1
|
Jiang Z, Qu L, Cui G, Zhong G. Smoothened antagonist sonidegib affects the development of D. melanogaster larvae via suppression of epidermis formation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105462. [PMID: 37532307 DOI: 10.1016/j.pestbp.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 08/04/2023]
Abstract
Hedgehog (Hh) signaling is essential for the regulation of embryonic growth and development, the maintenance of stem cell autostasis, and tissue formation, whether in vertebrates or invertebrates. However, exploration into the Hh pathway antagonists in Drosophila or other pests of agricultural importance has been scant. In order to gain a better understanding of the potential utility of the antagonists in insect investigations, a conventional Hh antagonist, sonidegib, was used to evaluate the effects on the development of Drosophila larvae. The results showed that early instar larvae exposed to sonidegib exhibited new epidermal abnormalities and decreased motility after molting. Transcriptome analysis revealed that Sonidegib had a profound effect on chitin-based cuticle development throughout all stages of larvae. Physiological experiments revealed that sonidegib suppressed the epidermis formation and decreased the chitin content. The results of this study shed new light on the potential use of Hh antagonists in agricultural pest management.
Collapse
Affiliation(s)
- Zhiyan Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Liwen Qu
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Gaofeng Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
van Eekelen M, Runtuwene V, Masselink W, den Hertog J. Pair-wise regulation of convergence and extension cell movements by four phosphatases via RhoA. PLoS One 2012; 7:e35913. [PMID: 22545146 PMCID: PMC3335823 DOI: 10.1371/journal.pone.0035913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements.
Collapse
Affiliation(s)
- Mark van Eekelen
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent Runtuwene
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter Masselink
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute of Biology, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
3
|
Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb Perspect Biol 2010; 1:a002964. [PMID: 20066108 DOI: 10.1101/cshperspect.a002964] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | |
Collapse
|
4
|
Kotkamp K, Klingler M, Schoppmeier M. Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 2010; 137:1853-62. [PMID: 20431120 DOI: 10.1242/dev.047043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.
Collapse
Affiliation(s)
- Kay Kotkamp
- Department of Biology, Developmental Biology Unit, Erlangen University, 90158 Erlangen, Germany.
| | | | | |
Collapse
|
5
|
Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 2008; 218:181-92. [PMID: 18392879 PMCID: PMC2292471 DOI: 10.1007/s00427-008-0207-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/22/2008] [Indexed: 01/28/2023]
Abstract
In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect.
Collapse
|
6
|
Werz C, Lee TV, Lee PL, Lackey M, Bolduc C, Stein DS, Bergmann A. Mis-specified cells die by an active gene-directed process, and inhibition of this death results in cell fate transformation in Drosophila. Development 2005; 132:5343-52. [PMID: 16280349 PMCID: PMC2760325 DOI: 10.1242/dev.02150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation.
Collapse
Affiliation(s)
- Christian Werz
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Tom V. Lee
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
- The Genes and Development Graduate Program (http://www.mdanderson.org/genedev)
| | - Peter L. Lee
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Melinda Lackey
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - Clare Bolduc
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | - David S. Stein
- The University of Texas at Austin, Patterson labs 532, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, 2401 W24th and Speedway, Austin, TX 78712, USA
| | - Andreas Bergmann
- The University of Texas M.D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
- The Genes and Development Graduate Program (http://www.mdanderson.org/genedev)
- Author for correspondence (e-mail: )
| |
Collapse
|
7
|
Jászai J, Reifers F, Picker A, Langenberg T, Brand M. Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development 2003; 130:6611-23. [PMID: 14660549 DOI: 10.1242/dev.00899] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43,tag1/cntn2, neurod, zebrin II). The Locus coeruleus(LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a,zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore,locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8.
Collapse
Affiliation(s)
- József Jászai
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
8
|
Mirkovic I, Charish K, Gorski SM, McKnight K, Verheyen EM. Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mech Dev 2002; 119:9-20. [PMID: 12385750 DOI: 10.1016/s0925-4773(02)00289-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development.
Collapse
Affiliation(s)
- Ivana Mirkovic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
9
|
Galis F, van Dooren TJM, Metz JAJ. Conservation of the segmented germband stage: robustness or pleiotropy? Trends Genet 2002; 18:504-9. [PMID: 12350339 DOI: 10.1016/s0168-9525(02)02739-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene expression patterns of the segment polarity genes in the extended and segmented germband stage are remarkably conserved among insects. To explain the conservation of these stages, two hypotheses have been proposed. One hypothesis states that the conservation reflects a high interactivity between modules, so that mutations would have several pleiotropic effects in other parts of the body, resulting in stabilizing selection against mutational variation. The other hypothesis states that the conservation is caused by robustness of the segment polarity network against mutational changes. When evaluating the empirical evidence for these hypotheses, we found strong support for pleiotropy and little evidence supporting robustness of the segment polarity network. This points to a key role for stabilizing selection in the conservation of these stages. Finally, we discuss the implications for robustness of organizers and long-term conservation in general.
Collapse
Affiliation(s)
- Frietson Galis
- Institute of Evolutionary and Ecological Sciences, Leiden University, PO Box 9516, 2300RA Leiden University, The Netherlands.
| | | | | |
Collapse
|
10
|
Cox RT, McEwen DG, Myster DL, Duronio RJ, Loureiro J, Peifer M. A screen for mutations that suppress the phenotype of Drosophila armadillo, the beta-catenin homolog. Genetics 2000; 155:1725-40. [PMID: 10924470 PMCID: PMC1461219 DOI: 10.1093/genetics/155.4.1725] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During development signaling pathways coordinate cell fates and regulate the choice between cell survival or programmed cell death. The well-conserved Wingless/Wnt pathway is required for many developmental decisions in all animals. One transducer of the Wingless/Wnt signal is Armadillo/beta-catenin. Drosophila Armadillo not only transduces Wingless signal, but also acts in cell-cell adhesion via its role in the epithelial adherens junction. While many components of both the Wingless/Wnt signaling pathway and adherens junctions are known, both processes are complex, suggesting that unknown components influence signaling and junctions. We carried out a genetic modifier screen to identify some of these components by screening for mutations that can suppress the armadillo mutant phenotype. We identified 12 regions of the genome that have this property. From these regions and from additional candidate genes tested we identified four genes that suppress arm: dTCF, puckered, head involution defective (hid), and Dpresenilin. We further investigated the interaction with hid, a known regulator of programmed cell death. Our data suggest that Wg signaling modulates Hid activity and that Hid regulates programmed cell death in a dose-sensitive fashion.
