1
|
Santos JC, Ribeiro ML, Gambero A. The Impact of Polyphenols-Based Diet on the Inflammatory Profile in COVID-19 Elderly and Obese Patients. Front Physiol 2021; 11:612268. [PMID: 33584335 PMCID: PMC7874176 DOI: 10.3389/fphys.2020.612268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
The World Health Organization declared the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-associated disease (coronavirus disease 2019 - COVID-19) as a pandemic in March 2020. COVID-19 is characterized by cytokine storm, acute respiratory distress syndrome (ARDS), and systemic inflammation-related pathology and already kills more than 1.5 million of people worldwide. Since aged and obese COVID-19 patients exhibit an enhanced inflammatory status, they represent a high-risk cluster for rapidly progressive clinical deterioration. These individuals present comorbid disorders and immunosenescence that may promote viral-induced cytokine storm and expression of molecules acting as virus receptor as angiotensin I converting enzyme 2 (ACE2) and CD26 (dipeptidyl-peptidase 4), resulting in respiratory failure and increased morbidity and mortality. A better knowledge of SARS-CoV-2 infection in inflammatory-associated high-risk population is essential in order to develop the therapies needed to combat or prevent severe COVID-19. Here, we review the pathogenesis and clinical implications of inflammatory disorders and disease markers associated to senescence in COVID-19 patients and the emerging evidence to argue that a high intake of polyphenols may have a protective effect on SARS-CoV-2 illness severity.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Bragança Paulista, Brazil
| | - Alessandra Gambero
- Life Science Center, Pontifical Catholic University of Campinas (PUCCAMP), Campinas, Brazil
| |
Collapse
|
2
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 622] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
3
|
Lipotoxicity, aging, and muscle contractility: does fiber type matter? GeroScience 2019; 41:297-308. [PMID: 31227962 DOI: 10.1007/s11357-019-00077-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a universal characteristic of the aging process and is often accompanied by increases in whole-body adiposity. These changes in body composition have important clinical implications, given that loss of muscle and gain of fat mass are both significantly and independently associated with declining physical performance as well as an increased risk for disability, hospitalizations, and mortality in older individuals. This increased fat mass is not exclusively stored in adipose depots but may become deposited in non-adipose tissues, such as skeletal muscle, when the oxidative capacity of the adipose tissue itself is exceeded. The redistributed adipose tissue is thought to exert detrimental local effects on the muscle environment given the close proximity. Thus, sarcopenia observed with aging may be better defined in the context of loss of muscle quality rather than loss of muscle quantity per se. In this perspective, we briefly review the age-related physiological changes in cellularity, secretory profiles, and inflammatory status of adipose tissue which drive lipotoxicity (spillover) of skeletal muscle and then provide evidence of how this may affect specific fiber type contractility. We focus on biological contributors (cellular machinery) to contractility for which there is some evidence of vulnerability to lipid stress distinguishing between fiber types.
Collapse
|
4
|
Gonzalez Pardo V, Russo de Boland A. Age-related changes in the response of intestinal cells to 1α,25(OH)2-vitamin D3. Ageing Res Rev 2013; 12:76-89. [PMID: 22706185 DOI: 10.1016/j.arr.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/14/2022]
Abstract
The hormonally active form of vitamin D(3), 1α,25(OH)(2)-vitamin D(3), acts in intestine, its major target tissue, where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of vitamin D receptor (VDR) levels and binding sites, reduced expression of G-proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired 1α,25(OH)(2)-vitamin D(3) receptor-mediated signaling in intestinal cells. A fundamental understanding why the hormone functions are impaired with age will enhance our knowledge of its importance in intestinal cell physiology.
Collapse
Affiliation(s)
- Verónica Gonzalez Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | |
Collapse
|
5
|
Park SH, Park TJ, Lim IK. Reduction of exportin 6 activity leads to actin accumulation via failure of RanGTP restoration and NTF2 sequestration in the nuclei of senescent cells. Exp Cell Res 2010; 317:941-54. [PMID: 21195711 DOI: 10.1016/j.yexcr.2010.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/20/2010] [Accepted: 12/25/2010] [Indexed: 10/18/2022]
Abstract
We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H(2)O(2), rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.
