1
|
Barik K, Arya PK, Singh AK, Kumar A. Potential therapeutic targets for combating Mycoplasma genitalium. 3 Biotech 2023; 13:9. [PMID: 36532859 PMCID: PMC9755450 DOI: 10.1007/s13205-022-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium (M. genitalium) has emerged as a sexually transmitted infection (STI) all over the world in the last three decades. It has been identified as a cause of male urethritis, and there is now evidence that it also causes cervicitis and pelvic inflammatory disease in women. However, the precise role of M. genitalium in diseases such as pelvic inflammatory disease, and infertility is unknown, and more research is required. It is a slow-growing organism, and with the advent of the nucleic acid amplification test (NAAT), more studies are being conducted and knowledge about the pathogenicity of this organism is being elucidated. The accumulation of data has improved our understanding of the pathogen and its role in disease transmission. Despite the widespread use of single-dose azithromycin in the sexual health field, M. genitalium is known to rapidly develop antibiotic resistance. As a result, the media frequently refer to this pathogen as the "new STI superbug." Despite their rarity, antibiotics available today have serious side effects. As the cure rates for first-line antimicrobials have decreased, it is now a challenge to determine the effective antimicrobial therapy. In this review, we summarise recent M. genitalium research and investigate potential therapeutic targets for combating this pathogen.
Collapse
Affiliation(s)
- Krishnendu Barik
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Praffulla Kumar Arya
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Anil Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| |
Collapse
|
2
|
Nogueira WG, Jaiswal AK, Tiwari S, Ramos RTJ, Ghosh P, Barh D, Azevedo V, Soares SC. Computational identification of putative common genomic drug and vaccine targets in Mycoplasma genitalium. Genomics 2021; 113:2730-2743. [PMID: 34118385 DOI: 10.1016/j.ygeno.2021.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Mycoplasma genitalium is an obligate intracellular bacterium that is responsible for several sexually transmitted infections, including non-gonococcal urethritis in men and several inflammatory reproductive tract syndromes in women. Here, we applied subtractive genomics and reverse vaccinology approaches for in silico prediction of potential vaccine and drug targets against five strains of M. genitalium. We identified 403 genes shared by all five strains, from which 104 non-host homologous proteins were selected, comprising of 44 exposed/secreted/membrane proteins and 60 cytoplasmic proteins. Based on the essentiality, functionality, and structure-based binding affinity, we finally predicted 19 (14 novel) putative vaccine and 7 (2 novel) candidate drug targets. The docking analysis showed six molecules from the ZINC database as promising drug candidates against the identified targets. Altogether, both vaccine candidates and drug targets identified here may contribute to the future development of therapeutic strategies to control the spread of M. genitalium worldwide.
Collapse
Affiliation(s)
- Wylerson G Nogueira
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil..
| | - Rommel T J Ramos
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond VA-23284, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas,Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Genomic and Transcriptome Analyses of a Thermophilic Bacterium Geobacillus stearothermophilus B5 Isolated from Compost Reveal Its Enzymatic Basis for Lignocellulose Degradation. Microorganisms 2020; 8:microorganisms8091357. [PMID: 32899798 PMCID: PMC7564440 DOI: 10.3390/microorganisms8091357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/02/2023] Open
Abstract
A lignocellulose-degrading strain isolated from thermophilic compost was identified as Geobacillus stearothermophilus B5, and found able to secrete considerable amounts of enzymes at optimal temperature (60 °C) and pH (7.5). One circular contig of 3.37 Mbp was assembled from raw data, and 3371 protein-coding genes were predicted. Clusters of orthologous groups (COG) analysis revealed various genes with functions in polymeric substrate degradation, especially for Carbohydrate Active enZymes (CAZymes), such as glycoside hydrolases (GHs) and glycosyl transferases (GTs). Furthermore, the transcriptional responses of B5 at different temperatures—with rice straw provided as the sole carbon source—were analyzed. The results revealed that B5 could resist high temperature by upregulating heat shock proteins (HSPs), enhancing protein synthesis, and decreasing carbon catabolism. Briefly, B5 possesses the ability of lignocellulose degradation, and might be considered a potential inoculant for improving composting efficiency.
