1
|
Bao J, Somvanshi T, Tian Y, Laird MG, Garcia PS, Schöne C, Rother M, Borrel G, Scheller S. Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans. FEBS J 2025. [PMID: 39887878 DOI: 10.1111/febs.17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO2-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N5-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F420-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO2 is reduced to one methane with electrons from oxidizing four formate to four CO2, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO2 activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO2-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.
Collapse
Affiliation(s)
- Jichen Bao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Tejas Somvanshi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Yufang Tian
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Maxime G Laird
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Pierre Simon Garcia
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS6047, France
| | - Christian Schöne
- Institute of Microbiology, Technische Universität Dresden, Germany
| | - Michael Rother
- Institute of Microbiology, Technische Universität Dresden, Germany
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS6047, France
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Deconstructing Methanosarcina acetivorans into an acetogenic archaeon. Proc Natl Acad Sci U S A 2022; 119:2113853119. [PMID: 34992140 PMCID: PMC8764690 DOI: 10.1073/pnas.2113853119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
The reductive acetyl-coenzyme A (acetyl-CoA) pathway is the only carbon fixation pathway that can also be used for energy conservation like it is known for acetogenic bacteria. In methanogenic archaea, this pathway is extended with one route toward acetyl-CoA formation for anabolism and another route toward methane formation for catabolism. Which of these traits is ancestral in evolution has not been resolved. By diverging virtually all substrate carbon from methanogenesis to flow through acetyl-CoA, Methanosarcina acetivorans can be converted to an acetogenic organism. Being able to deconstruct methanogenic into the seemingly simpler acetogenic energy metabolism provides compelling evidence that methanogens are not nearly as metabolically limited as previously thought and suggests that methanogenesis might have evolved from the acetyl-CoA pathway. The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide–dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.
Collapse
|
3
|
Shima S, Huang G, Wagner T, Ermler U. Structural Basis of Hydrogenotrophic Methanogenesis. Annu Rev Microbiol 2020; 74:713-733. [DOI: 10.1146/annurev-micro-011720-122807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea use the rudimentary hydrogenotrophic pathway—from CO2and H2to methane—as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1species to the C1carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420–based hydride transfers, and one coenzyme F430–based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
5
|
A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea. mBio 2017; 8:mBio.02285-16. [PMID: 28174314 PMCID: PMC5296606 DOI: 10.1128/mbio.02285-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO2-reducing methanogenic anaerobes (methanogens) from the domain Archaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F420 (F420H2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F420H2 and reduction of ferredoxin with the exergonic oxidation of F420H2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO2-reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea. The unprecedented coenzyme F420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH4-oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.
Collapse
|
6
|
Abstract
Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.
Collapse
Affiliation(s)
- Rudolf Kurt Thauer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| |
Collapse
|
7
|
Assessment of hydrogen metabolism in commercial anaerobic digesters. Appl Microbiol Biotechnol 2016; 100:4699-710. [DOI: 10.1007/s00253-016-7436-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
|
8
|
Refai S, Berger S, Wassmann K, Deppenmeier U. Quantification of methanogenic heterodisulfide reductase activity in biogas sludge. J Biotechnol 2014; 180:66-9. [PMID: 24721213 DOI: 10.1016/j.jbiotec.2014.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022]
Abstract
Methanogenic archaea are essential for the production of methane in biogas plants. Here we present enzymatic test systems for the analysis of the metabolic activity of methanogens based on the heterodisulfide reductase reaction. The first rapid test shows that heterodisulfide reductase can be detected in 1 g of biogas sludge after sonication and centrifugation. The resulting cell lysate used reduced methylviologen for heterodisulfide reduction, a reaction that is specifically catalyzed by methanogenic heterodisulfide reductase. In the second test cell lysate from 60 g of biogas sludge was separated by ultracentrifugation. Both, cytoplasmic membrane and cytoplasmic fractions revealed heterodisulfide reductase activity, indicating the presence of hydrogenotrophic and aceticlastic methanogens, respectively.
