1
|
Singh D, Ghorpade M, Regar R, Collot M, Soppina V, Kanvah S. Fluorescent styrenes for mitochondrial imaging and viscosity sensing. Photochem Photobiol 2024; 100:936-945. [PMID: 38385897 DOI: 10.1111/php.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Fluorophores bearing cationic pendants, such as the pyridinium group, tend to preferentially accumulate in mitochondria, whereas those with pentafluorophenyl groups display a distinct affinity for the endoplasmic reticulum. In this study, we designed fluorophores incorporating pyridinium and pentafluorophenyl pendants and examined their impact on sub-cellular localization. Remarkably, the fluorophores exhibited a notable propensity for the mitochondrial membrane. Furthermore, these fluorophores revealed dual functionality by facilitating the detection of viscosity changes within the sub-cellular environment and serving as heavy-atom-free photosensitizers. With easy chemical tunability, wash-free imaging, and a favorable signal-to-noise ratio, these fluorophores are valuable tools for imaging mitochondria and investigating their cellular processes.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies UMR 7021, CNRS/Université de Strasbourg, Strasbourg, France
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
2
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
3
|
Yang C, Hu R, Lu F, Guo X, Wang S, Zeng Y, Li Y, Yang G. Traceable cancer cell photoablation with a new mitochondria-responsive and -activatable red-emissive photosensitizer. Chem Commun (Camb) 2019; 55:3801-3804. [PMID: 30865193 DOI: 10.1039/c9cc00764d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A mitochondria-responsive and -activatable photosensitizer (PS), MPS, composed of a pyridinium cation as a mitochondria targeting group and a dibenzylideneacetone derivative with environment-sensitive emission properties as the ROS generator and self-efficacy tracer, is reported. This multifunctional PS offers a new strategy for traceable photodynamic ablation of cancer cells.
Collapse
Affiliation(s)
- Chenlin Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cai X, Hu F, Feng G, Kwok RTK, Liu B, Tang BZ. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission. Isr J Chem 2018. [DOI: 10.1002/ijch.201800031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
5
|
Montanari A, Francisci S, Fazzi D'Orsi M, Bianchi MM. Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae. Microbiologyopen 2014; 3:288-98. [PMID: 24700775 PMCID: PMC4082703 DOI: 10.1002/mbo3.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 01/18/2023] Open
Abstract
In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such relations by comparing phenotypic assays related to mitochondrial functions of three wild-type laboratory strains. In addition to the phenotypic variability among the wild-type strains, important differences have been observed among strains bearing identical mitochondrial tRNA mutations that could be related only to the different nuclear background of the cells. Results showed that strains exhibited an intrinsic variability in the severity of the effects of the mitochondrial mutations and that specific strains might be used preferentially to evaluate the phenotypic effect of mitochondrial mutations on carbon metabolism, stress responses, and mitochondrial DNA stability. In particular, while W303-1B and MCC123 strains should be used to study the effect of severe mitochondrial tRNA mutations, D273-10B/A1 strain is rather suitable for studying the effects of milder mutations.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, Rome, 00185, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, Rome, 00185, Italy
| | | | | | | |
Collapse
|
6
|
De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans JP, Adriaensen D. Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 2008; 39:180-9. [PMID: 18367726 DOI: 10.1165/rcmb.2008-0011oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary neuroepithelial bodies (NEBs) are densely innervated groups of neuroendocrine cells invariably accompanied by Clara-like cells. Together with NEBs, Clara-like cells form the so-called "NEB microenvironment," which recently has been assigned a potential pulmonary stem cell niche. Conclusive data on the nature of physiological stimuli for NEBs are lacking. This study aimed at developing an ex vivo mouse lung vibratome slice model for confocal live cell imaging of physiological reactions in identified NEBs and surrounding epithelial cells. Immunohistochemistry of fixed slices demonstrated that NEBs are almost completely shielded from the airway lumen by tight junction-linked Clara-like cells. Besides the unambiguous identification of NEBs, the fluorescent dye 4-Di-2-ASP allowed microscopic identification of ciliated cells, Clara cells, and Clara-like cells in live lung slices. Using the mitochondrial uncoupler FCCP and a mitochondrial membrane potential indicator, JC-1, increases in 4-Di-2-ASP fluorescence in NEB cells and ciliated cells were shown to represent alterations in mitochondrial membrane potential. Changes in the intracellular free calcium concentration ([Ca2+](i)) in NEBs and surrounding airway epithelial cells were simultaneously monitored using the calcium indicator Fluo-4. Application (5 s) of 50 mM extracellular potassium ([K+](o)) evoked a fast and reproducible [Ca2+](i) increase in NEB cells, while Clara-like cells displayed a delayed (+/- 4 s) [Ca2+](i) increase, suggestive of an indirect, NEB-mediated activation. The presented approach opens interesting new perspectives for unraveling the functional significance of pulmonary NEBs in control lungs and disease models, and for the first time allows direct visualization of local interactions within the NEB microenvironment.
