Communications Engineering, University College Dublin Dublin, Ireland
| |
Collapse
|
38
|
Nevado-Holgado AJ, Mallet N, Magill PJ, Bogacz R. Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. J Physiol 2013; 592:1429-55. [PMID: 24344162 PMCID: PMC3979604 DOI: 10.1113/jphysiol.2013.259721] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz) or beta (13-30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI) and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to constrain a series of computational models that systematically explored the effective connections and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo. The best candidate model, identified with a genetic algorithm optimising accuracy/complexity measures, faithfully reproduced experimental data and predicted that the effective connections of GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight, but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial connections back to STN. Different connection weights between and within the two types of GP neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the STN-GP network during Parkinsonian beta oscillations, suggesting they arise from interactions between most nodes of basal ganglia-thalamocortical circuits.
Collapse
Affiliation(s)
- Alejo J Nevado-Holgado
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, University of Oxford, Oxford OX1 3TH, UK. ; R. Bogacz: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
39
|
Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 2013; 33:7130-44. [PMID: 23616523 DOI: 10.1523/jneurosci.3576-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The frequency and pattern of activity in the reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) are closely related to motor function. Although phasic, unitary GPe-STN inputs powerfully pattern STN activity ex vivo, correlated GPe-STN activity is not normally observed in vivo. To test the hypothesis that the GPe's influence is constrained by short-term synaptic depression, unitary GPe-STN inputs were stimulated in rat and mouse brain slices at rates and in patterns that mimicked GPe activity in vivo. Together with connectivity estimates these data were then used to simulate GPe-STN transmission. Unitary GPe-STN synaptic connections initially generated large conductances and transmitted reliably. However, the amplitude and reliability of transmission declined rapidly (τ = 0.6 ± 0.5 s) to <10% of their initial values when connections were stimulated at the mean rate of GPe activity in vivo (33 Hz). Recovery from depression (τ = 17.3 ± 18.9 s) was also longer than pauses in tonic GPe activity in vivo. Depression was the result of the limited supply of release-ready vesicles and was in sharp contrast to Calyx of Held transmission, which exhibited 100% reliability. Injection of simulated GPe-STN conductances revealed that synaptic depression caused tonic, nonsynchronized GPe-STN activity to disrupt rather than abolish autonomous STN activity. Furthermore, synchronous inhibition of tonically active GPe-STN neurons or phasic activity of GPe-STN neurons reliably patterned STN activity through disinhibition and inhibition, respectively. Together, these data argue that the frequency and pattern of GPe activity profoundly influence its transmission to the STN.
Collapse
|
40
|
Kang G, Lowery MM. Interaction of Oscillations, and Their Suppression via Deep Brain Stimulation, in a Model of the Cortico-Basal Ganglia Network. IEEE Trans Neural Syst Rehabil Eng 2013; 21:244-53. [PMID: 23476006 DOI: 10.1109/tnsre.2013.2241791] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guiyeom Kang
- School of Electrical, Electronic and Communications Engineering, University College Dublin, Ireland.
| | | |
Collapse
|
41
|
Pavlides A, Hogan SJ, Bogacz R. Improved conditions for the generation of beta oscillations in the subthalamic nucleus--globus pallidus network. Eur J Neurosci 2012; 36:2229-39. [PMID: 22805067 DOI: 10.1111/j.1460-9568.2012.08105.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A key pathology in the development of Parkinson's disease is the occurrence of persistent beta oscillations, which are correlated with difficulty in movement initiation. We investigated the network model composed of the subthalamic nucleus (STN) and globus pallidus (GP) developed by A. Nevado Holgado et al. [(2010) Journal of Neuroscience, 30, 12340-12352], who identified the conditions under which this circuit could generate beta oscillations. Our work extended their analysis by deriving improved analytic stability conditions for realistic values of the synaptic transmission delay between STN and GP neurons. The improved conditions were significantly closer to the results of simulations for the range of synaptic transmission delays measured experimentally. Furthermore, our analysis explained how changes in cortical and striatal input to the STN-GP network influenced oscillations generated by the circuit. As we have identified when a system of mutually connected populations of excitatory and inhibitory neurons can generate oscillations, our results may also find applications in the study of neural oscillations produced by assemblies of excitatory and inhibitory neurons in other brain regions.