Collapse
Affiliation(s)
- Sarah Refai
- Institute of Microbiology and Biotechnology, 168 Meckenheimer Allee, 53115 Bonn, Germany
| | - Stefanie Berger
- Institute of Microbiology and Biotechnology, 168 Meckenheimer Allee, 53115 Bonn, Germany
| | - Kati Wassmann
- Institute of Microbiology and Biotechnology, 168 Meckenheimer Allee, 53115 Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, 168 Meckenheimer Allee, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Yang Y, Tsukahara K, Zhang Z, Sugiura N, Sawayama S. Optimization of illumination time for the production of methane using carbon felt fluidized bed bioreactor in thermophilic anaerobic digestion. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Structure of the Dissimilatory Sulfite Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus. J Mol Biol 2008; 379:1063-74. [DOI: 10.1016/j.jmb.2008.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/03/2008] [Accepted: 04/10/2008] [Indexed: 11/21/2022]
|
11
|
Deppenmeier U. The unique biochemistry of methanogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:223-83. [PMID: 12102556 DOI: 10.1016/s0079-6603(02)71045-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation of methanofuran. Furthermore, the review addresses questions related to the biochemical and genetic characteristics of the energy-transducing enzymes and to the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Microbiology and Genetics, Universität Göttingen, Germany
| |
Collapse
|
12
|
Duin EC, Madadi-Kahkesh S, Hedderich R, Clay MD, Johnson MK. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett 2002; 512:263-8. [PMID: 11852093 DOI: 10.1016/s0014-5793(02)02281-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heterodisulfide reductases (HDRs) from methanogenic archaea are iron-sulfur flavoproteins or hemoproteins that catalyze the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). In this work, the ground- and excited-state electronic properties of the paramagnetic Fe-S clusters in Methanothermobacter marburgensis HDR have been characterized using the combination of electron paramagnetic resonance and variable-temperature magnetic circular dichroism spectroscopies. The results confirm multiple S=1/2 [4Fe-4S](+) clusters in dithionite-reduced HDR and reveal spectroscopically distinct S=1/2 [4Fe-4S](3+) clusters in oxidized HDR samples treated separately with the CoM-SH and CoB-SH cosubstrates. The active site of HDR is therefore shown to contain a [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. The catalytic mechanism of HDR is discussed in light of the crystallographic and spectroscopic studies of the related chloroplast ferredoxin:thioredoxin reductase class of disulfide reductases.
Collapse
Affiliation(s)
- Evert C Duin
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, D-35043, Marburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Peinemann S, Hedderich R, Blaut M, Thauer R, Gottschalk G. ATP synthesis coupled to electron transfer from H2
to the heterodisulfide of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate in vesicle preparations of the methanogenic bacterium strain Gö1. FEBS Lett 2001. [DOI: 10.1016/0014-5793(90)80704-m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Madadi-Kahkesh S, Duin EC, Heim S, Albracht SP, Johnson MK, Hedderich R. A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2566-77. [PMID: 11322875 DOI: 10.1046/j.1432-1327.2001.02141.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterodisulfide reductase (Hdr) from methanogenic archaea is an iron-sulfur protein that catalyses the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol coenzymes, coenzyme M (H-S-CoM) and coenzyme B (H-S-CoB). In EPR spectroscopic studies with the enzyme from Methanothermobacter marburgensis, we have identified a unique paramagnetic species that is formed upon reaction of the oxidized enzyme with H-S-CoM in the absence of H-S-CoB. This paramagnetic species can be reduced in a one-electron step with a midpoint-potential of -185 mV but not further oxidized. A broadening of the EPR signal in the 57Fe-enriched enzyme indicates that it is at least partially iron based. The g values (gxyz = 2.013, 1.991 and 1.938) and the midpoint potential argue against a conventional [2Fe-2S]+, [3Fe-4S]+, [4Fe-4S]+ or [4Fe-4S]3+ cluster. This species reacts with H-S-CoB to form an EPR silent form. Hence, we propose that only a half reaction is catalysed in the presence of H-S-CoM and that a reaction intermediate is trapped. This reaction intermediate is thought to be a [4Fe-4S]3+ cluster that is coordinated by one of the cysteines of a nearby active-site disulfide or by the sulfur of H-S-CoM. A paramagnetic species with similar EPR properties was also identified in Hdr from Methanosarcina barkeri.
