1
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
2
|
Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/13/2009] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex, and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and non-specific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Collapse
Affiliation(s)
- S Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California San Francisco, 5858 Horton Street, Suite 200 Emeryville, CA 94608, USA
| | | |
Collapse
|
3
|
Endogenous acetylcholine modulates impulsive action via alpha4beta2 nicotinic acetylcholine receptors in rats. Eur J Pharmacol 2010; 641:148-53. [PMID: 20639140 DOI: 10.1016/j.ejphar.2010.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 04/14/2010] [Accepted: 05/06/2010] [Indexed: 11/22/2022]
Abstract
Nicotine has been well established as an impulsive action-inducing agent, but it remains unknown whether endogenous acetylcholine affects impulsive action via nicotinic acetylcholine receptors. In the present study, the 3-choice serial reaction time task (3-CSRTT), a simple and valid assessment of impulsive action, was employed. Male Wistar/ST rats were trained to detect and respond to 1-s flashes of light presented in one of three holes until stable performance was achieved. Following training on the 3-CSRTT, rats received intracerebroventricular injections of the preferential alpha4beta2 nicotinic acetylcholine receptor antagonist dihydro-beta-erythroidine (DHbetaE; 0, 3, 10, and 30 microg) or the selective alpha7 nicotinic acetylcholine receptor antagonist methyllycaconitine (MLA; 0, 3, 10, and 30 microg) 5 min before test sessions. Injection of 10 microg of DHbetaE significantly suppressed premature responses, an index of impulsive-like action, without changing other behavioral parameters. On the other hand, MLA infusions failed to affect impulsive-like action at any dose. These results suggest that the central alpha4beta2 nicotinic acetylcholine receptors that enable a provoking effect of endogenous acetylcholine play a critical role in impulsive action. Substances that modulate nicotinic acetylcholine receptors, especially the alpha4beta2 subtype, may be beneficial for the treatment of psychiatric disorders characterized by lack of inhibitory control.
Collapse
|
4
|
|
5
|
Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8:733-50. [PMID: 19721446 DOI: 10.1038/nrd2927] [Citation(s) in RCA: 539] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Collapse
|
6
|
Wilens TE, Decker MW. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem Pharmacol 2007; 74:1212-23. [PMID: 17689498 PMCID: PMC2974320 DOI: 10.1016/j.bcp.2007.07.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioral disorder in children and adolescents, and in about half of these patients, significant symptomology continues into adulthood. Although impulsivity and hyperactivity are the most salient features of ADHD, cognitive deficits, particularly impairments in attention and executive function, are an important component, particularly in adolescents and adults, with over 90% of adults seeking treatment for ADHD manifesting cognitive dysfunction. Currently available medications treat the core ADHD symptoms but typically do not adequately address cognitive aspects of ADHD, underscoring the need for new therapeutics. Dopamine and norepinephrine are hypothesized to be particularly important in ADHD, but there is emerging evidence that cholinergic neurotransmission, particularly involving neuronal nicotinic acetylcholine receptors (nAChRs), may play a role in the pathophysiology of ADHD. Nicotine has demonstrated procognitive effects in both humans and experimental animals and has produced signals of efficacy in small proof-of-concept adult ADHD trials. Although adverse effects associated with nicotine preclude its development as a therapeutic, a number of novel nAChR agonists with improved safety/tolerability profiles have been discovered. Of these, ABT-418 and ABT-089 have both demonstrated signals of efficacy in adults with ADHD. Notably, tolerability issues that might be expected of a nAChR agonist, such as nausea and emesis, were not observed at efficacious doses of ABT-089. Further understanding of the effects of novel neuronal nAChR agonists on specific aspects of cognitive functioning in ADHD is required to assess the full potential of this approach.