Collapse
Affiliation(s)
- R T Cox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | | | |
Collapse
|
11
|
Cox RT, Pai LM, Kirkpatrick C, Stein J, Peifer M. Roles of the C terminus of Armadillo in Wingless signaling in Drosophila. Genetics 1999; 153:319-32. [PMID: 10471715 PMCID: PMC1460731 DOI: 10.1093/genetics/153.1.319] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila melanogaster Armadillo and its vertebrate homolog beta-catenin play multiple roles during development. Both are components of cell-cell adherens junctions and both transduce Wingless (Wg)/Wnt intercellular signals. The current model for Wingless signaling proposes that Armadillo binds the DNA-binding protein dTCF, forming a bipartite transcription factor that activates Wingless-responsive genes. In this model, Armadillo's C-terminal domain is proposed to serve an essential role as a transcriptional activation domain. In Xenopus, however, overexpression of C-terminally truncated beta-catenin activates Wnt signaling, suggesting that the C-terminal domain might not be essential. We reexamined the function of Armadillo's C terminus in Wingless signaling. We found that C-terminally truncated mutant Armadillo has a deficit in Wg-signaling activity, even when corrected for reduced protein levels. However, we also found that Armadillo proteins lacking all or part of the C terminus retain some signaling ability if overexpressed, and that mutants lacking different portions of the C-terminal domain differ in their level of signaling ability. Finally, we found that the C terminus plays a role in Armadillo protein stability in response to Wingless signal and that the C-terminal domain can physically interact with the Arm repeat region. These data suggest that the C-terminal domain plays a complex role in Wingless signaling and that Armadillo recruits the transcriptional machinery via multiple contact sites, which act in an additive fashion.
Collapse
Affiliation(s)
- R T Cox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
12
|
Hecht A, Litterst CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999; 274:18017-25. [PMID: 10364252 DOI: 10.1074/jbc.274.25.18017] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Catenin, a member of the family of Armadillo repeat proteins, plays a dual role in cadherin-mediated cell adhesion and in signaling by Wnt growth factors. Upon Wnt stimulation beta-catenin undergoes nuclear translocation and serves as transcriptional coactivator of T cell factor DNA-binding proteins. Previously the transactivation potential of different portions of beta-catenin has been demonstrated, but the precise location of transactivating elements has not been established. Also, the mechanism of transactivation by beta-catenin and the molecular basis for functional differences between beta-catenin and the closely related proteins Armadillo and Plakoglobin are poorly understood. Here we have used a yeast system for the detailed characterization of the transactivation properties of beta-catenin. We show that its transactivation domains possess a modular structure, consist of multiple subelements that cover broad regions at its N and C termini, and extend considerably into the Armadillo repeat region. Compared with beta-catenin the N termini of Plakoglobin and Armadillo have different transactivation capacities that may explain their distinct signaling properties. Furthermore, transactivating elements of beta-catenin interact specifically and directly with the TATA-binding protein in vitro providing further evidence that a major function of beta-catenin during Wnt signaling is to recruit the basal transcription machinery to promoter regions of Wnt target genes.
Collapse
Affiliation(s)
- A Hecht
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | | | |
Collapse
|
13
|
Gallet A, Angelats C, Erkner A, Charroux B, Fasano L, Kerridge S. The C-terminal domain of armadillo binds to hypophosphorylated teashirt to modulate wingless signalling in Drosophila. EMBO J 1999; 18:2208-17. [PMID: 10205174 PMCID: PMC1171304 DOI: 10.1093/emboj/18.8.2208] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wnt signalling is a key pathway for tissue patterning during animal development. In Drosophila, the Wnt protein Wingless acts to stabilize Armadillo inside cells where it binds to at least two DNA-binding factors which regulate specific target genes. One Armadillo-binding protein in Drosophila is the zinc finger protein Teashirt. Here we show that Wingless signalling promotes the phosphorylation and the nuclear accumulation of Teashirt. This process requires the binding of Teashirt to the C-terminal end of Armadillo. Finally, we present evidence that the serine/threonine kinase Shaggy is associated with Teashirt in a complex. We discuss these results with respect to current models of Armadillo/beta-catenin action for the transmission of the Wingless/Wnt pathway.
Collapse
Affiliation(s)
- A Gallet
- Labororatoire de Génétique et Physiologie du Développement, UMR 9943 CNRS-Université, IBDM CNRS-INSERM-Université de la Méditerranée, Campus de Luminy Case 907, F-13288 Marseille, Cedex 09, France
| | | | | | | | | | | |
Collapse
|
14
|
Vleminckx K, Kemler R, Hecht A. The C-terminal transactivation domain of beta-catenin is necessary and sufficient for signaling by the LEF-1/beta-catenin complex in Xenopus laevis. Mech Dev 1999; 81:65-74. [PMID: 10330485 DOI: 10.1016/s0925-4773(98)00225-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Beta-catenin is a multifunctional protein involved in cell adhesion and communication. In response to signaling by Wnt growth factors, beta-catenin associates with nuclear TCF factors to activate target genes. A transactivation domain identified at the C-terminus of beta-catenin can stimulate expression of artificial reporter genes. However, the mechanism of target gene activation by TCF/beta-catenin complexes and the physiological relevance of the beta-catenin transactivation domain still remain unclear. Here we asked whether the beta-catenin transactivation domain can generate a Wnt-response in a complex biological system, namely axis formation during Xenopus laevis embryogenesis. We show that a chimeric transcription factor consisting of beta-catenin fused to the DNA-binding domain of LEF-1 induces a complete secondary dorsoanterior axis when expressed in Xenopus. A LEF-1-beta-catenin fusion lacking the C-terminal transactivation domain is impaired in signaling while fusion of just the beta-catenin transactivator to the DNA-binding domain of LEF-1 is sufficient for axis-induction. The latter fusion molecule is blocked by dominant negative LEF-1 but not by excess cadherin indicating that all events parallel or upstream of the transactivation step mediated by beta-catenin are dispensable for Wnt-signaling. Moreover, beta-catenin can be replaced by a heterologous transactivator. Apparently, the ultimate function of beta-catenin in Wnt signaling is to recruit the basal transcription machinery to promoter regions of specific target genes.