Collapse
Affiliation(s)
- Su Hyun Park
- Department of Biochemistry and Molecular Biology, BK21 Division of Cell Transformation and Restoration, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | | | | |
Collapse
|
6
|
Pérez-López FR. Sunlight, the vitamin D endocrine system, and their relationships with gynaecologic cancer. Maturitas 2008; 59:101-13. [PMID: 18289805 DOI: 10.1016/j.maturitas.2007.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Vitamin D has classically been considered an important nutrient, but modern scientific evidence points out that it has a new and more critical role as ubiquitous hormone at the centre of a complex endocrine, paracrine, and autocrine system involved in maintaining general health. Vitamin D is found in small quantities in food; however, it is also produced by the skin when exposed to certain intensities of ultraviolet light. Substantial epidemiological and clinical data suggest a link between low levels of vitamin D and an increased risk of a number of female specific cancers. Different types of cancer cells present vitamin D receptors and the enzymatic system involved in both vitamin D synthesis and inhibition. Sustained low levels of its precursor are responsible for alterations in vitamin D tissue and cell production and metabolism. The active form of vitamin D, 1,25(OH)2D3, can induce differentiation, inhibit proliferation, and modulate immune responsiveness of breast and a wide variety of female genital cell types. Vitamin D effects have been observed on expression of cell cycle regulators, growth factors and their receptors, apoptotic machinery, metastatic potential, and angiogenesis; all of which have some effect on hyperproliferative conditions. However, vitamin D blood levels may not be representative of the local metabolic alterations during carcinogenesis. Clinical studies support the recommendation to increase vitamin D levels to a normal range in order to prevent the tissue disorders related to hypovitaminosis D which are thought to be involved in the initiation and progression of cancer.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- Department of Obstetrics and Gynaecology, University of Zaragoza Faculty of Medicine, Domingo Miral s/n, Zaragoza 50009, Spain.
| |
Collapse
|
7
|
Pardo VG, Facchinetti MM, Curino A, Boland R, de Boland AR. Age-related alteration of 1alpha,25(OH)2-vitamin D3-dependent activation of p38 MAPK in rat intestinal cells. Biogerontology 2006; 8:13-24. [PMID: 16855859 DOI: 10.1007/s10522-006-9031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/10/2006] [Indexed: 01/17/2023]
Abstract
In intestinal cells, 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) regulates gene expression via the specific intracellular vitamin D receptor and induces fast non-transcriptional responses involving stimulation of transmembrane signal transduction pathways. In the present study, we analyzed, for the first time, alterations in p38 MAPK response to 1alpha,25(OH)(2)D(3) in rat enterocytes with ageing. In enterocytes from young rats, the hormone increased, in a time- and dose-dependent fashion, the phosphorylation of p38 MAPK, peaking at 3 min (+2-fold). Basal levels of p38 MAPK phosphorylation were lower in enterocytes from old rats and the hormone response was greatly diminished (+0.5-fold at 3 min). p38 MAPK phosphorylation impairment in old animals was not related to significant changes of the kinase protein expression and do not explain the decreased response to 1alpha,25(OH)(2)D(3). Extracellular and intracellular Ca(2+) chelation or c-Src pharmacological inhibition suppressed hormone activation of p38 MAPK in both, young and aged rats, demonstrating that Ca(2+) and the non-receptor tyrosine kinase c-Src are required for full activation of p38 MAPK in cells stimulated with 1alpha,25(OH)(2)D(3). Two other vitamin D(3) metabolites, 25(OH)D(3) and 24,25(OH)(2)D(3, )also enhanced p38 phosphorylation, and to a similar extent than 1alpha,25(OH)(2)D(3), an ability that is lost with ageing. Enterocyte exposure to the hormone also resulted in the rapid induction of c-fos protein (peaking at 5 min, +3-fold) and to a greater extent than that of mRNA induction. With ageing, 1alpha,25(OH)(2)D(3)-dependent increase of c-fos protein level was diminished, but c-fos mRNA expression was not different from young animals. Impairment of 1alpha,25(OH)(2)D(3) activation of p38 MAPK upon ageing and abnormal hormone regulation of the c-fos oncoprotein synthesis may affect intestinal cell function.