Collapse
Affiliation(s)
- Timothy E. Wilens
- Massachusetts General Hospital, Pediatric Psychopharmacology Research Unit, Yawkey Center for Outpatient Care-YAW 6A, 55 Fruit St., Boston, MA 02114, Phone: 617-726-1731, Fax: 617-724-3742
| | - Michael W. Decker
- Neuroscience Drug Discovery, Global Pharmaceutical Research and Development, Abbott, Dept. R4N5; Bldg. AP-9A/3, 100 Abbott Park Rd. Abbott Park, IL 60064-6125, Phone: 1-847-937-2422, Fax: 1-847-937-9195
| |
Collapse
|
7
|
Liu X, Caggiula AR, Yee SK, Nobuta H, Sved AF, Pechnick RN, Poland RE. Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 2007; 32:710-8. [PMID: 16794568 PMCID: PMC2811395 DOI: 10.1038/sj.npp.1301129] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mecamylamine, a noncompetitive nicotinic cholinergic antagonist, inhibits nicotine self-administration in animals and may attenuate tobacco smoking in humans trying to quit. Our preliminary data suggested that this agent, at a dose of 2 mg/kg (subcutaneous (s.c.)), also attenuates cue-induced relapse to nicotine-seeking behavior in rats. This study determined whether mecamylamine-induced attenuation can be obtained at doses lower than the high 2 mg/kg dose used in the first study, and whether it is specific to nicotine-associated cues. Male Sprague-Dawley rats were trained to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. Each infusion was accompanied by a visual cue (1 s onset of a lever light followed by offset of a house light for 20 s during which time no infusions could be obtained). After the nicotine-maintained responding was extinguished by withholding the delivery of nicotine (saline substitution) and its associated cue, reinstatement tests were conducted. Response-contingent re-presentation of the cue without further availability of nicotine significantly reinstated extinguished responding at the previously nicotine-reinforced lever. Pretreatment with mecamylamine (0.5, 1, and 2 mg/kg, s.c.) dose-dependently attenuated the cue-induced reinstatement of lever responding. Mecamylamine did not change food-taking and -seeking responses, whereas the highest dose (2 mg/kg) decreased nicotine self-administration behavior. The results confirm previous findings that stimuli conditioned to nicotine self-administration effectively elicit reinstatement of nicotine-seeking behavior after extinction and demonstrate that mecamylamine, besides suppressing self-administration of nicotine, effectively attenuates cue-induced nicotine-seeking behavior. These findings suggest that the response-reinstatement procedures used in this study may be useful for studying neurobiological mechanisms of nicotine-seeking behavior and that mecamylamine-like drugs may be potential candidates for pharmacological treatment and prevention of relapse to tobacco smoking in abstinent smokers.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Davis JA, Gould TJ. beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 2007; 190:343-52. [PMID: 17136517 PMCID: PMC2722435 DOI: 10.1007/s00213-006-0624-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Previous research indicates that acute nicotine administration enhances the acquisition of contextual fear conditioning and trace cued fear conditioning. Pharmacological inhibition of alpha4beta2 nicotinic acetylcholine receptors (nAChRs), but not alpha7 nAChRs, blocked the enhancing effect of nicotine on contextual fear conditioning. Similarly, genetic deletion of the beta2 nAChR subunit but not the alpha7 nAChR subunit blocked the enhancing effect of nicotine on contextual fear conditioning. OBJECTIVES In the present study, nAChR subunit knockout mice were used to compare the involvement of beta2 subunit-containing nAChRs and alpha7 subunit-containing nAChRs in the effects of nicotine on hippocampus-dependent trace cued fear conditioning and contextual fear conditioning. METHODS beta2 nAChR subunit knockout mice, alpha7 nAChR subunit knockout mice, and their wild-type littermates received either nicotine or saline 5 minutes before training and testing. Mice were trained using five conditioned stimulus (CS; 30 s, 85 dB white noise)--trace (30 s)--unconditioned stimulus (US; 2 s footshock) pairings. Freezing to the context and freezing to the CS were assessed 24 h later. RESULTS Both contextual and trace cued fear conditioning were enhanced by nicotine administration in wild-type littermates and in alpha7 nAChR subunit knockout mice. In contrast, neither contextual fear conditioning nor trace cued fear conditioning was enhanced by nicotine administration in beta2 nAChR subunit knockout mice. CONCLUSIONS These results suggest that beta2 subunit-containing nAChRs but not alpha7 nAChR subunit-containing nAChRs are critically involved in the enhancing effect of nicotine on contextual and trace cued fear conditioning.
Collapse
|
9
|
Scerri C, Stewart CA, Breen KC, Balfour DJK. The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat. Psychopharmacology (Berl) 2006; 184:540-6. [PMID: 16025316 DOI: 10.1007/s00213-005-0086-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 05/27/2005] [Indexed: 01/05/2023]
Abstract
RATIONALE Nicotine is reported to improve learning and memory in experimental animals. Improved learning and memory has also been related to increased neurogenesis in the dentate gyrus (DG) of the hippocampal formation. Surprisingly, recent studies suggest that self-administered nicotine depresses cell proliferation in the DG. OBJECTIVE To test the hypothesis that the effects of nicotine on cell proliferation in the DG and learning and memory depend upon the nicotine dose administered. METHODS Rats were chronically infused from subcutaneous osmotic mini pumps with nicotine (0.25 or 4 mg kg(-1) day(-1)) or the saline vehicle for 10 days. Half the rats in each treatment group were trained to locate a hidden platform in a water maze task on days 4-7; a probe trial was performed on day 8. The remaining rats remained in their home cages. The effects of nicotine and of training in the water maze task on cell genesis in the DG were determined by measuring 5-bromo-2'-deoxyuridine (BrDU) uptake using fluorescence immunohistochemistry. RESULTS Training in the water maze task increased cell proliferation in the DG. Infusions of nicotine at 4 mg kg(-1) day(-1), but not 0.25 mg kg(-1) day(-1), decreased cell proliferation in both untrained animals and animals trained in the maze and impaired spatial learning. CONCLUSIONS The data suggest that learning in the water maze task is impaired by higher doses of nicotine tested, and that this response may be related to reduced cell genesis in the DG.