Collapse
Affiliation(s)
- K Vleminckx
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108, Freiburg, Germany
| | | | | |
Collapse
|
15
|
Abstract
The armadillo gene is a segment polarity gene of Drosophila involved in signal transduction through wingless. Since the mid-1980s, a growing number of related proteins have been identified based on sequence homologies. These proteins share a central domain that is composed of a series of imperfect 45 amino acid repeats. Armadillo family members reveal diverse cellular locations reflecting their diverse functions. A single protein exerts several functions through interactions of its armadillo repeat domain with diverse binding partners. The proteins combine structural roles as cell-contact and cytoskeleton-associated proteins and signaling functions by generating and transducing signals affecting gene expression. The study of armadillo family members has made it increasingly clear that a distinction between structural proteins on the one hand and signaling molecules on the other is rather artificial. Instead armadillo family members exert both functions by interacting with a number of distinct cellular-binding partners.
Collapse
Affiliation(s)
- M Hatzfeld
- Molecular Biology Group, Medical Faculty, University of Halle, Germany
| |
Collapse
|
16
|
Pazdera TM, Janardhan P, Minden JS. Patterned epidermal cell death in wild-type and segment polarity mutant Drosophila embryos. Development 1998; 125:3427-36. [PMID: 9693146 DOI: 10.1242/dev.125.17.3427] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Programmed cell death plays an essential role in the normal embryonic development of Drosophila melanogaster. One region of the embryo where cell death occurs, but has not been studied in detail, is the abdominal epidermis. Because cell death is a fleeting process, we have used time-lapse, fluorescence microscopy to map epidermal apoptosis throughout embryonic development. Cell death occurs in a stereotypically striped pattern near both sides of the segment border and to a lesser extent in the middle of the segment. This map of wild-type cell death was used to determine how cell death patterns change in response to genetic perturbations that affect epidermal patterning. Previous studies have suggested that segment polarity mutant phenotypes are partially the result of increased cell death. Mutations in wingless, armadillo, and gooseberry led to dramatic increases in apoptosis in the anterior of the segment while a naked mutation resulted in a dramatic increase in the death of engrailed cells in the posterior of the segment. These results show that segment polarity gene expression is necessary for the survival of specific rows of epidermal cells and may provide insight into the establishment of the wild-type epidermal cell death pattern.
Collapse
Affiliation(s)
- T M Pazdera
- Department of Biological Sciences and the Center for Light Microscope Imaging and Biotechnology and Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
17
|
Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998; 12:2610-22. [PMID: 9716412 PMCID: PMC317102 DOI: 10.1101/gad.12.16.2610] [Citation(s) in RCA: 524] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 06/17/1998] [Indexed: 11/24/2022]
Abstract
In Drosophila, planar cell polarity (PCP) signaling is mediated by the receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling also requires Dsh and may utilize DFz2 as a receptor. Using a heterologous system, we show that Dsh is recruited selectively to the membrane by Fz but not DFz2, and this recruitment depends on the DEP domain but not the PDZ domain in Dsh. A mutation in the DEP domain impairs both membrane localization and the function of Dsh in PCP signaling, indicating that translocation is important for function. Further genetic and molecular analyses suggest that conserved domains in Dsh function differently during PCP and Wg signaling, and that divergent intracellular pathways are activated. We propose that Dsh has distinct roles in PCP and Wg signaling. The PCP signal may selectively result in focal Fz activation and asymmetric relocalization of Dsh to the membrane, where Dsh effects cytoskeletal reorganization to orient prehair initiation.
Collapse
Affiliation(s)
- J D Axelrod
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA.
| | | | | | | | | |
Collapse
|
18
|
Ahmed Y, Hayashi S, Levine A, Wieschaus E. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 1998; 93:1171-82. [PMID: 9657150 DOI: 10.1016/s0092-8674(00)81461-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We find that inactivation of a Drosophila homolog of the tumor suppressor APC (D-APC) causes retinal neuronal degeneration and pigment cell hypertrophy, a phenotype remarkably similar to that found in humans with germline APC mutations. Retinal degeneration in the D-APC mutant results from apoptotic cell death, which accompanies a defect in neuronal differentiation. Reduction in the Drosophila beta-catenin, Armadillo (Arm), rescues the differentiation defect and prevents apoptosis in the D-APC mutant, while Arm overexpression mimics D-APC inactivation. A mutation in dTCF, the DNA-binding protein required in Arm-mediated signal transduction, can eliminate the cell death without rescuing the differentiation defect in D-APC mutants. Uncoupling of these two Arm-induced processes suggests a novel role for the Arm/dTCF complex in the activation of apoptosis.
Collapse
Affiliation(s)
- Y Ahmed
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | | | |
Collapse
|
19
|
Rodriguez M, Driever W. Mutations resulting in transient and localized degeneration in the developing zebrafish brain. Biochem Cell Biol 1997. [DOI: 10.1139/o97-089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In a large-scale mutagenesis screen in the zebrafish, Danio rerio, we have identified a heterogeneous group of 30 recessive, embryonic lethal mutations characterized by degeneration in the developing central nervous system that is either transient or initially localized to one area of the brain. Transient degeneration is defined as abnormal cell death occurring during a restricted period of development. Following degeneration, the affected structures do not appear to regenerate. In each case degeneration is identified after somitogenesis is complete and is not associated with visually identified patterning defects. These 30 mutations, forming 21 complementation groups, have been classified into four phenotypic groups: group 1, transient degeneration (13 mutations); group 2, spreading degeneration, early onset, in which degeneration is initially confined to the optic tectum but subsequently spreads to other areas of the central nervous system (7 mutations); group 3, late-onset degeneration, initially identified after 4 days (6 mutations); and group 4, degeneration with abnormal pigmentation (4 mutations). Although apoptotic cells are seen in the retina and tectum of all mutants, the distribution, temporal progression, and severity of degeneration vary between mutations. Several mutations also show pleiotropic effects, with degeneration involving extraneural structures including the pharyngeal arches and pectoral fins. We discuss some of the pathways important for cell survival in the nervous system and suggest that these mutations will provide entry points for identifying genes that affect the survival of restricted neural populations.