Collapse
Affiliation(s)
- S Madadi-Kahkesh
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Simianu M, Murakami E, Brewer JM, Ragsdale SW. Purification and properties of the heme- and iron-sulfur-containing heterodisulfide reductase from Methanosarcina thermophila. Biochemistry 1998; 37:10027-39. [PMID: 9665708 DOI: 10.1021/bi9726483] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heterodisulfide reductase (HDR) from Methanosarcina thermophila was purified to homogeneity from acetate-grown cells. In the absence of detergents, HDR consisted of an eight-protein complex with hydrogenase activity. However, when HDR was purified in the presence of 0.6% Triton X-100, a two-subunit (53 and 27 kDa) high specific activity ( approximately 200 units mg-1) enzyme was obtained that lacked hydrogenase activity. Sedimentation equilibrium experiments demonstrated that HDR has a molecular mass of 206 kDa and a high partial specific volume (0.9 cm3/g), indicating that the purified protein contains a significant amount of bound lipid. Like the HDR from Methanosarcina barkeri [Kunkel, A., Vaupel, M., Heim, S., Thauer, R. K., and Hedderich, R. (1997) Eur. J. Biochem. 244, 226-234], it was found to contain two discrete b-type hemes in the small subunit and two distinct [Fe4S4]2+/1+ clusters in the large subunit. One heme is high-spin and has a high midpoint potential (-23 mV), whereas the other heme apparently is low-spin and exhibits a relatively low midpoint potential (-180 mV). Only the high-spin heme binds CO. The midpoint potentials for the two clusters are -100 and -400 mV. In the fully reduced state, a complicated EPR spectrum with g values of 2.03, 1.97, 1.92, and 1.88 was observed. This spectrum resembles that of 8Fe ferredoxins in the fully reduced state, indicating that the two clusters in HDR are near enough to experience relatively strong dipolar interactions. Kinetic studies in which CO oxidation is coupled to heterodisulfide reduction strongly indicate that a membrane-associated compound is the direct electron donor to HDR. An electron-transfer pathway is presented that postulates a mechanism for coupling electron transport to proton translocation.
Collapse
Affiliation(s)
- M Simianu
- Department of Biochemistry, The Beadle Center, University of Nebraska, Lincoln 68588-0664, USA
| | | | | | | |
Collapse
|
16
|
Noll KM. Thiol coenzymes of methanogens. Methods Enzymol 1995; 251:470-82. [PMID: 7651230 DOI: 10.1016/0076-6879(95)51151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K M Noll
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| |
Collapse
|
17
|
Clements AP, Kilpatrick L, Lu WP, Ragsdale SW, Ferry JG. Characterization of the iron-sulfur clusters in ferredoxin from acetate-grown Methanosarcina thermophila. J Bacteriol 1994; 176:2689-93. [PMID: 8169218 PMCID: PMC205409 DOI: 10.1128/jb.176.9.2689-2693.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ferredoxin from Methanosarcina thermophila is an electron acceptor for the CO dehydrogenase complex which decarbonylates acetyl-coenzyme A and oxidizes the carbonyl group to carbon dioxide in the pathway for conversion of the methyl group of acetate to methane (K. C. Terlesky and J. G. Ferry, J. Biol. Chem. 263:4080-4082, 1988). Resonance Raman spectroscopy and electron paramagnetic resonance spectroelectrochemistry indicated that the ferredoxin contained two [4Fe-4S] clusters per monomer of 6,790 Da, each with a midpoint potential of -407 mV. A [3Fe-4S] species, with a midpoint potential of +103 mV, was also detected in the protein at high redox potentials. Quantitation of the [3Fe-4S] and [4Fe-4S] centers revealed 0.4 and 2.1 spins per monomer, respectively. The iron-sulfur clusters were unstable in the presence of air, and the rate of cluster loss increased with increasing temperature. A ferredoxin preparation, with a low spin quantitation of [4Fe-4S] centers, was treated with Fe2+ and S2-, which resulted in an increase in [4Fe-4S] and a decrease in [3Fe-4S] clusters. The results of these studies suggest the [3Fe-4S] species may be an artifact formed from degradation of [4Fe-4S] clusters.