Collapse
Affiliation(s)
- Charles Scerri
- Section of Psychiatry and Behavioural Sciences, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | | | | | | |
Collapse
|
10
|
Davis JA, Gould TJ. The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 2006; 184:345-52. [PMID: 15988571 DOI: 10.1007/s00213-005-0047-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 04/04/2005] [Indexed: 11/25/2022]
Abstract
RATIONALE Previous research indicates that nicotine administration enhances hippocampus-dependent forms of learning, including contextual fear conditioning. This effect is blocked by mecamylamine, a noncompetitive, broad-spectrum nicotinic receptor antagonist. OBJECTIVES The present study extends previous research by further characterizing the nicotinic acetylcholinergic receptor (nAChR) subtypes through which nicotine acts to enhance contextual fear conditioning. METHODS C57BL/6J mice were trained with two conditioned stimulus (CS; 30 s, 85-dB white noise)-unconditioned stimulus (US; 2 s, 0.57-mA foot shock) pairings and tested 24 h later for contextual and cued fear conditioning. The effects of the alpha7 nAChR antagonist methyllycaconitine (MLA; 1.00, 10.00, and 20.00 mg/kg) and the effects of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (DHBE; 1.00, 3.00, and 6.00 mg/kg) on cued and contextual fear conditioning and on the enhancement of contextual fear conditioning by nicotine (0.25 mg/kg) were examined. RESULTS We demonstrate that DHBE (all doses) administration attenuates the enhancing effect of nicotine on contextual fear conditioning, and MLA administration has no significant effect on the enhancement of contextual fear conditioning by nicotine. CONCLUSIONS The data suggest that non-alpha7 nAChRs (most likely alpha4beta2 nAChRs) underlie the enhancement of contextual fear conditioning by nicotine.
Collapse
Affiliation(s)
- Jennifer A Davis
- Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
11
|
Abstract
The most commonly abused drugs, alcohol and nicotine, are likely also the most costly drugs in terms of health and societal costs. A large body of evidence from epidemiological studies indicate that smoking and alcohol-intake are positively correlated. The mesocorticolimbic dopamine system has been implicated in mediating some of the reinforcing effects of ethanol, however, the mechanism(s) of action remains to be elucidated; consideration as to ethanol's ability to interact with ligand-gated ion channels should be considered. Accumulating evidence from electrophysiological, pharmacological and neurochemical studies suggest that ethanol may interact with the nicotinic acetylcholine receptor (nAChR). Thus, it has been shown that the ethanol-induced stimulation of the mesolimbic dopamine system and of locomotor activity as well as ethanol intake and preference in rodents may involve central nicotinic acetylcholine receptors. Additionally, data has been presented that nAChRs located in the ventral tegmental area may be of particular importance for these effects of ethanol. Studies aimed at defining the nAChR subpopulation(s) involved in mediating ethanol-induced locomotor stimulation and accumbal dopamine overflow as well as ethanol-intake have revealed that alpha(3)beta(2) or alpha(6) (using alpha-Conotoxin MII) but not alpha(4)beta(2) (using dihydro-beta-erythroidine) or alpha(7) (using methyllycaconitine), could represent targets for developing new drugs in the treatment of alcoholism. These results do not allow any conclusion as to whether the involvement nAChRs in mediating the effects of ethanol is direct and/or indirect. With regard to an indirect effect, evidence has accumulated indicating that the cholinergic excitatory input to the dopaminergic neurons in the ventral tegmental area may be an important part of the neuronal circuits mediating natural as well as drug-rewarded behavior. The possibility may thus be considered that ethanol activates the cholinergic afferents causing a release of acetylcholine in the ventral tegemental area leading to a stimulation of nAChRs and thereby excite the mesocorticolimbic dopamine system.