Collapse
|
20
|
Aplin AC, Kaufman TC. Homeotic transformation of legs to mouthparts by proboscipedia expression in Drosophila imaginal discs. Mech Dev 1997; 62:51-60. [PMID: 9106166 DOI: 10.1016/s0925-4773(96)00649-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Drosophila homeotic gene proboscipedia (pb) specifies labial identify and directs formation of the adult distiproboscis from the labial imaginal discs. pb null alleles result in the homeotic transformation of the distiproboscis into prothoracic (T1) legs [Kaufman (1978) Genetics 90, 579-596; Pultz et al. (1988) Genes Dev. 2, 901-920]. Homology with other transcription factors, localization to the nucleus, and restricted embryonic and imaginal expression implicate the pb protein (PB) as a transcription factor. In order to examine the possible roles that PB may play in the specification of adult mouthparts, we have expressed PB in cells of wing, leg and eye-antennal imaginal discs and assayed for effects on the development of adult structures. We report here that the ectopic expression of PB in the imaginal discs under the control of the inducible GAL4 system [Brand and Perrimon (1993) Development 118, 401-415] alters the developmental program of adult legs into maxillary or labial palps. These homeotic transformations have an equal effect on all three sets of legs, indicating an activity that is not solely dependent upon the unique combinations of other homeotic genes present in each of the leg discs. Segment polarity genes required for establishing the AP compartment boundary were found to be undisturbed by ectopic PB. Furthermore, normal patterns of apoptosis are observed in animals expressing ectopic PB, indicating that PB does not alter or affect cell death. These results suggest that molecular events occurring downstream of the establishment of the compartment boundary are affected by ectopic PB expression in imaginal discs and point to a general role in 'palp' formation in addition to the specification of labial identity.
Collapse
Affiliation(s)
- A C Aplin
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
21
|
Abstract
After the onset of pupation, sensory organ precursors, the progenitors of the interommatidial bristles, are selected in the developing Drosophila eye. We have found that wingless, when expressed ectopically in the eye via the sevenless promoter, blocks this process. Transgenic eyes have reduced expression of acheate, suggesting that wingless acts at the level of the proneural genes to block bristle development. This is in contrast to the wing, where wingless positively regulates acheate to promote bristle formation. The sevenless promoter is not active in the acheate-positive cells, indicating that the wingless is acting in a paracrine manner. Clonal analysis revealed a requirement for the genes porcupine, dishevelled and armadillo in mediating the wingless effect. Overexpression of zeste white-3 partially blocks the ability of wingless to inhibit bristle formation, consistent with the notion that wingless acts in opposition to zeste white-3. Thus the wingless signaling pathway in the eye appears to be very similar to that described in the embryo and wing. The Notch gene product has also been suggested to play a role in wingless signaling (J. P. Couso and A. M. Martinez Arias (1994) Cell 79, 259–72). Because Notch has many functions during eye development, including its role in inhibiting bristle formation through the neurogenic pathway, it is difficult to assess the relationship of Notch to wingless in the eye. However, we present evidence that wingless signaling still occurs normally in the complete absence of Notch protein in the embryonic epidermis. Thus, in the simplest model for wingless signalling, a direct role for Notch is unlikely.
Collapse
Affiliation(s)
- K M Cadigan
- Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
22
|
Torres MA, Yang-Snyder JA, Purcell SM, DeMarais AA, McGrew LL, Moon RT. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J Cell Biol 1996; 133:1123-37. [PMID: 8655584 PMCID: PMC2120849 DOI: 10.1083/jcb.133.5.1123] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When overexpressed in Xenopus embryos, Xwnt-1, -3A, -8 and -8b define a functional class of Wnts (the Wnt-1 class) that promotes duplication of the embryonic axis, whereas Xwnt-5A, -4, and -11 define a distinct class (the Wnt-5A class) that alters morphogenetic movements (Du, S., S. Purcell, J. Christian, L. McGrew, and R. Moon. 1995. Mol. Cell. Biol. 15:2625-2634). Since come embryonic cells may be exposed to signals from both functional classes of Wnt during vertebrate development, this raises the question of how the signaling pathways of these classes of Wnts might interact. To address this issue, we coexpressed various Xwnts and components of the Wnt-1 class signaling pathway in developing Xenopus embryos. Members of the Xwnt-5A class antagonized the ability of ectopic Wnt-1 class to induce goosecoid expression and a secondary axis. Interestingly, the Wnt-5A class did not block goosecoid expression or axis induction in response to overexpression of cytoplasmic components of the Wnt-1 signaling pathway, beta-catenin or a kinase-dead gsk-3, or to the unrelated secreted factor, BVg1. The ability of the Wnt-5A class to block responses to the Wnt-1 class may involve decreases in cell adhesion, since ectopic expression of Xwnt-5A leads to decreased Ca2+-dependent cell adhesion and the activity of Xwnt-5A to block Wnt-1 class signals is mimicked by a dominant negative N-cadherin. These data underscore the importance of cell adhesion in modulating the responses of embryonic cells to signaling molecules and suggest that the Wnt-5A functional class of signaling factors can interact with the Wnt-1 class in an antagonistic manner.