Collapse
Affiliation(s)
- Ian De Proost
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Oxidative stress caused by blocking of mitochondrial complex I H(+) pumping as a link in aging/disease vicious cycle. Int J Biochem Cell Biol 2008; 40:1792-805. [PMID: 18291703 DOI: 10.1016/j.biocel.2008.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 12/16/2022]
Abstract
Vulnerability of mitochondrial Complex I to oxidative stress determines an organism's lifespan, pace of aging, susceptibility to numerous diseases originating from oxidative stress and certain mitopathies. The mechanisms involved, however, are largely unknown. We used confocal microscopy and fluorescent probe MitoSOX to monitor superoxide production due to retarded forward electron transport in HEPG2 cell mitochondrial Complex I in situ. Matrix-released superoxide production, the un-dismuted surplus (J(m)) was low in glucose-cultivated cells, where an uncoupler (FCCP) reduced it to half. Rotenone caused a 5-fold J(m) increase (AC(50) 2 microM), which was attenuated by uncoupling, membrane potential (DeltaPsi(m)), and DeltapH-collapse, since addition of FCCP (IC(50) 55 nM), valinomycin, and nigericin prevented this increase. J(m) doubled after cultivation with galactose/glutamine (i.e. at obligatory oxidative phosphorylation). A hydrophobic amiloride that acts on the ND5 subunit and inhibits Complex I H(+) pumping enhanced J(m) and even countered the FCCP effect (AC(50) 0.3 microM). Consequently, we have revealed a new principle predicting that Complex I produces maximum superoxide only when both electron transport and H(+) pumping are retarded. H(+) pumping may be attenuated by high protonmotive force or inhibited by oxidative stress-related mutations of ND5 (ND2, ND4) subunit. We predict that in a vicious cycle, when oxidative stress leads to higher fraction of, e.g. mutated ND5 subunits, it will be accelerated more and more. Thus, inhibition of Complex I H(+) pumping, which leads to oxidative stress, appears to be a missing link in the theory of mitochondrial aging and in the etiology of diseases related to oxidative stress.
Collapse
|
8
|
Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans JP, Adriaensen D. Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di-2-ASP in various animal species. Cell Tissue Res 2005; 321:21-33. [PMID: 15902500 DOI: 10.1007/s00441-005-1111-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/01/2005] [Indexed: 12/13/2022]
Abstract
Pulmonary neuroepithelial bodies (NEBs) are extensively innervated organoid groups of neuroendocrine cells that lie in the epithelium of intrapulmonary airways. Our present understanding of the morphology of NEBs is comprehensive, but direct physiological studies have so far been challenging because the extremely diffuse distribution of NEBs makes them inaccessible in vivo and because a reliable in vitro model is lacking. Our aim has been to optimise an in vitro method based on vibratome slices of living lungs, a model that includes NEBs, the surrounding tissues and at least part of their complex innervation. This in vitro model offers satisfactory access to pulmonary NEBs, provided that they can be differentiated from other tissue elements. The model was first optimised for living rat lung slices. Neutral red staining, reported to stain rabbit NEBs, proved unsuccessful in rat slices. On the other hand, the styryl pyridinium dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2-ASP), showed brightly fluorescent cell groups, reminiscent of NEBs, in the airway epithelium of living lung slices from rat. In addition, nerve fibres innervating the NEBs were labelled. The reliable and specific labelling of pulmonary NEBs by 4-Di-2-ASP was corroborated by immunostaining for protein gene-product 9.5. Live cell imaging and propidium iodide staining further established the acceptable viability of 4-Di-2-ASP-labelled NEB cells in lung slices, even over long periods. Importantly, the in vitro model and 4-Di-2-ASP staining procedure for pulmonary NEBs appeared to be equally reproducible in mouse, hamster and rabbit lungs. Diverse immunocytochemical procedures could be applied to the lung slices providing an opportunity to combine physiological and functional morphological studies. Such an integrated approach offers additional possibilities for elucidating the function(s) of pulmonary NEBs in health and disease.