Collapse
Affiliation(s)
- Anna Larsson
- Department of Pharmacology, Göteborg University, Box 431, Göteborg SE-405 30, Sweden
| | | |
Collapse
|
12
|
Larsson A, Svensson L, Söderpalm B, Engel JA. Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol 2002; 28:157-67. [PMID: 12551757 DOI: 10.1016/s0741-8329(02)00244-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ethanol and nicotine are the most abused drugs, and it is well known that co-abuse of ethanol and nicotine is frequent in human beings. We have previously obtained results indicating that the ethanol-induced stimulation of both the mesolimbic dopamine system and locomotor activity may involve activation of central nicotinic acetylcholine receptors (nAChRs), especially those located in the ventral tegmental area. Different subpopulations of nAChRs have been identified, and, in the present series of experiments, we have studied the effects of various nAChR antagonists on the stimulation of dopamine overflow in the nucleus accumbens and on locomotor activity induced by ethanol in male mice. Ethanol (2.0 g/kg, i.p.) enhanced dopamine overflow in the nucleus accumbens by approximately 40%, measured by means of in vivo microdialysis in awake, freely moving mice. Mecamylamine (negative allosteric modulator of nAChR; 2.0 mg/kg, i.p.) blocked the ethanol-induced stimulation of both locomotor activity and accumbal dopamine overflow. Methyllycaconitine citrate (alpha(7) antagonist; 2.0 mg/kg, i.p.) and dihydro-beta-erythroidine (competitive and selective alpha(4)beta(2) antagonist; 0.5 mg/kg, s.c.), in doses that had no marked effects per se, did not significantly reduce the behavioral and neurochemical stimulation caused by ethanol. The present results support the suggestion that the stimulatory effects of ethanol on locomotor activity and dopamine release do not involve the alpha(4)beta(2) or alpha(7) subunit compositions of the nAChR and that the effects of mecamylamine are mediated through a site not directly associated with the alpha(4)beta(2) or alpha(7) nAChR subunits.
Collapse
Affiliation(s)
- Anna Larsson
- Institute of Physiology and Pharmacology, Department of Pharmacology, Göteborg University, Box 431, SE-405 30, Göteborg, Sweden
| | | | | | | |
Collapse
|
13
|
Bancroft A, Levin ED. Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology 2000; 39:2770-8. [PMID: 11044746 DOI: 10.1016/s0028-3908(00)00099-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic nicotine administration has been repeatedly shown to facilitate working memory function in rats on the radial-arm maze. The critical neural mechanisms for this effect are still being discovered. The nicotinic nature of the chronic nicotine induced memory improvement is supported by the finding that it is blocked by chronic mecamylamine co-infusion. The hippocampus also appears to be critically important. Hippocampal ibotenic acid lesions block the effect. Within the hippocampus, we have found that the alpha4beta2 nicotinic receptor subtype is involved in memory functioning. Acute ventral hippocampal infusions of the alpha4beta2 nicotinic antagonist dihydro-beta-erythroidine (DHbetaE) significantly decreased working memory performance in the radial-arm maze. The aim of the current study was to determine the importance of alpha4beta2 receptors within the ventral hippocampus for the memory enhancing effects of chronic nicotine treatment. Adult female Sprague-Dawley rats were trained on the 8-arm radial maze and were cannulated bilaterally in the ventral hippocampus. Osmotic minipumps administering chronic nicotine at a rate of 5 mg per kg per day were also implanted in the nicotine treatment rats. Control rats received saline-only minipumps. For a period of 4 weeks after surgery, each rat received bilateral hippocampal infusions of 0, 2, 6 and 18 microg per side of DHbetaE and tested for memory performance on the radial-arm maze. Radial-arm maze choice accuracy was impaired by acute hippocampal DHbetaE infusion in a dose-related fashion. This acute hippocampal DHbetaE-induced choice accuracy impairment was eliminated by chronic systemic nicotine infusion. Chronic nicotine in combination with acute vehicle hippocampal infusion was not seen to alter choice accuracy. Response latency was not found to be altered by acute hippocampal DHbetaE in the absence of chronic nicotine administration, but it did attenuate the response latency reduction induced by chronic nicotine infusion. Wet dog shakes were not found to be affected by hippocampal DHbetaE when given without chronic nicotine. Wet dog shakes were significantly increased by chronic nicotine infusion. Intra-hippocampal DHbetaE significantly potentiated this effect. The results from the current study reinforce the hypothesis that ventral hippocampal alpha4beta2 nicotinic receptors are important for memory function. These receptors may also have a role to play in the development of other aspects of behavior associated with chronic nicotine treatment.