Collapse
Affiliation(s)
- Verónica Gonzalez Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, Bahia Blanca 8000, Argentina
| | | | | | | | | |
Collapse
|
8
|
Venable ME, Webb-Froehlich LM, Sloan EF, Thomley JE. Shift in sphingolipid metabolism leads to an accumulation of ceramide in senescence. Mech Ageing Dev 2006; 127:473-80. [PMID: 16499950 DOI: 10.1016/j.mad.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2006] [Indexed: 01/26/2023]
Abstract
Ceramide mediates the effects of several agonists leading to differentiation, apoptosis or senescence. We previously showed that ceramide becomes elevated in senescent fibroblasts. In the present study, senescent cultures of Wi-38 fibroblasts and human umbilical-vein endothelial cells were compared to low-passage cultures in order to identify which of the several pathways is predominantly responsible for the increased ceramide. We found that senescent cells take up the ceramide precursor [(3)H]palmitic acid and convert it to ceramide at essentially equivalent rates to their low-passage counterparts, suggesting that, as a whole, the inherent steps are unaltered. Analysis of subsequent steps, however, revealed changes in ceramide metabolism. The rate of ceramide conversion to sphingomyelin was reduced while glucosylceramide synthesis differed between the cell lines, while the rate of the reverse reactions tended to be increased in senescent cells. We also found a decrease in acidic but not alkaline ceramidase. The data show an overall change in favor increased ceramide levels. Of all of the pathways, neutral sphingomyelinase appears to be the most likely source of the senescence-associated ceramide. The relevance to mitosis and apoptosis are discussed.
Collapse
Affiliation(s)
- Mark E Venable
- Biology Department, Appalachian State University, Boone, NC 28608-2027, USA.
| | | | | | | |
Collapse
|
9
|
Russo de Boland A. Age-related changes in the response of intestinal cells to parathyroid hormone. Mech Ageing Dev 2004; 125:877-88. [PMID: 15563934 DOI: 10.1016/j.mad.2004.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The concept of the role(s) of parathyroid hormone (PTH), has expanded from that on acting on the classical target tissues, bone and kidney, to the intestine where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and, activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of PTH receptor (PTHR1) binding sites, reduced expression of G proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired PTH receptor-mediated signaling in intestinal cells. A fundamental understanding of why PTH functions are impaired with age will enhance our understanding of its importance in intestinal cell physiology.
Collapse
Affiliation(s)
- Ana Russo de Boland
- Dpto. Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
10
|
Kwak IH, Kim HS, Choi OR, Ryu MS, Lim IK. Nuclear Accumulation of Globular Actin as a Cellular Senescence Marker. Cancer Res 2004; 64:572-80. [PMID: 14744771 DOI: 10.1158/0008-5472.can-03-1856] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the nuclear actin accumulation as a new marker of cellular senescence, using human diploid fibroblast (HDF), chondrocyte primary cultures, Mv1Lu epithelial cells, and Huh7 cancer cells. Nuclear accumulation of globular actin (G-actin) and dephosphorylated cofilin was highly significant in the senescent HDF cells, accompanied with inhibition of LIM kinase (LIMK) -1 activity. When nuclear export of the actin was induced by 12-O-tetradecanoylphorbol-13-acetate, DNA synthesis of the senescent cells increased significantly, accompanied with changes of morphologic and biochemical profiles, such as increased RB protein phosphorylation and decreased expressions of p21(WAF1), cytoplasmic p-extracellular signal-regulated kinase 1/2, and caveolins 1 and 2. Significance of these findings was strengthened additionally by the fact that nuclear actin export of young HDF cells was inhibited by the treatment with leptomycin B and mutant cofilin transfection, whose LIMK-1 phosphorylation site was lost, and the old cell phenotypes were duplicated with nuclear actin accumulation, suggesting that nuclear actin accumulation was accompanied with G1 arrest during cellular senescence. The aforementioned changes were observed not only in the replicative senescence but also in the senescence induced by treatment of HDF cells, Mv1Lu, primary culture of human chondrocytes, or Huh7 cells with H-ras virus infection, hydroxyurea, deferoxamine, or H(2)O(2). Nuclear actin accumulation was much more sensitive and an earlier event than the well-known, senescence-associated beta-galactosidase activity.