Collapse
Affiliation(s)
- I Pintelon
- Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Feuermann M, Francisci S, Rinaldi T, De Luca C, Rohou H, Frontali L, Bolotin-Fukuhara M. The yeast counterparts of human 'MELAS' mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep 2003; 4:53-8. [PMID: 12524521 PMCID: PMC1315813 DOI: 10.1038/sj.embor.embor713] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Revised: 10/25/2002] [Accepted: 11/06/2002] [Indexed: 11/09/2022] Open
Abstract
We have taken advantage of the similarity between human and yeast (Saccharomyces cerevisiae) mitochondrial tRNA(Leu)(UUR), and of the possibility of transforming yeast mitochondria, to construct yeast mitochondrial mutations in the gene encoding tRNA(Leu)(UUR) equivalent to the human A3243G, C3256T and T3291C mutations that have been found in patients with the neurodegenerative disease MELAS (for mitochondrial 'myopathy, encephalopathy, lactic acidosis and stroke-like episodes'). The resulting yeast cells (bearing the equivalent mutations A14G, C26T and T69C) were defective for growth on respiratory substrates, exhibited an abnormal mitochondrial morphology, and accumulated mitochondrial DNA deletions at a very high rate, a trait characteristic of severe mitochondrial defects in protein synthesis. This effect was specific at least in the pathogenic mutation T69C, because when we introduced A or G instead of C, the respiratory defect was absent or very mild. All defective phenotypes returned to normal when the mutant cells were transformed by multicopy plasmids carrying the gene encoding the mitochondrial elongation factor EF-Tu. The ability to create and analyse such mutated strains and to select correcting genes should make yeast a good model for the study of tRNAs and their interacting partners and a practical tool for the study of pathological mutations and of tRNA sequence polymorphisms.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Biolistics
- DNA, Mitochondrial/genetics
- Gene Expression Regulation, Fungal
- Genetic Vectors/genetics
- Humans
- MELAS Syndrome/genetics
- Mitochondria/physiology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation, Missense
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/physiology
- Phenotype
- Point Mutation
- Protein Biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- Recombinant Fusion Proteins/physiology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M. Feuermann
- Laboratoire de Génétique Moléculaire, Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris Sud, 91405 Orsay Cedex, France
- These authors contributed equally to the work
| | - S. Francisci
- Pasteur Institute—Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome I 'La Sapienza', Piazzale Aldo Moro 5, I-00185 Rome, Italy
- These authors contributed equally to the work
- Tel/Fax: +39 06 4461980;
| | - T. Rinaldi
- Pasteur Institute—Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome I 'La Sapienza', Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - C. De Luca
- Pasteur Institute—Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome I 'La Sapienza', Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - H. Rohou
- Laboratoire de Génétique Moléculaire, Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris Sud, 91405 Orsay Cedex, France
| | - L. Frontali
- Pasteur Institute—Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome I 'La Sapienza', Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - M. Bolotin-Fukuhara
- Laboratoire de Génétique Moléculaire, Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris Sud, 91405 Orsay Cedex, France
| |
Collapse
|
10
|
Leaver EV, Pappone PA. Beta-adrenergic potentiation of endoplasmic reticulum Ca(2+) release in brown fat cells. Am J Physiol Cell Physiol 2002; 282:C1016-24. [PMID: 11940517 DOI: 10.1152/ajpcell.00204.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We find that the adrenergic agonist isoproterenol increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured rat brown adipocytes. At the concentration used (10 microM), isoproterenol-induced Ca(2+) responses were sensitive to block by either alpha(1)- or beta-adrenergic antagonists, suggesting an interaction between these receptor subtypes. Despite reliance on beta-adrenoceptor activation, the Ca(2+) response was not due solely to increases in cAMP because, administered alone, the selective beta(3)-adrenergic agonist BRL-37344 or forskolin did not increase [Ca(2+)](i). However, increased cAMP elicited vigorous [Ca(2+)](i) increases in the presence of barely active concentrations of the alpha-adrenergic agonist phenylephrine or the P2Y receptor agonist UTP. Consistent with isoproterenol recruiting only inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores, endoplasmic reticulum store depletion by thapsigargin blocked isoproterenol-induced Ca(2+) increases, but removal of external Ca(2+) did not. These results argue that increases in cAMP sensitize the IP(3)-mediated Ca(2+) release system in brown adipocytes.