Collapse
Affiliation(s)
- A P Clements
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| | | | | | | | | |
Collapse
|
18
|
Heiden S, Hedderich R, Setzke E, Thauer RK. Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:855-61. [PMID: 8174566 DOI: 10.1111/j.1432-1033.1994.tb18800.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heterodisulfide reductase catalyzes the terminal step in the energy-conserving electron-transport chain in methanogenic Archaea. The heterodisulfide reductase activity of the membrane fraction of methanol-grown Methanosarcina barkeri was solubilized by Chaps. Chromatography on Q-Sepharose and Superdex-200 yielded a high-molecular-mass fraction (> 700 kDa) which was dissociated by dodecyl beta-D-maltoside. After chromatography on Q-Sepharose, an active heterodisulfide reductase preparation was obtained which was composed of only two different subunits of apparent molecular masses 46 kDa and 23 kDa. For each 69 kDa, the enzyme contained 0.6 mol cytochrome b, 0.2 mol FAD, 20 mol non-heme iron and 20 mol acid-labile sulfur. The 23-kDa subunit possessed heme-derived peroxidase activity, showing that this polypeptide is the cytochrome b. The purified enzyme contained the cytochrome b in the reduced form. Upon addition of the heterodisulfide of coenzyme M and N-7-mercaptoheptanoylthreonine phosphate the cytochrome was instantaneously oxidized, indicating that the cytochrome b served as electron donor for heterodisulfide reduction.
Collapse
Affiliation(s)
- S Heiden
- Max-Planck-Institut für Terrestrische Mikrobiologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
19
|
Setzke E, Hedderich R, Heiden S, Thauer RK. H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:139-48. [PMID: 8119281 DOI: 10.1111/j.1432-1033.1994.tb18608.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reduction of the heterodisulfide (CoM-S-S-HTP) of coenzyme M (H-S-CoM) and N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP) with H2 is an energy-conserving step in most methanogenic Archaea. In this study, we show that in Methanobacterium thermoautotrophicum (strain Marburg) this reaction is catalyzed by a stable H2-heterodisulfide oxidoreductase complex of F420-non-reducing hydrogenase and heterodisulfide reductase. This complex, which was loosely associated with the cytoplasmic membrane, was purified 17-fold with 80% yield to apparent homogeneity. The purified complex was composed of six different subunits of apparent molecular masses 80, 51, 41, 36, 21 and 17 kDa, and 1 mol complex, with apparent molecular mass 250 kDa, contained approximately 0.6 mol nickel, 0.9 mol FAD, 26 mol non-heme iron and 22 mol acid-labile sulfur. In 25 mM Chaps, the complex partially dissociated into two subcomplexes. The first subcomplex was was composed of the 51-, 41- and 17-kDa subunits; 1 mol trimer contained 0.7 mol nickel, 10 mol non-heme iron and 9 mol acid-labile sulfur and exhibited F420-non-reducing hydrogenase activity. The other subcomplex was composed of the 80-, 36- and 21-kDa subunits; 1 mol trimer contained 0.8 mol FAD, 22 mol non-heme iron and 15 mol acid-labile sulfur and exhibited heterodi-sulfide-reductase activity. The stimulatory effects of potassium phosphate, a membrane component, uracil derivatives and coenzyme F430 on the H2:heterodisulfide-oxidoreductase activity of the purified complex are described.
Collapse
Affiliation(s)
- E Setzke
- Max-Planck-Institut für Terrestrsche Mikrobiologie, Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.
Collapse
Affiliation(s)
- M Blaut
- Institut für Mikrobiologie, Universität Göttingen, Germany
| |
Collapse
|
21
|
Structural characterization and physiological function of component B from Methanosarcina thermophila. Arch Microbiol 1993. [DOI: 10.1007/bf00248487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Chapter 16 Structure and function of methanogen genes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Palmer JR, Reeve JN. Methanogen Genes and the Molecular Biology of Methane Biosynthesis. BROCK/SPRINGER SERIES IN CONTEMPORARY BIOSCIENCE 1993. [DOI: 10.1007/978-1-4615-7087-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Jablonski P, Lu W, Ragsdale S, Ferry J. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54153-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
|
26
|
Abstract
The general features are known for the pathway by which most methane is produced in nature. All acetate-utilizing methanogenic microorganisms contain CODH which catalyzes the cleavage of acetyl-CoA; however, the pathway differs from all other acetate-utilizing anaerobes in that the methyl group is reduced to methane with electrons derived from oxidation of the carbonyl group of acetyl-CoA to CO2. The current understanding of the methanogenic fermentation of acetate provides impressions of nature's novel solutions to problems of methyl transfer, electron transport, and energy conservation. The pathway is now at a level of understanding that will permit productive investigations of these and other interesting questions in the near future.