Collapse
Affiliation(s)
- In Hae Kwak
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
11
|
Gentili C, Morelli S, de Boland AR. Characterization of PTH/PTHrP receptor in rat duodenum: effects of ageing. J Cell Biochem 2003; 88:1157-67. [PMID: 12647298 DOI: 10.1002/jcb.10472] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In rat enterocytes, signaling through the parathyroid hormone (PTH)/PTH-related peptide receptor type 1(PTHR1) includes stimulation of adenylyl cyclase, increases of intracellular calcium, activation of phospholipase C, and the MAP kinase pathway, mechanisms that suffer alterations with ageing. The purpose of this study was to evaluate whether an alteration at the level of the PTH receptor (PTHR1) is the basis for impaired PTH signaling in aged rat enterocytes. Western Blot analysis with a specific monoclonal anti-PTHR1 antibody revealed that a 85 kDa PTH binding component, the size expected for the mature PTH/PTHrP receptor, localizes in the basolateral (BLM) and brush border (BBM) membranes of the enterocyte, being the protein expression about 7-fold higher in the BLM. Two other bands of 105 kDa (corresponding to highly glycosylated, incompletely processed receptor form) and 65 kDa (proteolytic fragment) were also seen. BLM PTHR1 protein expression significantly decreases with ageing, while no substantial decrease was observed in the BBM from old rats. PTHR1 immunoreactivity was also present in the nucleus where PTHR1 protein levels were similar in enterocytes from young and aged rats. Immunohistochemical analysis of rat duodenal sections showed localization of PTHR1 in epithelial cells all along the villus with intense staining of BBM, BLM, and cytoplasm. The nuclei of these cells were reactive to the PTHR1 antiserum, but not all cells showed the same nuclear staining. The receptor was also detected in the mucosae lamina propria cells, but was absent in globets cells from epithelia. In aged rats, PTHR1 immunoreactivity was diffused in both membranes and cytoplasm and again, PTH receptor expression was lower than in young animals, while the cell nuclei showed a similar staining pattern than in young rats. Ligand binding to PTHR1 was performed in purified BLM. rPTH(1-34) displaced [I(125)]PTH(1-34) binding to PTHR1 in a concentration-dependent fashion. In both, aged (24 months) and young (3 months) rats, binding of [I(125)]PTH was characterized by a single class of high-affinity binding sites. The affinity of the receptor for PTH was not affected by age. The maximum number of specific PTHR1 binding sites was decreased by 30% in old animals. The results of this study suggest that age-related declines in PTH regulation of signal transduction pathways in rat enterocytes may be due, in part, to the loss of hormone receptors.
Collapse
Affiliation(s)
- Claudia Gentili
- Departamento de Biologia, Bioquímica & Farmacia, Universidad Nacional del Sur, 8000 Bahia Blanca, Argentina
| | | | | |
Collapse
|
12
|
Gentili C, Picotto G, Morelli S, Boland R, de Boland AR. Effect of ageing in the early biochemical signals elicited by PTH in intestinal cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:169-78. [PMID: 12581861 DOI: 10.1016/s0167-4889(02)00387-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In previous work, we have demonstrated that rPTH(1-34) increases cytoplasmic calcium concentration ([Ca(2+)](i)) in isolated rat enterocytes. In the present study, we have identified the sources of PTH-mediated increase in [Ca(2+)](I) and the implication of Ca(2+) on hormone early signals in enterocytes isolated from young (3-month-old) and aged (24-month-old) rats. In young enterocytes, PTH raised [Ca(2+)](i) in a dose-dependent manner (1 pM-100 nM). In cells from aged rats, hormone concentrations higher than physiological (>/=1 nM) were required to observe significant increases in [Ca(2+)](i). Phospholipase C (PLC) inhibitors blocked the initial acute elevation of the [Ca(2+)](i) biphasic response to PTH of young enterocytes while in old cells, no