Collapse
Affiliation(s)
- M A Torres
- Department of Pharmacology, University of Washington School of Medicine, Seattle, 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
23
|
Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y, Takeichi M. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 1996; 10:659-71. [PMID: 8598294 DOI: 10.1101/gad.10.6.659] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dynamic epithelial reorganization is essential for morphogenesis of various organs. In Drosophila embryos, for example the Malpighian tubule is generated by cellular rearrangement of a preexisting epithelium and the tracheal network is formed by outgrowth, branching, and fusion of epithelial vesicles. Here we report that the previously identified locus shotgun (shg) encodes DE-cadherin, an epithelial cell-cell adhesion molecule of the classic cadherin type and that zygotic shg mutations rather specifically impair processes of the dynamic epithelial morphogenesis. In the mutants, the Malpighian tubule disintegrated into small spherical structures, and the tracheal network formation was blocked in selected steps. The malformation of these organs could be rescued by overexpression of DE-cadherin cDNA under a heat shock promoter. Unexpectedly, the zygotic null condition did not severely affect general epithelial organization; most epithelial tissues maintained not only their cell-cell associations but also their apicobasal polarity in the mutants. The zygotic null mutant retained a certain level of maternally derived DE-cadherin molecules until the end of embryogenesis. These results suggest that zygotic DE-cadherin expression is critical for the rearrangement processes of epithelial cells, whereas the maternally derived DE-cadherin may serve only for the maintenance of the static architecture of the epithelia.
Collapse
Affiliation(s)
- T Uemura
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
24
|
The wingless/Wnt-1 Signaling Pathway—New Insights into the Cellular Mechanisms of Signal Transduction. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1064-2722(08)60056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Lee SM, Dickinson ME, Parr BA, Vainio S, McMahon AP. Molecular genetic analysis of Wnt signals in mouse development. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5781(06)80052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
The products of the Drosophila segment polarity gene armadillo and its vertebrate homologue beta-catenin are components of the signal transduction pathway for Wingless/Wnt-1; this signal regulates cell-fate choices in embryos of the fruit fly Drosophila and vertebrates. Armadillo/beta-catenin is also a component of cell-cell adherens junctions in epithelia. How can these two seemingly distinct roles be reconciled? Evidence suggests that Armadillo has distinct functions: one in the adherens junction and one or more in the cytoplasm. The biochemical role of Armadillo may be to serve as a scaffold upon which different multiprotein complexes are assembled.
Collapse
Affiliation(s)
- M Peifer
- Dept of Biology, CB#3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
27
|
Noordermeer J, Klingensmith J, Nusse R. Differential requirements for segment polarity genes in wingless signaling. Mech Dev 1995; 51:145-55. [PMID: 7547463 DOI: 10.1016/0925-4773(95)00348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The segment polarity genes wingless and engrailed are required throughout development of Drosophila. During early embryogenesis, these two genes are expressed in adjacent domains, in an inter-dependent way. Later, their expression is regulated by different mechanisms and becomes maintained by auto-regulation. To dissect the genetic requirements for the initial signaling between wingless and engrailed expressing cells, we have previously used a transgenic Drosophila strain that expresses wingless under the control of the heat shock promoter (HS-wg). Focusing on the later phases of wingless and engrailed regulation, we have now extended these studies, using embryos carrying various combinations of segment polarity mutations and the HS-wg transgene. We confirm some of the existing models of regulation of the expression of wingless and engrailed. In addition, we find that HS-wg embryos require engrailed for induction of ectopic endogenous wingless expression. Signaling from engrailed cells to this novel wingless expression domain is dependent on hedgehog but also on porcupine. We further demonstrate a novel requirement for hedgehog in maintenance of expression of engrailed itself.
Collapse
Affiliation(s)
- J Noordermeer
- Howard Hughes Medical Institute, Stanford University, California 94305-5428, USA
| | | | | |
Collapse
|
28
|
Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev 1995; 9:1087-97. [PMID: 7744250 DOI: 10.1101/gad.9.9.1087] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wingless (Wg) is an important signaling molecule in the development of Drosophila, but little is known about its signal transduction pathway. Genetic evidence indicates that another segment polarity gene, dishevelled (dsh) is required for Wg signaling. We have recently developed a cell culture system for Wg protein activity, and using this in vitro system as well as intact Drosophila embryos, we have analyzed biochemical changes in the Dsh protein as a consequence of Wg signaling. We find that Dsh is a phosphoprotein, normally present in the cytoplasm. Wg signaling generates a hyperphosphorylated form of Dsh, which is associated with a membrane fraction. Overexpressed Dsh becomes hyperphosphorylated in the absence of extracellular Wg and increases levels of the Armadillo protein, thereby mimicking the Wg signal. A deletional analysis of Dsh identifies several conserved domains essential for activity, among which is a so-called GLGF/DHR motif. We conclude that dsh, a highly conserved gene, is not merely a permissive factor in Wg signaling but encodes a novel signal transduction molecule, which may function between the Wg receptor and more downstream signaling molecules.
Collapse
Affiliation(s)
- S Yanagawa
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University, California 94305-5428, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Although several genes involved in apoptosis have been identified recently, the mechanisms that regulate and execute this process are still not fully understood. Drosophila is providing powerful new approaches for studying both the signalling pathways that activate apoptosis, and the components of the basic cell death programme. Here, we summarize progress in understanding how distinct signals influence the death of particular cells in Drosophila, and then review recent results that suggest these act through a single pathway in which the reaper gene product plays a central role.
Collapse
Affiliation(s)
- K White
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
30
|
Abstract
The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent.
Collapse
|
31
|
Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 1994; 14:6278-86. [PMID: 8065359 PMCID: PMC359154 DOI: 10.1128/mcb.14.9.6278-6286.1994] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent.