Collapse
Affiliation(s)
- Alex Pavlides
- Bristol Centre for Complexity Sciences, Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.
| | | | | |
Collapse
|
42
|
Bosch C, Mailly P, Degos B, Deniau JM, Venance L. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice. Neuroscience 2012; 215:31-41. [DOI: 10.1016/j.neuroscience.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022]
|
43
|
The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 2012; 32:5990-9. [PMID: 22539859 DOI: 10.1523/jneurosci.5717-11.2012] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The frontal cortex provides strong excitatory inputs to the subthalamic nucleus (STN), and these cortico-STN inputs play critical roles in the control of basal ganglia activity. It has been assumed from anatomical and physiological studies that STN is innervated mainly by collaterals of thick and fast conducting pyramidal tract axons originating from the frontal cortex deep layer V neurons, implying that STN directly receives efferent copies of motor commands. To more closely examine this assumption, we performed biotinylated dextran amine anterograde tracing studies in rats to examine the cortical layer of origin, the sizes of parent axons, and whether or not the cortical axons emit any other collaterals to brain areas other than STN. This study revealed that the cortico-STN projection is formed mostly by collaterals of a small fraction of small-to-medium-sized long-range corticofugal axons, which also emit collaterals that innervate multiple other brain sites including the striatum, associative thalamic nuclei, superior colliculus, zona incerta, pontine nucleus, multiple other brainstem areas, and the spinal cord. The results imply that some layer V neurons are involved in associative control of movement through multiple brain innervation sites and that the cortico-STN projection is one part of this multiple corticofugal system.
Collapse
|
44
|
Marchand WR, Lee JN, Suchy Y, Garn C, Chelune G, Johnson S, Wood N. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Hum Brain Mapp 2012; 34:1194-207. [PMID: 22287185 DOI: 10.1002/hbm.21505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/15/2011] [Accepted: 10/06/2011] [Indexed: 01/21/2023] Open
Abstract
The primary aim of this study was to enhance our understanding of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Twenty right-handed female subjects without any history of neuropsychiatric illness underwent fMRI at 3 T. The activation paradigm was a complex motor task completed with the nondominant hand. Analyses of functional connectivity strength were conducted for pairs of structures in input, intrinsic, and output segments of the circuitry. Next, connectivity strengths were correlated with results of neurocognitive testing conducted outside of the scanner, which provided information about both motor and cognitive processes. For input pathways, results indicate that SMA-striatum interactions are particularly relevant for motor behavior and disruptions may impact both motor and cognitive functions. For intrinsic pathways, results indicate that thalamus (VA nucleus) to striatum feedback pathway appears to have an important role during task execution and carries information relevant for motor planning. Together, these findings add to accumulating evidence that the GPe may play a role in higher order basal ganglia processing. A potentially controversial finding was that strong functional connectivity appears to occur across intrinsic inhibitory pathways. Finally, output (thalamus to cortex) feedback was only correlated with motor planning. This result suggests circuit processes may be more relevant for future behaviors than the execution of the current task.
Collapse
Affiliation(s)
- William R Marchand
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Janssen MLF, Zwartjes DGM, Temel Y, van Kranen-Mastenbroek V, Duits A, Bour LJ, Veltink PH, Heida T, Visser-Vandewalle V. Subthalamic neuronal responses to cortical stimulation. Mov Disord 2011; 27:435-8. [PMID: 22213381 DOI: 10.1002/mds.24053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/21/2011] [Accepted: 10/31/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus alleviates motor symptoms in Parkinson's disease patients. However, some patients suffer from cognitive and emotional changes. These side effects are most likely caused by current spread to the cognitive and limbic territories in the subthalamic nucleus. The aim of this study was to identify the motor part of the subthalamic nucleus to reduce stimulation-induced behavioral side effects, by using motor cortex stimulation. METHODS We describe the results of subthalamic nucleus neuronal responses to stimulation of the hand area of the motor cortex and evaluate the safety of this novel technique. RESULTS Responses differed between regions within the subthalamic nucleus. In the anterior and lateral electrode at dorsal levels of the subthalamic nucleus, an early excitation (∼5-45 ms) and subsequent inhibition (45-105 ms) were seen. The lateral electrode also showed a late excitation (∼125-160 ms). Focal seizures were observed following motor cortex stimulation. CONCLUSIONS To prevent seizures the current density should be lowered, so that motor cortex stimulation-evoked responses can be safely used during deep brain stimulation surgery.