effects were observed. The voltage-dependent calcium-channel blocker (VDCC), nitrendipine, suppressed PTH-dependent changes of the sustained [Ca(2+)](i) phase in young and aged animals. In this study, we analysed, for the first time, alterations in phosphatidylinositol 3-kinase (PI3K) activity and response to PTH in rat enterocytes with ageing. Basal PI3K activity was significantly modified by ageing. Acute treatment with 10(-8) M PTH increased enzyme activity, with a maximun at 2 min (+3-fold) in young rats and only elevated by less than 1-fold basal PI3K activity in aged animals. Hormone-induced tyrosine phosphorylation of p85alpha, the regulatory subunit of PI3K, as well as the phosphorylation on Thr(308) of its downstream effector Akt/PKB was evident in enterocytes from 3-month-old rats, whereas it was greatly reduced in the cells from 24-month-old animals. Intracellular Ca(2+) chelation (BAPTA-AM, 5 microM) affected the tyrosine phosphorylation of p85alpha and inhibited PTH-dependent PI3K activation by 75% in young rats and completely abolished the enzyme activity in aged animals, demonstrating that Ca(2+) is required for full activation of PI3K in enterocytes stimulated with PTH. The Thr phosphorylation of PI3K downeffector, Akt/PKB, was also fully dependent on Ca(2+). Taken together, these results suggest that PTH regulation of enterocyte [Ca(2+)](i) involves Ca(2+) mobilization from IP(3)-sensitive stores and the influx of the cation from the extracellular milieu, the former pathway being blunted during ageing. The data also indicates a positive role for intracellular calcium in one of the early signals of PTH in rat enterocytes, the activation of PI3K, and that hormone regulation of PI3K activity and Akt/PKB phosphorylation on Thr(308) is impaired with ageing.
Collapse
Affiliation(s)
- Claudia Gentili
- Dpto. Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
13
|
Torres-Mendoza CE, Albert A, de la Cruz Arriaga MJ. Molecular study of the rat liver NADH: cytochrome c oxidoreductase complex during development and ageing. Mol Cell Biochem 1999; 195:133-42. [PMID: 10395077 DOI: 10.1023/a:1006983206653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms involved in ageing are yet to be fully understood but it is thought that changes produced in energy transfer pathways occurring in the mitochondria may be responsible for the lack of energy typical of the later stages of life. The aim of the present investigation was to determine the enzymatic activity of the liver NADH cytochrome c oxidoreductase complex (Complex I-III) in mitochondria isolated from the liver of rats of 3 different age groups: lactating, animals (15-17 days), adult females (3-5 months) and old animals (26-30 months). The activities of the unbound Complexes I and III were also determined. An increase in Complex I-III activity was detected during development (142 +/- 10 vs. 447 +/- 23 micromol cyt. c/mg/min, p < 0.001) ang ageing (447 +/- 23 vs. 713 +/- 45 micromol cyt. c/mg/min, p < 0.001). However, unbound Complex I showed a reduction in activity during the ageing period whilst Complex III activity moderately increased. Immunological studies indicated only a moderate increase in the amount of Complex I-III and studies on the purified complex suggested that the increase in activity was due to effects other than an increase in enzyme quantity. The analysis of protein bands and the quantification of prosthetic groups showed particular reductions in the relative concentrations of Complex I subunits including the 51 kDa unit, which binds FMN, confirmed by a similar reduction in levels of the nucleotide. In contrast, 4 of the 5 subunits which increased during the lifetime of the animals corresponded to those of Complex III. These subunits are responsible for the binding of catalytic groups. The results suggest that, in addition to the increase in the amount of enzyme, binding factors between Complexes I and III may also play an important role in the observed increase in Complex I-III activity.