Collapse
Affiliation(s)
- G T Wong
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | |
Collapse
|
32
|
Wurst W, Auerbach AB, Joyner AL. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 1994; 120:2065-75. [PMID: 7925010 DOI: 10.1242/dev.120.7.2065] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During mouse development, the homeobox-containing gene En-1 is specifically expressed across the mid-hindbrain junction, the ventral ectoderm of the limb buds, and in regions of the hindbrain, spinal cord, somites and somite-derived tissues. To address the function of En-1 during embryogenesis, we have generated mice homozygous for a targeted deletion of the En-1 homeobox. En-1 mutant mice died shortly after birth and exhibited multiple developmental defects. In the brains of newborn mutants, most of the colliculi and cerebellum were missing and the third and fourth cranial nerves were absent. A deletion of midhindbrain tissue was observed as early as 9.5 days of embryonic development and the phenotype resembles that previously reported for Wnt-1 mutant mice. In addition, patterning of the forelimb paws and sternum was disrupted, and the 13th ribs were truncated. The results of these studies suggest a cell autonomous role for En-1 in generation and/or survival of mid-hindbrain precursor cells and also a non-cell autonomous role in signalling normal development of the limbs and possibly sternum.
Collapse
Affiliation(s)
- W Wurst
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada
| | | | | |
Collapse
|
33
|
Siegfried E, Perrimon N. Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. Bioessays 1994; 16:395-404. [PMID: 8080429 DOI: 10.1002/bies.950160607] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The link between oncogenesis and normal development is well illustrated by the study of the Wnt family of proteins. The first Wnt gene (int-1) was identified over a decade ago as a proto-oncogene, activated in response to proviral insertion of a mouse mammary tumor virus. Subsequently, the discovery that Drosophila wingless, a developmentally important gene, is homologous to int-1 supported the notion that int-1 may have a role in normal development. In the last few years it has been recognized that int-1 and Wingless belong to a large family of related glyco-proteins found in vertebrates and invertebrates. In recognition of this, members of this family have been renamed Wnts, an amalgam of int and Wingless. Investigation of Wnt genes in Xenopus and mouse indicates that Wnts have a role in cell proliferation, differentiation and body axis formation. Further analysis in Drosophila has revealed that Wingless function is required in several developmental processes in the embryo and imaginal discs. In addition, a genetic approach has identified some of the molecules required for the transmission and reception of the Wingless signal. We will review recent data which have contributed to our growing understanding of the function and mechanism of Drosophila Wingless signaling in cell fate determination, growth and specification of pattern.
Collapse
Affiliation(s)
- E Siegfried
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
34
|
White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994; 264:677-83. [PMID: 8171319 DOI: 10.1126/science.8171319] [Citation(s) in RCA: 805] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gene, reaper (rpr), that appears to play a central control function for the initiation of programmed cell death (apoptosis) in Drosophila was identified. Virtually all programmed cell death that normally occurs during Drosophila embryogenesis was blocked in embryos homozygous for a small deletion that includes the reaper gene. Mutant embryos contained many extra cells and failed to hatch, but many other aspects of development appeared quite normal. Deletions that include reaper also protected embryos from apoptosis caused by x-irradiation and developmental defects. However, high doses of x-rays induced some apoptosis in mutant embryos, and the resulting corpses were phagocytosed by macrophages. These data suggest that the basic cell death program is intact although it was not activated in mutant embryos. The DNA encompassed by the deletion was cloned and the reaper gene was identified on the basis of the ability of cloned DNA to restore apoptosis to cell death defective embryos in germ line transformation experiments. The reaper gene appears to encode a small peptide that shows no homology to known proteins, and reaper messenger RNA is expressed in cells destined to undergo apoptosis.
Collapse
Affiliation(s)
- K White
- Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Cambridge, MA
| | | | | | | | | | | |
Collapse
|
35
|
Couso JP, Bishop SA, Martinez Arias A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 1994; 120:621-36. [PMID: 8162860 DOI: 10.1242/dev.120.3.621] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The margin of the wing of Drosophila is defined and patterned from a stripe of cells expressing the wingless (wg) gene that is established during the third larval instar in the developing wing blade. The expression of the genes cut and achaete in a small domain in the prospective wing margin region reflects the activity of wg and probably mediate its function. Our results indicate that, in the wing margin, the wingless signal requires the activity of at least three genes: armadillo (arm), dishevelled (dsh) and shaggy (sgg) and that the functional relationship between these genes and wg is the same as that which exist during the patterning of the larval epidermis. These observations indicate that arm, dsh and sgg encode elements of a unique ‘wingless signalling pathway’ that is used several times throughout development.
Collapse
Affiliation(s)
- J P Couso
- Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
36
|
Peifer M, Sweeton D, Casey M, Wieschaus E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 1994; 120:369-80. [PMID: 8149915 DOI: 10.1242/dev.120.2.369] [Citation(s) in RCA: 325] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
wingless/wnt-1 signaling directs cell fate during development. Genetic analysis in Drosophila identified genes that may encode components of the wingless signal transduction system. Drosophila Armadillo, homolog of vertebrate beta-catenin, is required for wingless signaling. Unlike armadillo RNA, Armadillo protein accumulates non-uniformly in different cells of each embryonic segment. We found that cells alter their intracellular distribution of Armadillo in response to Wingless signal, accumulating increased levels of cytoplasmic Armadillo relative to those of membrane-associated protein. Levels of cytoplasmic Armadillo are also regulated by Zeste-White 3 kinase. Analysis of double mutants demonstrates that Armadillo's role in wingless signaling is direct, and that Armadillo functions downstream of both wingless and zeste-white 3. We present a model for the role of Armadillo stripes in transduction of wingless signal.
Collapse
Affiliation(s)
- M Peifer
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | | | |
Collapse
|
37
|
Theisen H, Purcell J, Bennett M, Kansagara D, Syed A, Marsh JL. dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 1994; 120:347-60. [PMID: 8149913 DOI: 10.1242/dev.120.2.347] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dishevelled gene of Drosophila is required to establish coherent arrays of polarized cells and is also required to establish segments in the embryo. Here, we show that loss of dishevelled function in clones, in double heterozygotes with wingless mutants and in flies bearing a weak dishevelled transgene leads to patterning defects which phenocopy defects observed in wingless mutants alone. Further, polarized cells in all body segments require dishevelled function to establish planar cell polarity, and some wingless alleles and dishevelled; wingless double heterozygotes exhibit bristle polarity defects identical to those seen in dishevelled alone. The requirement for dishevelled in establishing polarity in cell autonomous. The dishevelled gene encodes a novel intracellular protein that shares an amino acid motif with several other proteins that are found associated with cell junctions. Clonal analysis of dishevelled in leg discs provides a unique opportunity to test the hypothesis that the wingless dishevelled interaction species at least one of the circumferential positional values predicted by the polar coordinate model. We propose that dishevelled encodes an intracellular protein required to respond to a wingless signal and that this interaction is essential for establishing both cell polarity and cell identity.