Collapse
|
4
|
Shin HS, Jang CY, Kim HD, Kim TS, Kim S, Kim J. Arginine methylation of ribosomal protein S3 affects ribosome assembly. Biochem Biophys Res Commun 2009; 385:273-8. [PMID: 19460357 DOI: 10.1016/j.bbrc.2009.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 12/16/2022]
Abstract
The human ribosomal protein S3 (rpS3), a component of the 40S small subunit in the ribosome, is a known multi-functional protein with roles in DNA repair and apoptosis. We recently found that the arginine residue(s) of rpS3 are methylated by protein arginine methyltransferase 1 (PRMT1). In this paper, we confirmed the arginine methylation of rpS3 protein both in vitro and in vivo. The sites of arginine methylation are located at amino acids 64, 65 and 67. However, mutant rpS3 (3RA), which cannot be methylated at these sites, cannot be transported into the nucleolus and subsequently incorporated into the ribosome. Our results clearly show that arginine methylation of rpS3 plays a critical role in its import into the nucleolus, as well as in small subunit assembly of the ribosome.
Collapse
Affiliation(s)
- Hyun-Seock Shin
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, and BioInstitute, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Funke B, Zuleger B, Benavente R, Schuster T, Goller M, Stévenin J, Horak I. The mouse poly(C)-binding protein exists in multiple isoforms and interacts with several RNA-binding proteins. Nucleic Acids Res 1996; 24:3821-8. [PMID: 8871564 PMCID: PMC146158 DOI: 10.1093/nar/24.19.3821] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The murine poly(C)-binding protein (mCBP) was previously shown to belong to the group of K-homology (KH) proteins by virtue of its homology to hnRNP-K. We have isolated cDNA-splice variants of mCBP which differ by two variable regions of 93 bp and/or 39 +/- 3 bp respectively. Both variable regions are located between the second and third KH-domain of mCBP. The characterization of a partial genomic clone enabled us to propose a model for the generation of the second variable region by the use of a putative alternative splice signal. The mCBP mRNA is expressed ubiquitously and the protein is found predominantly in the nucleus with the exception of the nucleoli. We have identified five proteins which interact with mCBP in the yeast two hybrid system: mouse y-box protein 1 (msy-1), y-box-binding protein, hnRNP-L, filamin and splicing factor 9G8. The interaction between mCBP and splicing factor 9G8 was confirmed in vivo. These results suggest a function of mCBP in RNA metabolism.
Collapse
Affiliation(s)
- B Funke
- Institut für Virologie und Immunbiologie der Universität Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Wittmann-Liebold B, Uhlein M, Urlaub H, Müller EC, Otto A, Bischof O. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites. Biochem Cell Biol 1995; 73:1187-97. [PMID: 8722036 DOI: 10.1139/o95-128] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.
Collapse
|
7
|
Ashley CT, Wilkinson KD, Reines D, Warren ST. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 1993; 262:563-6. [PMID: 7692601 DOI: 10.1126/science.7692601] [Citation(s) in RCA: 528] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fragile X syndrome is the result of transcriptional suppression of the gene FMR1 as a result of a trinucleotide repeat expansion mutation. The normal function of the FMR1 protein (FMRP) and the mechanism by which its absence leads to mental retardation are unknown. Ribonucleoprotein particle (RNP) domains were identified within FMRP, and RNA was shown to bind in stoichiometric ratios, which suggests that there are two RNA binding sites per FMRP molecule. FMRP was able to bind to its own message with high affinity (dissociation constant = 5.7 nM) and interacted with approximately 4 percent of human fetal brain messages. The absence of the normal interaction of FMRP with a subset of RNA molecules might result in the pleiotropic phenotype associated with fragile X syndrome.
Collapse
Affiliation(s)
- C T Ashley
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | |
Collapse
|
8
|
Hahm K, Kim G, Turck CW, Smale ST. Isolation of a murine gene encoding a nucleic acid-binding protein with homology to hnRNP K. Nucleic Acids Res 1993; 21:3894. [PMID: 8367306 PMCID: PMC309919 DOI: 10.1093/nar/21.16.3894] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- K Hahm
- Howard Hughes Medical Institute, Molecular Biology Institute, Los Angeles, CA
| | | | | | | |
Collapse
|
9
|
Michiels J, De Wilde P, Vanderleyden J. Sequence of the Rhizobium leguminosarum biovar phaseoli syrM gene. Nucleic Acids Res 1993; 21:3893. [PMID: 8367305 PMCID: PMC309918 DOI: 10.1093/nar/21.16.3893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- J Michiels
- F.A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
10
|
Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 1993; 74:291-8. [PMID: 7688265 DOI: 10.1016/0092-8674(93)90420-u] [Citation(s) in RCA: 484] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fragile X syndrome is one of the most common human genetic diseases and the most common cause of hereditary mental retardation. The gene that causes fragile X syndrome, FMR1, was recently identified and sequenced and found to encode a putative protein of unknown function. Here we report that FMR1 contains two types of sequence motifs recently found in RNA-binding proteins: an RGG box and two heterogeneous nuclear RNP K homology domains. We also demonstrate that FMR1 binds RNA in vitro. Using antibodies to FMR1, we detect its expression in divergent organisms and in cells of unaffected humans, but fragile X-affected patients express little or no FMR1. These findings demonstrate that FMR1 expression is directly correlated with the fragile X syndrome and suggest that anti-FMR1 antibodies will be important for diagnosis of fragile X syndrome. Furthermore, the RNA binding activity of FMR1 opens the way to understanding the function of FMR1.