Collapse
Affiliation(s)
- C E Torres-Mendoza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universidad Complutense, Ciudad Universitaria s/n, Madrid, Spain
| | | | | |
Collapse
|
14
|
Hoppe U, Bergemann J, Diembeck W, Ennen J, Gohla S, Harris I, Jacob J, Kielholz J, Mei W, Pollet D, Schachtschabel D, Sauermann G, Schreiner V, Stäb F, Steckel F. Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors 1999; 9:371-8. [PMID: 10416055 DOI: 10.1002/biof.5520090238] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The processes of aging and photoaging are associated with an increase in cellular oxidation. This may be in part due to a decline in the levels of the endogenous cellular antioxidant coenzyme Q10 (ubiquinone, CoQ10). Therefore, we have investigated whether topical application of CoQ10 has the beneficial effect of preventing photoaging. We were able to demonstrate that CoQ10 penetrated into the viable layers of the epidermis and reduce the level of oxidation measured by weak photon emission. Furthermore, a reduction in wrinkle depth following CoQ10 application was also shown. CoQ10 was determined to be effective against UVA mediated oxidative stress in human keratinocytes in terms of thiol depletion, activation of specific phosphotyrosine kinases and prevention of oxidative DNA damage. CoQ10 was also able to significantly suppress the expression of collagenase in human dermal fibroblasts following UVA irradiation. These results indicate that CoQ10 has the efficacy to prevent many of the detrimental effects of photoaging.
Collapse
Affiliation(s)
- U Hoppe
- Paul Gerson Unna Research Center, Beiersdorf AG, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mizutani T, Nakashima S, Nozawa Y. Changes in the expression of protein kinase C (PKC), phospholipases C (PLC) and D (PLD) isoforms in spleen, brain and kidney of the aged rat: RT-PCR and Western blot analysis. Mech Ageing Dev 1998; 105:151-72. [PMID: 9922125 DOI: 10.1016/s0047-6374(98)00094-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The age-dependent changes of expression of protein kinase C (PKC), phospholipase C (PLC) and phospholipase D (PLD) isozymes were analyzed in spleen, brain and kidney of young-adult (12-16 week-old) and aged (82-88 week-old) rats. The activities of spleen cPKC and nPKC were significantly decreased by nearly 35 and 30% in aged rats compared to those of young adults, respectively (P < 0.05). The level of PKC beta1 was significantly decreased in aged rats as assessed by RT-PCR and Western blot analyses. In aged rat brain where the activity of cPKC was significantly decreased by nearly 25% (P < 0.05), PKC alpha and beta1 isozymes were significantly down-regulated. In kidney, the level of PKC beta2 was decreased. In spleen the both mRNA and protein levels of PLC beta2 and gamma2 were significantly down-regulated in aged rat (P < 0.05). PLC beta1 was also significantly lower in aged rat brain (P < 0.05) as assessed by RT-PCR and Western blotting. Moreover, PLC beta1 was significantly down-regulated in both mRNA and protein levels in aged rat kidney (P < 0.05). In contrast, the tissues examined, the expressions of PLD isozymes (PLD1a, 1b and 2) were rather stable in the course of aging. These results indicate that mRNAs of PLD isozymes were rather stable but that particular PKC and PLC isozymes were down-regulated in different tissues during aging, suggesting age-dependent decline of specific PKC and PLC isozymes in organs which may, at least in part, be implicated in tissue dysfunction with aging.
Collapse
Affiliation(s)
- T Mizutani
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Lopez-Hellin J, Garcia-Arumi E, Schwartz S. Oxidative stress induces age-dependent changes in lymphocyte protein synthesis and second messenger levels. Life Sci 1998; 63:13-21. [PMID: 9667760 DOI: 10.1016/s0024-3205(98)00231-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cumulative damage in cells from aged people could lead to a greater fragility against acute oxidative stress. The effects of acute oxidative stress on cell viability, cAMP and cGMP concentrations, and protein synthesis rates were studied in lymphocytes from 25 young and 26 elderly subjects. Lymphocytes were exposed to stress by hydrogen peroxide 25 micromol/l and incubated for 18 hours. Cell viability after stress was lower (p<0.0001, Student's t test) in cells from the elderly (63.4%) than in cells from the young donors (73.2%). The protein synthesis rate was also lower after stress (p<0.04, Mann-Whitney U test) in cells from the elderly (47.3% vs. non-stressed cells), than in cells from the young (82.19% vs. non-stressed cells). After oxidative stress, cAMP and cGMP concentrations showed no significant changes in cells from young subjects; there were, however, significant decreases in these cyclic nucleotides in cells from the elderly (p<0.008 for both nucleotides, paired Student's t test). There were no differences in basal cAMP or cGMP levels between the two groups. These results show that mortality and metabolic changes due to oxidative stress are greater in lymphocytes proceeding from elderly subjects than in those from young subjects.