Collapse
Affiliation(s)
- Marcus L F Janssen
- Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamawaki N, Magill PJ, Woodhall GL, Hall SD, Stanford IM. Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus. Neuroscience 2011; 203:1-11. [PMID: 22209920 DOI: 10.1016/j.neuroscience.2011.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.
Collapse
Affiliation(s)
- N Yamawaki
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | |
Collapse
|
47
|
Kumar A, Cardanobile S, Rotter S, Aertsen A. The role of inhibition in generating and controlling Parkinson's disease oscillations in the Basal Ganglia. Front Syst Neurosci 2011; 5:86. [PMID: 22028684 PMCID: PMC3199726 DOI: 10.3389/fnsys.2011.00086] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022] Open
Abstract
Movement disorders in Parkinson’s disease (PD) are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe) is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep-brain-stimulation (DBS). These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behavior under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.
Collapse
Affiliation(s)
- Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg Germany
| | | | | | | |
Collapse
|
48
|
Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci 2011; 31:10311-22. [PMID: 21753008 DOI: 10.1523/jneurosci.0915-11.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.
Collapse
|
49
|
Mathai A, Smith Y. The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 2011; 5:64. [PMID: 21866224 PMCID: PMC3149683 DOI: 10.3389/fnsys.2011.00064] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/21/2011] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia receive cortical inputs through two main stations - the striatum and the subthalamic nucleus (STN). The information flowing along the corticostriatal system is transmitted to the basal ganglia circuitry via the "direct and indirect" striatofugal pathways, while information that flows through the STN is transmitted along the so-called "hyperdirect" pathway. The functional significance of this dual entry system is not clear. Although the corticostriatal system has been thoroughly characterized anatomically and electrophysiologically, such is not the case for the corticosubthalamic system. In order to provide further insights into the intricacy of this complex anatomical organization, this review examines and compares the anatomical and functional organization of the corticostriatal and corticosubthalamic systems, and highlights some key issues that must be addressed to better understand the mechanisms by which these two neural systems may interact to regulate basal ganglia functions and dysfunctions.
Collapse
Affiliation(s)
- Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
50
|
Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson's disease. Neuroscience 2011; 198:54-68. [PMID: 21723918 DOI: 10.1016/j.neuroscience.2011.06.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/22/2022]
Abstract
Neurons in the subthalamic nucleus occupy a pivotal position in the circuitry of the basal ganglia. They receive direct excitatory input from the cerebral cortex and the intralaminar nuclei of the thalamus, and directly excite the inhibitory basal ganglia output neurons in the internal segment of the globus pallidus and the substantia nigra. They are also engaged in a reciprocal synaptic arrangement with inhibitory neurons in the external segment of the globus pallidus. Although once viewed as a simple relay of extrinsic input to the basal ganglia, physiological studies of subthalamic neurons have revealed that activity in these neurons does not directly reflect their pattern of extrinsic excitation. Subthalamic neurons are autonomously active at rates comparable to those observed in vivo, and they generate complex patterns of intrinsic activity arising from the interactions between voltage sensitive ion channels on the somatodendritic and axonal membranes. Extrinsic synaptic excitation does not create the firing pattern of the subthalamic neuron, but rather controls the timing of action potentials generated intrinsically. The dopaminergic innervation of the subthalamic nucleus, although moderate, can directly influence firing patterns by acting both on synaptic transmission and voltage-sensitive ion channels responsible for intrinsic properties. Furthermore, chronic dopamine depletion in Parkinson's disease may modify both synaptic transmission and integration in the subthalamic nucleus, in addition to its effects on other regions of the basal ganglia.
Collapse
|