Collapse
Affiliation(s)
- Eric V Leaver
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616, USA
| | | |
Collapse
|
11
|
Mabile L, Meilhac O, Escargueil-Blanc I, Troly M, Pieraggi MT, Salvayre R, Nègre-Salvayre A. Mitochondrial function is involved in LDL oxidation mediated by human cultured endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:1575-82. [PMID: 9301638 DOI: 10.1161/01.atv.17.8.1575] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human endothelial cells (ECs) grown under standard conditions are able to generate a basal level of oxygen free radicals and induce progressive oxidation of LDLs. Inhibition of cell-mediated LDL oxidation by superoxide dismutase, EDTA, or desferrioxamine implicates a role for superoxide anion and/or transition metals in this process. The potential role of the mitochondrion was investigated by inducing mitochondrial deenergization by selective photosensitization or the addition of inhibitors of the mitochondrial respiratory chain. Mitochondria of human cultured ECs were selectively damaged by photosensitization of cells labeled with the mitochondrion-selective fluorescent dye 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide under conditions that induced only low levels of toxicity during the time of the experiment. Photosensitized ECs exhibited severe mitochondrial dysfunction, as suggested by the defect in mitochondrial uptake of the mitochondrion-selective fluorescent dyes [rhodamine 123 and 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide] and morphological alterations as shown by transmission electron microscopy. In mitochondria-photosensitized cells, superoxide anion generation was strongly decreased, as was LDL oxidation and the subsequent cytotoxicity. When ECs were incubated with the mitochondrial respiratory-chain inhibitors antimycin A or rotenone or with the carbonylcyanide-m-chlorophenylhydrazone uncoupler rhodamine 123, uptake and subcellular distribution were altered, and concomitantly superoxide anion production and LDL oxidation were strongly decreased. In conclusion, these data suggest that mitochondrial function is required, directly or indirectly, for the production of superoxide anion and the subsequent LDL oxidation by human vascular ECs.
Collapse
Affiliation(s)
- L Mabile
- Biochemistry Laboratory (INSERM CJF-9206), Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Cornelissen W, Timmermans JP, Van Bogaert PP, Scheuermann DW. Electrophysiology of porcine myenteric neurons revealed after vital staining of their cell bodies. A preliminary report. Neurogastroenterol Motil 1996; 8:101-9. [PMID: 8784794 DOI: 10.1111/j.1365-2982.1996.tb00250.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Due to practical limitations in visualizing and getting access to the ganglionic components of large mammals, electrophysiology of the enteric nervous system has been restricted mainly to small laboratory animals, more particularly the guinea-pig. The use of the vital dye 4-(4-diethylaminostyry1)-N-methylphyridinium iodide (4-Di-2-ASP), however, overcomes some of these difficulties. A 20-min incubation period with this dye, followed by a minimum period of 4 h in Krebs solution, suffices to stain the neuronal cell bodies, permitting selection of a neuron and positioning of the microelectrode for impalement and recording. The method has been applied to pig ileum and guinea-pig large and small bowel myenteric neurons. Impalements of untreated guinea-pig myenteric neurons were compared with those of 4-Di-2-ASP-pretreated ones. According to our preliminary data, the staining did not suppress the expression of apparently normal electrophysiological activity. Moreover, the procedure permitted impalement and recording of myenteric plexus neurons in pig ileal tissue with a rate of success equalling blind impalement on guinea-pig tissue. In contrast with formerly published results whereby staining of the neuronal cell bodies only occurred when the cells had been chemically damaged, our experiments suggest a possible correlation between fluorescence and cell viability.