Collapse
Affiliation(s)
- J Lopez-Hellin
- Unitat de Recerques Metabòliques S. Grisolía, Centre d'Investigacions en Bioquímica i Biologia Molecular, Hospitals Vall d'Hebron, Barcelona, Spain
| | | | | |
Collapse
|
17
|
Abstract
Recently the sphingomyelin cycle, involving the hydrolysis of membrane sphingomyelin by an activated sphingomyelinase to generate ceramide, has emerged as a key pathway in cell differentiation and apoptosis in leukemic and other cell types. Here we investigate a role for this pathway in the senescence of WI-38 human diploid fibroblasts (HDF). We found that endogenous levels of ceramide increased considerably (4-fold) and specifically (compared with other lipids) as cells entered the senescent phase. Investigation of the mechanism of increased ceramide led to the discovery that neutral sphingomyelinase activity is elevated 8-10 fold in senescent cells. There were no changes in sphingomyelinase activity or ceramide levels as HDF entered quiescence following serum withdrawal or contact inhibition. Thus, the activation of the sphingomyelinase/ceramide pathway in HDF is due to senescence and supports the hypotheses that senescence represents a distinct program of cell development that can be differentiated from quiescence. Additional studies disclosed the ability of ceramide to induce a senescent phenotype. Thus, when exogenous ceramide (15 microM) was administered to young WI-38 HDF, it produced endogenous levels comparable to those observed in senescent cells (as determined by metabolic labeling studies). Ceramide concentrations of 10-15 microM inhibited the growth of young HDF and induced a senescent phenotype by its ability to inhibit DNA synthesis and mitogenesis. These concentrations of ceramide also induced retinoblastoma dephosphorylation and inhibited serum-induced AP-1 activation in young HDF, thus recapitulating basic biochemical and molecular changes of senescence. Sphingomyelinase and ceramide may thus be implicated as mediators of cellular senescence.
Collapse
Affiliation(s)
- M E Venable
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
18
|
Pawelec G. Molecular and cell biological studies of ageing and their application to considerations of T lymphocyte immunosenescence. Mech Ageing Dev 1995; 79:1-32. [PMID: 7791403 DOI: 10.1016/0047-6374(94)01549-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- G Pawelec
- Second Department of Internal Medicine, University of Tübingen Medical School, Germany
| |
Collapse
|
19
|
Venable ME, Blobe GC, Obeid LM. Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Ibrahim M, Upreti RK, Kidwai AM. Calpain from rat intestinal epithelial cells: age-dependent dynamics during cell differentiation. Mol Cell Biochem 1994; 131:49-59. [PMID: 8047065 DOI: 10.1007/bf01075724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Micromolar and millimolar Ca(2+)-requiring neutral protease (calpain I and calpain II) along with their endogenous inhibitor calpastatin were isolated and partially purified from the same preparation of rat intestinal epithelial cells. Calpain I and II were partially purified by 1300 and 900-fold with 57 and 53 per cent yield, respectively. The optimum assay conditions revealed pH 7.5, 20 min incubation at 25 degrees C and 0.24% casein substrate for both calpains. The optimum calcium concentration obtained for calpain I and II were 25 microM and 4 mM, respectively. Distribution of rat intestinal epithelial cells calpain I and II along with calpastatin during cell differentiation stages in weanling to senescence age were studied. Calpain I in weanling rats was in an increasing order from villus to crypt regions. Adult rats indicated well expressed consistent calpain I throughout the differentiation stages. Whereas, significant lowering towards crypt region cells were evident in old rats. Calpain II in weanling and adult rats was found to be consistent throughout the differentiation stages. Old animals revealed an increasing trend from villus to crypt region with insignificant activity present in upper villus cells. Concomitantly, different concentrations of calpastatin were observed throughout the differentiation stages in all the age groups. Moreover, the levels of calpains exceeded that of calpastatin in most of the epithelial cell populations during developmental stages. In addition to casein, intestinal epithelial cell membranes were found to be equally good substrates for calpains. Proteolytic susceptibility of weanling, adult and old rat membrane proteins varied significantly all along the ageing process in rats. Simultaneous age-dependent calpastatin response were also evident. Taken together the results obtained provided strong evidence that calpain plays significant role in rat intestinal cell differentiation and ageing process with calpastatin as its specific regulatory protein.