Collapse
Affiliation(s)
- H Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | | | | | |
Collapse
|
11
|
O'Keefe DO, DePhillips P, Will ML. Identification of an Escherichia coli protein impurity in preparations of a recombinant pharmaceutical. Pharm Res 1993; 10:975-9. [PMID: 7690957 DOI: 10.1023/a:1018950319965] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A host-cell protein impurity found in preparations of recombinant human acidic fibroblast growth factor (aFGF) was identified. Samples of aFGF examined by western blot analysis employing antiserum raised against an Escherichia coli cell lysate contained an immunoreactive protein with a molecular weight of approximately 26,000. The impurity was chromatographically isolated and the N-terminal sequence was determined. Comparing the sequence to a protein database provisionally identified the isolated impurity as the S3 ribosomal protein of E. coli. Monoclonal antibodies recognizing three separate epitopes of S3 confirmed the identity of the impurity in western blots of aFGF samples. The monoclonal antibodies were also used to estimate S3 levels in various preparations of aFGF.
Collapse
Affiliation(s)
- D O O'Keefe
- Department of Analytical Research, Merck Research Labortories, Rahway, New Jersey 07065
| | | | | |
Collapse
|
12
|
Siomi H, Matunis MJ, Michael WM, Dreyfuss G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 1993; 21:1193-8. [PMID: 8464704 PMCID: PMC309281 DOI: 10.1093/nar/21.5.1193] [Citation(s) in RCA: 451] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The K protein is among the major pre-mRNA-binding proteins (hnRNPs) in vertebrate cell nuclei. It binds tenaciously to cytidine-rich sequences and is the major oligo(rC/dC)-binding protein in vertebrate cells. We have cloned a cDNA of the Xenopus laevis hnRNP K and determined its sequence. The X.laevis hnRNP K is a 47 kD protein that is remarkably similar to its human 66 kD counterpart except for two large internal deletions. The sequence of hnRNP K contains a 45 amino acid repeated motif which is almost completely conserved between the X.laevis and human proteins. We found that this repeated motif, the KH motif (for K homology), shows significant homology to several proteins some of which are known nucleic acids binding proteins. The homology is particularly strong with the archeabacterial ribosomal protein S3 and with the saccharomyces cerevisiae protein MER1 which is required for meiosis-specific splicing of the MER 2 transcript. As several of the proteins that contain the KH motif are known to bind RNA, this domain may be involved in RNA binding.
Collapse
Affiliation(s)
- H Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148
| | | | | | | |
Collapse
|
13
|
Syu WJ, Kahan B, Kahan L. Epitope mapping of monoclonal antibodies to Escherichia coli ribosomal protein S3. JOURNAL OF PROTEIN CHEMISTRY 1990; 9:159-67. [PMID: 1696825 DOI: 10.1007/bf01025307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The antigenic structure of Escherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structure in situ.
Collapse
Affiliation(s)
- W J Syu
- Department of Physiological Chemistry, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
14
|
Arndt E, Krömer W, Hatakeyama T. Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39729-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Bruckner RC, Cox MM. The histone-like H protein of Escherichia coli is ribosomal protein S3. Nucleic Acids Res 1989; 17:3145-61. [PMID: 2657655 PMCID: PMC317720 DOI: 10.1093/nar/17.8.3145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report the purification of four proteins from Escherichia coli that stimulate or inhibit inter- and/or intramolecular recombination promoted by the yeast plasmid-encoded FLP protein. The proteins are identified as the ribosomal proteins S3 (27 kDa), L2 (26 kDa), S4 (24 kDa), and S5 (16 kDa), on the basis of N-terminal sequence analysis. The S3 protein is found to be identical to H protein, an E. coli histone-like protein that is related to histone H2A immunologically and by virtue of amino acid content. The H protein/S3 identity is based on co-migration on polyacrylamide gels, heat stability, amino acid analysis, and effects on FLP-promoted recombination. These results are relevant to current studies on the structure of the E. coli nucleoid. Since the H protein has previously been found associated with the E. coli nucleoid, the results indicate that either (a) some ribosomal proteins serve a dual function in E. coli, or, more likely, (b) ribosomal proteins can and are being mis-identified as nucleoid constituents.