Collapse
Affiliation(s)
- A Bancroft
- Neurobehavioral Research Laboratory, Box 3412, Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
14
|
Watkins SS, Epping-Jordan MP, Koob GF, Markou A. Blockade of nicotine self-administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 1999; 62:743-51. [PMID: 10208381 DOI: 10.1016/s0091-3057(98)00226-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The reinforcing properties of a variety of drugs abused by humans have been investigated using the technique of intravenous self-administration in the rat. To examine the effect of nicotine dose on nicotine self-administration, Wistar rats were allowed to self-administer various doses of nicotine using a within-subjects Latin square design. An inverted U-shaped dose response curve was obtained, with the highest rates of responding at the 0.03 mg/kg/inf dose. With 1-h daily nicotine self-administration sessions, rats did not appear dependent on nicotine 24 h later, as indicated by the absence of somatic signs of withdrawal after subcutaneous injection of a nicotinic acetylcholine receptor antagonist, mecamylamine (0.57 mg/kg). In another set of studies, pretreatment with subcutaneous mecamylamine or dihydro-beta-erythroidine, two nicotinic acetylcholine receptor antagonists, resulted in significant dose-dependent reductions in nicotine self-administration, at two nicotine doses (0.03 and 0.06 mg/kg/inf). These results indicate that nicotine is an effective reinforcer in Wistar rats under the present parameters, and that these reinforcing effects are mediated by activation of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- S S Watkins
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A. α7 Nicotinic Receptor Subunits Are Not Necessary for Hippocampal-Dependent Learning or Sensorimotor Gating: A Behavioral Characterization of Acra7-Deficient Mice. Learn Mem 1998. [DOI: 10.1101/lm.5.4.302] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) subunit is abundantly expressed in the hippocampus and contributes to hippocampal cholinergic synaptic transmission suggesting that it may contribute to learning and memory. There is also evidence for an association between levels of α7 nAChR and in sensorimotor gating impairments. To examine the role of α7 nAChRs in learning and memory and sensorimotor gating, Acra7 homozygous mutant mice and their wild-type littermates were tested in a Pavlovian conditioned fear test, for spatial learning in the Morris water task, and in the prepulse inhibition paradigm. Exploratory activity, motor coordination, and startle habituation were also evaluated. Acra7 mutant mice displayed the same levels of contextual and auditory-cue condition fear as wild-type mice. Similarly, there were no differences in spatial learning performance between mutant and wild-type mice. Finally,Acra7 mutant and wild-type mice displayed similar levels of prepulse inhibition. Other behavioral responses in Acra7 mutant mice were also normal, except for an anxiety-related behavior in the open-field test. The results of this study show that the absence of α7 nAChRs has little impact on normal, base-line behavioral responses. Future studies will examine the contribution of α7 nAChR to the enhancement of learning and sensorimotor gating following nicotine treatments.
Collapse
|
17
|
Felix R, Levin ED. Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 1997; 81:1009-17. [PMID: 9330363 DOI: 10.1016/s0306-4522(97)00224-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nicotinic acetylcholine receptors are important for maintaining optimal memory performance. In order to more fully characterize the involvement of nicotinic systems in memory, the contributions of nicotinic acetylcholine receptor subtypes were investigated. This study targeted the alpha 7 and alpha 4 beta 2 nicotinic receptors in the ventral hippocampus, an area known to be important for spatial working memory. Antagonists of alpha 7 and alpha 4 beta 2 receptors were locally infused into the ventral hippocampus of rats and the effects on memory were examined with the radial-arm maze. The subtype-specific competitive antagonists infused into separate groups of rats were methyllycaconitine citrate (an alpha 7 antagonist) and dihydro-beta-erythroidine hydrobromide (an alpha 4 beta 2 antagonist). Their effects on radial-arm maze performance were contrasted with the non-specific competitive antagonist, D-tubocurarine chloride. Significant deficits in radial-arm maze choice accuracy performance were found at 78.7 micrograms/side for methyllycaconitine and at 106.9 micrograms/side for dihydro-beta-erythroidine. Increased response latency was also seen at these doses. Tubocurarine induced seizures at doses previously reported to have no effect. Wet dog shakes were seen in most rats at 0.1 microgram/side with tubocurarine, 26.3 micrograms/side with methyllycaconitine and 106.9 micrograms/side with dihydro-beta-erythroidine. This study suggests that both alpha 7 and alpha 4 beta 2 nicotinic acetylcholine receptor subtypes are involved in working memory formation and that the hippocampus is a critical site for nicotinic cholinergic involvement in memory function, though the high doses of antagonists needed to produce the memory impairment may have had less than completely specific effects.
Collapse
Affiliation(s)
- R Felix
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
18
|
|