Collapse
Affiliation(s)
- W Cornelissen
- Laboratory of Cell Biology and Histology, University of Antwerp (RUCA), Belgium
| | | | | | | |
Collapse
|
13
|
Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994; 27:198-219. [PMID: 8204911 DOI: 10.1002/jemt.1070270303] [Citation(s) in RCA: 616] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are semi-autonomous organelles which are endowed with the ability to change their shape (e.g., by elongation, shortening, branching, buckling, swelling) and their location inside a living cell. In addition they may fuse or divide. These dynamics are discussed. Dislocation of mitochondria may result from their interaction with elements of the cytoskeleton, with microtubules in particular, and from processes intrinsic to the mitochondria themselves. Morphological criteria and differences in the fate of some mitochondria argue for the presence of more than one mitochondrial population in some animal cells. Whether these reflect genetic differences remains obscure. Emphasis is laid on the methods for visualizing mitochondria in cells and following their behaviour. Fluorescence methods provide unique possibilities because of their high resolving power and because some of the mitochondria-specific fluorochromes can be used to reveal the membrane potential. Fusion and fission often occur in short time intervals within the same group of mitochondria. At sites of fusion of two mitochondria material of the inner membrane, the matrix compartment seems to accumulate. The original arrangement of the fusion partners is maintained for some minutes. Fission is a dynamic event which, like fusion, in most cases observed in vertebrate cell cultures is not a straight forward process but rather requires several "trials" until the division finally occurs. Regarding fusion and fission hitherto unpublished phase contrast micrographs, and electron micrographs have been included.
Collapse
Affiliation(s)
- J Bereiter-Hahn
- Cinematic Cell Research Group, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
14
|
Park JW, Park KH. Inclusion of (aminostyryl)-1-methylpyridinium dyes by?-cyclodextrin and its use for fluorescent-probe studies on association of cationic and neutral molecules with?-cyclodextrin. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf00708787] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Affiliation(s)
- J Bereiter-Hahn
- Cinematic Cell Research Group, Johann Wolfgang Goethe Universität Frankfurt am Main, Federal Republic of Germany
| |
Collapse
|
16
|
Nurse CA, Farraway L. Characterization of Merkel cells and mechanosensory axons of the rat by styryl pyridinium dyes. Cell Tissue Res 1989; 255:125-8. [PMID: 2472215 DOI: 10.1007/bf00229073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The epidermal Merkel cells and their sensory innervation serve tactile sensation in vertebrates. In this study the fluorescent cationic mitochondrial dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2-ASP), which has recently been used as a vital stain for motor and autonomic nerve terminals, was tested for its ability to stain Merkel cells and sensory fibers in the snout of the rat. Brightly-fluorescent structures resembling Merkel cells as well as nerve fibers and their terminations were evident in whole mounts of the vibrissal follicle. Unilateral denervation of the vibrissal follicles soon after birth resulted in a staining pattern remarkably similar to that obtained after labelling of the Merkel cells selectively with the fluorescent marker quinacrine, but all fiber staining was abolished. Likewise, in the separated epidermis of other skin regions, including the hairy and glabrous skin of the nose, the staining pattern revealed by 4-Di-2-ASP was indistinguishable from that obtained by quinacrine fluorescence. These results indicate that certain styryl pyridinium dyes may be used as vital stains for epidermal Merkel cells as well as cutaneous mechanosensory axons.