Collapse
Affiliation(s)
- R C Bruckner
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706
| | | |
Collapse
|
16
|
Zurawski G, Zurawski SM. Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res 1985; 13:4521-6. [PMID: 3892488 PMCID: PMC321803 DOI: 10.1093/nar/13.12.4521] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The complete structure of the Escherichia coli S10 ribosomal protein operon is presented. Based on the DNA sequence, the deduced order of the 11 genes in the operon is rpsJ, rplC, rplD, rplW, rplB, rpsS, rplV, rpsC, rplP, rpmC, rpsQ. The estimated transcribed length of the operon is 5181 base pairs. Putative sequences involved in ribosome binding are discussed. The DNA sequence data corrects several errors in previously determined protein sequence data.
Collapse
|
17
|
Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S. UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci U S A 1985; 82:2306-9. [PMID: 3887399 PMCID: PMC397546 DOI: 10.1073/pnas.82.8.2306] [Citation(s) in RCA: 228] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UGA is a nonsense or termination (opal) codon throughout prokaryotes and eukaryotes. However, mitochondria use not only UGG but also UGA as a tryptophan codon. Here, we show that UGA also codes for tryptophan in Mycoplasma capricolum, a wall-less bacterium having a genome only 20-25% the size of the Escherichia coli genome. This conclusion is based on the following evidence. First, the nucleotide sequence of the S3 and L16 ribosomal protein genes from M. capricolum includes UGA codons in the reading frames; they appear at positions corresponding to tryptophan in E. coli S3 and L16. Second, a tRNATrp gene and its product tRNA found in M. capricolum have the anticodon sequence 5' U-C-A 3', which can form a complementary base-pairing interaction with UGA.
Collapse
|
18
|
Ivanov OC, Kenderov PS, Revalski JP. The structural periodicity of E. coli ribosomal proteins. ORIGINS OF LIFE 1984; 14:557-64. [PMID: 6379555 DOI: 10.1007/bf00933704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is established that the sequences of all different proteins from E. coli ribosome as well as two protein biosynthesis initiation factors, two ribosome-associated DNA-binding proteins, and the elongation factor EF-Tu from the same source possess a periodicity expressed more weakly and different from that found earlier for a number of proteins representatives of 18 superfamilies. The statistical significance of the periodicity observed was checked by comparing the area below the periodicity curve of every protein examined with that of computer generated sequences having the same amino acid composition and length. The results concerning the proteins from small and large ribosomal subunit are compared. The conclusions support and supplement the concept about the presence of a trend in protein molecular evolution from universal (Gly, Ala) to specialized (Phe, Tyr, Trp, Cys) amino acids.
Collapse
|
19
|
Venyaminov SY, Gogia ZV. Optical characteristics of all individual proteins from the small subunit of Escherichia coli ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 126:299-309. [PMID: 6751823 DOI: 10.1111/j.1432-1033.1982.tb06779.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The procedure of isolation and renaturation of all ribosomal proteins from the 30-S subunit of Escherichia coli ribosomes is described. Absorption spectra of these proteins in the near-ultraviolet region have been measured and molar absorption coefficients have been determined on the basis of nitrogen content. Molar absorption coefficients have been calculated for 20 proteins with a known amino acid sequence and the calculated values have been compared with the experimentally determined ones. The absorption spectra obtained allow an easy, precise and highly reproducible spectrophotometric determination of the concentration of individual ribosomal proteins. Circular dichroic spectra of 21 individual proteins from the 30-S subunit of E. coli ribosomes were measured in the range 184-310 nm. The secondary structure of the proteins studied was calculated from the spectra in the range 190-240 nm. Almost all proteins (except proteins S12, S17, S18 and S19) are characterized by a high content of secondary structure. Circular dichroic spectra in the near-ultraviolet region (240-310 nm) indicate that the side groups of aromatic amino acids are fixed in the tertiary structure of the proteins studied. Some internal characteristics (independent of the measurement conditions) of the circular dichroic spectrum in the far-ultraviolet region were proposed as a measure of the resemblance to the native state of ribosomal proteins; these characteristics may be useful for comparison of protein preparations obtained by different methods in different laboratories.
Collapse
|
20
|
Abstract
The accessibility of histidines in the E. coli 30S subunits was assessed by exchange of C-2 histidine protons with tritiated water at 37 degrees C. The absence of exchange at acidic pH allowed the separation and identification of individual proteins without loss of histidine labelling. Only the two ribosomal proteins S5 and S6 exhibited significant exchange. No gross change of accessibility was detected in the 70S ribosome couples.
Collapse
|