Collapse
Affiliation(s)
- M Ibrahim
- Biomembrane Division, Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
21
|
Abstract
Both ageing and the environment have a significant impact on xenobiotic metabolism. Furthermore, there is some evidence from in vivo studies that the elderly respond to environmental changes to a lesser degree than younger individuals. This article reviews the available evidence and concentrates on possible underlying mechanisms.
Collapse
Affiliation(s)
- M S O'Mahony
- University Department of Geriatric Medicine, Cardiff Royal Infirmary, U.K
| | | |
Collapse
|
22
|
Randerath K, Zhou GD, Hart RW, Turturro A, Randerath E. Biomarkers of aging: correlation of DNA I-compound levels with median lifespan of calorically restricted and ad libitum fed rats and mice. Mutat Res 1993; 295:247-63. [PMID: 7507561 DOI: 10.1016/0921-8734(93)90024-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
I-compounds are species-, tissue-, genotype-, gender-, and diet-dependent bulky DNA modifications whose levels increase with animal age. While a few of these DNA modifications represent oxidation products, the majority of I-compounds appear to be derived from as yet unidentified endogenous DNA-reactive intermediates other than reactive oxygen species. Circadian rhythms of certain I-compounds in rodent liver imply that levels of these DNA modifications are precisely regulated. Caloric restriction (CR), the currently most effective method available to retard aging and carcinogenesis, has been previously shown to elicit significant elevations of I-compound levels in tissue DNA from Brown-Norway (BN) and F-344 rats as compared to age-matched ad libitum fed (AL) animals. The present investigation has extended this work by examining liver and kidney DNA I-compound levels in three genotypes of rats (F-344, BN, and F-344 x BN) and two genotypes of mice (C57BL/6N and B6D2F1) under identical experimental conditions in order to determine whether correlations exist between I-compound levels, measured in middle-aged animals, and median lifespan. Levels of a number of liver and kidney I-compounds were found to display genotype- and diet-dependent, statistically significant positive linear correlations with median lifespan in both species. In particular, the longer-lived hybrid F-344 x BN rats and B6D2F1 mice tended to exhibit higher I-compound levels than the parent strains. CR enhanced I-compound levels substantially in both rats and mice. Thus, I-compounds, measured at middle age, reflected the functional capability ('health') of the organism at old age, suggesting their predictive value as biomarkers of aging. The positive linear correlations between levels of certain I-compounds (designated as type I) and lifespan suggest that these modifications may be functionally important and thus not represent endogenous DNA lesions (type II), whose levels would be expected to correlate inversely with lifespan.
Collapse
Affiliation(s)
- K Randerath
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
23
|
Perry AC, Jones R, Hall L. Isolation and characterization of a rat cDNA clone encoding a secreted superoxide dismutase reveals the epididymis to be a major site of its expression. Biochem J 1993; 293 ( Pt 1):21-5. [PMID: 8328962 PMCID: PMC1134314 DOI: 10.1042/bj2930021] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Superoxide dismutase (SOD) plays a key role in combating loss of fertility of spermatozoa due to lipid peroxidation. Here we report the sequence of a cDNA encoding a secreted form of SOD isolated from a rat epididymal library. Northern-blot analysis indicates that the corresponding transcript is expressed principally in the cauda region of the epididymis, consistent with the high levels of SOD enzyme activity found in cauda-epididymidal plasma. Much lower levels of an identically sized transcript exist in all tissues examined, including placenta. PCR and subsequent sequence analysis of rat placental SOD strongly suggest that it is identical in sequence with epididymal SOD.
Collapse
Affiliation(s)
- A C Perry
- Department of Biochemistry, University of Bristol, School of Medical Sciences, U.K
| | | | | |
Collapse
|