Collapse
Affiliation(s)
- H Theisen
- Developmental Biology Center, University of California Irvine 92717
| | | | | | | | | | | |
Collapse
|
38
|
Noordermeer J, Klingensmith J, Perrimon N, Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 1994; 367:80-3. [PMID: 7906389 DOI: 10.1038/367080a0] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Wnt genes encode conserved secreted proteins that play a role in normal development and tumorigenesis. Little is known about the signal transduction pathways of Wnt gene products. One of the best characterized Wnt family members is the Drosophila segment polarity gene wingless. We have investigated whether segment polarity genes with a wingless-like phenotype mediate the wingless signal. We used a wingless transgene controlled by a heat-shock promoter for genetic epistasis experiments. We show that wingless acts through dishevelled and armadillo to affect the expression of the homeobox gene engrailed and cuticle differentiation.
Collapse
|
39
|
Abstract
The determination of specific cell fates and polarity within each segmental unit of the Drosophila embryo involves the products of the segment polarity genes. One of these, wingless (wg), encodes a secreted protein that is homologous to the mammalian proto-oncogene Wnt-1 (refs 4, 5). In the embryonic epidermis, wg is expressed in a single row of cells within each segmental unit, although its activity is required for the correct patterning of most of the epidermis. Initially Wg signals to adjacent posterior cells, maintaining engrailed (en) expression. Later during embryogenesis, wg specifies the differentiation of naked cuticle. Wg signalling functions by inactivating or antagonizing the activity of zestewhite 3 (zw3). We have investigated the requirement in the Wg signal transduction pathway for the three genes armadillo (arm), dishevelled (dsh) and porcupine (porc), all of which have embryonic mutant phenotypes similar to wg. Our results indicate that dsh and porc act upstream of zw3, and arm acts downstream of zw3.
Collapse
Affiliation(s)
- E Siegfried
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
40
|
Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev 1994; 8:118-30. [PMID: 8288125 DOI: 10.1101/gad.8.1.118] [Citation(s) in RCA: 330] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Drosophila Wnt-1 homolog, wingless (wg), is involved in the signaling of patterning information in several contexts. In the embryonic epidermis, Wg protein is secreted and taken up by neighboring cells, in which it is required for maintenance of engrailed transcription and accumulation of Armadillo protein. The dishevelled (dsh) gene mediates these signaling events as well as wg-dependent induction across tissue layers in the embryonic midgut. dsh is also required for the development processes in which wg functions in adult development. Overall, cells lacking dsh are unable to adopt fates specified by Wg. dsh functions cell autonomously, indicating that it is involved in the response of target cells to the Wg signal. dsh is expressed uniformly in the embryo and encodes a novel protein with no known catalytic motifs, although it shares a domain of homology with several junction-associated proteins. Our results demonstrate that dsh encodes a specific component of Wg signaling and illustrate that Wnt proteins may utilize a novel mechanism of extracellular signal transduction.
Collapse
Affiliation(s)
- J Klingensmith
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
41
|
van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 1993; 12:5293-302. [PMID: 8262072 PMCID: PMC413795 DOI: 10.1002/j.1460-2075.1993.tb06225.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the molecular nature of mutations in wingless (wg), a segment polarity gene acting during various stages of Drosophila development. Embryo-lethal alleles have undergone mutations in the protein-encoding domain of the gene, including deletions and point mutations of conserved residues. In a temperature sensitive mutation, a conserved cysteine residue is replaced by a serine. In embryo-viable alleles, the wg transcriptional unit is not affected. Immunostaining of mutant embryos shows that the embryo-lethal alleles produce either no wg antigen or a form of the protein that is retained within cells. Interestingly, embryos mutant for the segment polarity gene porcupine show a similar retention of the wg antigen. We have also transfected wild type wg alleles into Drosophila tissue culture cells, which then display wg protein on the cell surface and in the extracellular matrix. In similar experiments with mutant alleles, the proteins are retained in intracellular compartments and appear not to be secreted. These data provide further evidence that wg acts as a secreted factor and suggest that porcupine provides an accessory function for wg protein secretion or transport.
Collapse
Affiliation(s)
- M van den Heuvel
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, CA 94305
| | | | | | | | | |
Collapse
|
42
|
Bejsovec A, Wieschaus E. Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 1993; 119:501-17. [PMID: 8287799 DOI: 10.1242/dev.119.2.501] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each segment of a Drosophila larva shows a precisely organized pattern of cuticular structures, indicating diverse cellular identities in the underlying epidermis. Mutations in the segment polarity genes alter the cuticle pattern secreted by the epidermal cells; these mutant patterns provide clues about the role that each gene product plays in the development of wild-type epidermal pattern. We have analyzed embryos that are multiply mutant for five key patterning genes: wingless, patched, engrailed, naked and hedgehog. Our results indicate that wild-type activity of these five segment polarity genes can account for most of the ventral pattern elements and that their gene products interact extensively to specify the diverse cellular identities within the epidermis. Two pattern elements can be correlated with individual gene action: wingless is required for formation of naked cuticle and engrailed is required for formation of the first row of denticles in each abdominal denticle belt. The remaining cell types can be produced by different combinations of the five gene activities. wingless activity generates the diversity of cell types within the segment, but each specific cell identity depends on the activity of patched, engrailed, naked and hedgehog. These molecules modulate the distribution and interpretation of wingless signalling activity in the ventral epidermal cells and, in addition, each can contribute to pattern through a pathway independent of the wingless signalling pathway.