Collapse
Affiliation(s)
- C A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
17
|
Berry MN, Gregory RB, Grivell AR, Henly DC, Nobes CD, Phillips JW, Wallace PG. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 936:294-306. [PMID: 2461736 DOI: 10.1016/0005-2728(88)90005-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lipophilic triphenylmethylphosphonium cation (TPMP+) has been employed to measure delta psi m, the electrical potential across the inner membrane of the mitochondria of intact hepatocytes. The present studies have examined the validity of this technique in hepatocytes exposed to graded concentrations of inhibitors of mitochondrial energy transduction. Under these conditions, TPMP+ uptake allows a reliable measure of delta psi m in intracellular mitochondria, provided that the ratio [TPMP+]i/[TPMP+]e is greater than 50:1 and that at the end of the incubation more than 80% of the hepatocytes exclude Trypan blue. Hepatocytes, staining with Trypan blue, incubated in the presence of Ca2+, do not concentrate TPMP+. The relationships between delta psi m and two other indicators of cellular energy state, delta GPc and Eh, or between delta psi m and J0, were examined in hepatocytes from fasted rats by titration with graded concentrations of inhibitors of mitochondrial energy transduction. Linear relationships were generally observed between delta psi m and delta GPc, Eh or J0 over the delta psi m range of 120-160 mV, except in the presence of carboxyatractyloside or oligomycin, where delta psi m remained constant. Both the magnitude and the direction of the slope of the observed relationships depended upon the nature of the inhibitor. Hepatocytes from fasted rats synthesized glucose from lactate or fructose, and urea from ammonia, at rates which were generally linear functions of the magnitude of delta psi m, except in the presence of oligomycin or carboxyatractyloside. Linear relationships were also observed between delta psi m and the rate of formation of lactate in cells incubated with fructose and in hepatocytes from fed rats. The linear property of these force-flow relationships is taken as evidence for the operation of thermodynamic regulatory mechanisms within hepatocytes.
Collapse
Affiliation(s)
- M N Berry
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Bedford Park
| | | | | | | | | | | | | |
Collapse
|
18
|
Beta-adrenergic modulation of Ca2+ uptake by isolated brown adipocytes. Possible involvement of mitochondria. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)38009-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
DeMartinis FD, Ashkin KT, Lampe KT. Fluorescence detection of mitochondrial clusters in mammalian white fat cells in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C783-91. [PMID: 3425702 DOI: 10.1152/ajpcell.1987.253.6.c783] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rhodamine 123 and epifluorescence microscopy revealed a significant portion of the fat cell's mitochondria existed in the form of clusters or aggregates, whereas the remainder were scattered about the cytoplasm. The aggregates were variable in size and number and apparently bore no fixed relationship to the nucleus or to each other. Mitochondrial clusters were seen in vivo in rat and mouse adipocytes of the mesenteric and epididymal depots, in excised tissue pieces of other depots, and in isolated fat cells. Physiological factors investigated such as species type (rat, mouse, rabbit, dog), sex, age, depot location (superficial vs. deep), fat cell size, hypercholesterolemia, and 24-h fasting had no apparent effect on cluster prevalence or size. Similar aggregates were not visible in several cultured cell lines studied nor in various non-fat cells, capillary endothelial cells, or nerve fibers contained within adipose depots examined. These results indicate that mitochondrial clusters exist naturally in mammalian white fat cells and conclude that they represent a form of cytoplasmic organization whose purposes are not well understood.
Collapse
Affiliation(s)
- F D DeMartinis
- Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129
| | | | | |
Collapse
|
20
|
Fuchs J, Zimmer G, Bereiter-Hahn J. A multiparameter analysis of the perfused rat heart: responses to ischemia, uncouplers and drugs. Cell Biochem Funct 1987; 5:245-53. [PMID: 3677324 DOI: 10.1002/cbf.290050403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In perfused rat hearts alterations of aortic flow and mitochondrial membrane potential resulting from uncoupling of oxidative phosphorylation, hypoxia and treatment with a cardioprotective drug (2-mercaptopropionylglycine (MPG) have been studied. Mitochondrial membrane potential was followed by surface fluorimetry on DASPMI stained hearts. This fluorochrome specifically stains mitochondria in living cells; fluorescence intensity is related to the electrochemical gradient. Aortic flow turned out to be a much more sensitive indicator of heart function than ventricular pressure or mitochondrial membrane potential. No direct relationship exists between mitochondrial membrane potential and ATP production under the different metabolic conditions. Two phases of hypoxic mitochondrial damage have been deduced: the first results in derangement of ATP synthases while membrane potential is maintained, the second in irreversible damage of mitochondrial membranes with loss of membrane potential.
Collapse
Affiliation(s)
- J Fuchs
- Gustav-Embden-Zentrum der Biologischen Chemie, Universität Frankfurt, German Federal Republic
| | | | | |
Collapse
|
21
|
|