Collapse
Affiliation(s)
- A Bejsovec
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
43
|
Peifer M, Orsulic S, Sweeton D, Wieschaus E. A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development 1993; 118:1191-207. [PMID: 8269848 DOI: 10.1242/dev.118.4.1191] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epithelial sheet is a structural unit common to many tissues. Its organization appears to depend on the function of the multi-protein complexes that form adherens junctions. Elegant cell biological experiments have provided support for hypotheses explaining the function of adherens junctions and of their components. These systems, however, lack the ability to test function within an entire organism during development. The realization that the product of the Drosophila segment polarity gene armadillo is related to the vertebrate adhesive junction components plakoglobin and beta-catenin led to the suggestion that armadillo might provide a genetic handle to study adhesive junction structure and function. An examination of the potential function of Armadillo in cell-cell adhesive junctions was initiated using the Drosophila ovary as the model system. We examined the distribution of Armadillo in the Drosophila ovary and demonstrated that this localization often parallels the location of cell-cell adhesive junctions. The consequences of removing armadillo function from the germ-line cells of the ovary were also examined. Germ-line armadillo mutations appear to disrupt processes requiring cell adhesion and integrity of the actin cytoskeleton, consistent with a role for Armadillo in cell-cell adhesive junctions. We have also used armadillo mutations to examine the effects on ovarian development of altering the stereotyped cell arrangements of the ovary. The implications of these results for the role of adhesive junctions during development are discussed.
Collapse
Affiliation(s)
- M Peifer
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | | | |
Collapse
|
44
|
Peifer M. The product of the Drosophila segment polarity gene armadillo is part of a multi-protein complex resembling the vertebrate adherens junction. J Cell Sci 1993; 105 ( Pt 4):993-1000. [PMID: 8227220 DOI: 10.1242/jcs.105.4.993] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence similarity between the Drosophila segment polarity protein Armadillo and the vertebrate adherens junction protein beta-catenin raised the possibility that adherens junctions function in transduction of intercellular signals like that mediated by Wingless/Wnt-1. To substantiate the sequence similarity, properties of Armadillo were evaluated for consistency with a junctional role. Armadillo is part of a membrane-associated complex. This complex includes Armadillo, a glycoprotein similar in size to vertebrate cadherins, and the Drosophila homolog of alpha-catenin. Armadillo co-localizes with junctions that resemble vertebrate adherens junctions in morphology and position. These results suggest that Drosophila and vertebrate adherens junctions are structurally similar, validating use of Armadillo and its associated proteins as a model for vertebrate adherens junctions.
Collapse
Affiliation(s)
- M Peifer
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| |
Collapse
|
45
|
Sampedro J, Johnston P, Lawrence PA. A role for wingless in the segmental gradient of Drosophila? Development 1993; 117:677-87. [PMID: 8330533 DOI: 10.1242/dev.117.2.677] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wild-type functions of the Wnt family of genes are still little understood (for review see Nusse and Varmus, Cell 69, 1073–1087, 1992). In Drosophila, the wingless (D-Wnt-1) protein is expressed in segmental stripes: its absence leads to a complete failure of segmentation, loss of engrailed expression and lack of pattern in the cuticle. A predominating hypothesis is that the spatial distribution of wingless is crucial to pattern; it might carry an instructive signal from cells that secrete the protein to cells nearby, or it might form a concentration gradient which acts as a morphogen. We tested these hypotheses by expressing wingless ubiquitously in wingless- embryos. The distribution of wingless protein in these embryos is uniform. Despite this, engrailed expression persists, is confined to the most anterior third of the parasegment, and delineates the parasegment border. The cuticle shows a segmentally reiterated pattern and, dorsally, the denticles are normally distributed and oriented. Because all these position-specific features cannot have been placed by a local source or a differential distribution of wingless protein, we conclude that, in the early embryo, the role of wingless is neither to act as a local instructive signal, nor as a morphogen. We propose an alternative hypothesis that the wild-type function of the wingless protein is to maintain and ‘seal’ the parasegment borders; in its absence the borders fail to isolate abutting segmental gradients.
Collapse
Affiliation(s)
- J Sampedro
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|
46
|
Siegfried E, Chou TB, Perrimon N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992; 71:1167-79. [PMID: 1335365 DOI: 10.1016/s0092-8674(05)80065-0] [Citation(s) in RCA: 325] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intrasegmental patterning in the Drosophila embryo is regulated by cell-cell communication. One of the signaling pathways that operates to specify positional information throughout the segment is mediated by the wingless (wg) protein, which is the homolog of the proto-oncogene Wnt-1. The early role of wg is to stabilize engrailed (en) expression by initiating a phase of en autoregulation in the adjacent more posterior cells. Here, we report that the segment polarity gene zeste-white 3 (zw3; also known as shaggy) acts as a repressor of en autoregulation. Genetic epistasis experiments indicate that wg signaling operates by inactivating the zw3 repression of en autoactivation. In addition, we demonstrate that zw3 encodes the Drosophila homolog of mammalian glycogen synthase kinase-3.
Collapse
Affiliation(s)
- E Siegfried
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
47
|
Mohler J, Vani K. Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 1992; 115:957-71. [PMID: 1280560 DOI: 10.1242/dev.115.4.957] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
hedgehog is a segment polarity gene necessary to maintain the proper organization of each segment of the Drosophila embryo. We have identified the physical location of a number of rearrangement breakpoints associated with hedgehog mutations. The corresponding hh RNA is expressed in a series of segmental stripes starting at cellular blastoderm in the posterior portion of each segment. This RNA is localized predominantly within nuclei until stage 10, when the localization becomes primarily cytoplasmic. Expression of hh RNA in the posterior compartment is independent of most other segment polarity genes, including en, until the late extended germ-band stage (stage 11). Sequence analysis of the hedgehog locus suggests the protein product is a transmembrane protein, which may, therefore, be directly involved in cell-cell communication.
Collapse
Affiliation(s)
- J Mohler
- Barnard College, Department of Biological Sciences, New York, NY 10027
| | | |
Collapse
|
48
|
Peifer M, Bejsovec A. Knowing your neighbors: Cell interactions determine intrasegmental patterning in Drosophila. Trends Genet 1992. [DOI: 10.1016/0168-9525(92)90394-j] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
|
50
|
Affiliation(s)
- R Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305
| | | |
Collapse
|