Collapse
Affiliation(s)
- J G Ferry
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| |
Collapse
|
27
|
Fischer R, Gärtner P, Yeliseev A, Thauer RK. N5-methyltetrahydromethanopterin: coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch Microbiol 1992; 158:208-17. [PMID: 1444718 DOI: 10.1007/bf00290817] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An assay is described that allows the direct measurement of the enzyme activity catalyzing the transfer of the methyl group from N5-methyltetrahydromethanopterin (CH3-H4MPT) to coenzyme M (H-S-CoM) in methanogenic archaebacteria. With this method the topology, the partial purification, and the catalytic properties of the methyltransferase in methanol- and acetate-grown Methanosarcina barkeri and in H2/CO(2)-grown Methanobacterium thermoautotrophicum were studied. The enzyme activity was found to be associated almost completely with the membrane fraction and to require detergents for solubilization. The transferase activity in methanol-grown M. barkeri was studied in detail. The membrane fraction exhibited a specific activity of CH3-S-CoM formation from CH3-H4MPT (apparent Km = 50 microM) and H-S-CoM (apparent Km = 250 microM) of approximately 0.6 mumol.min-1.mg protein-1. For activity the presence of Ti(III) citrate (apparent Km = 15 microM) and of ATP (apparent Km = 30 microM) were required in catalytic amounts. Ti(III) could be substituted by reduced ferredoxin. ATP could not be substituted by AMP, CTP, GTP, S-adenosylmethionine, or by ATP analogues. The membrane fraction was methylated by CH3-H4MPT in the absence of H-S-CoM. This methylation was dependent on Ti(III) and ATP. The methylated membrane fraction catalyzed the methyltransfer from CH3-H4MPT to H-S-CoM in the absence of ATP and Ti(III). Demethylation in the presence of H-S-CoM also did not require Ti(III) or ATP. Based on these findings a mechanism for the methyltransfer reaction and for the activation of the enzyme is proposed.
Collapse
Affiliation(s)
- R Fischer
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
28
|
Kamlage B, Blaut M. Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol. J Bacteriol 1992; 174:3921-7. [PMID: 1597414 PMCID: PMC206100 DOI: 10.1128/jb.174.12.3921-3927.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Methanosarcina strain Gö1 was tested for the presence of cytochromes. Low-temperature spectroscopy, hemochrome derivative spectroscopy, and redox titration revealed the presence of two b-type (b559 and b564) and two c-type (c547 and c552) cytochromes in membranes from Methanosarcina strain Gö1. The midpoint potentials determined were Em,7 = -135 +/- 5 and -240 +/- 11 mV (b-type cytochromes) and Em,7 = -140 +/- 10 and -230 +/- 10 mV (c-type cytochromes). The protoheme IX and the heme c contents were 0.21 to 0.24 and 0.09 to 0.28 mumol/g of membrane protein, respectively. No cytochromes were detectable in the cytoplasmic fraction. Of various electron donors and acceptors tested, only the reduced form of coenzyme F420 (coenzyme F420H2) and the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate (CoM-S-S-HTP) were capable of reducing and oxidizing the cytochromes at a high rate, respectively. Addition of CoM-S-S-HTP to reduced cytochromes and subsequent low-temperature spectroscopy revealed the oxidation of cytochrome b564. On the basis of these results, we suggest that one or several cytochromes participate in the coenzyme F420H2-dependent reduction of the heterodisulfide.
Collapse
Affiliation(s)
- B Kamlage
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
29
|
Brenner MC, Ma L, Johnson MK, Scott RA. Spectroscopic characterization of the alternate form of S-methylcoenzyme M reductase from Methanobacterium thermoautotrophicum (strain delta H). BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1120:160-6. [PMID: 1314088 DOI: 10.1016/0167-4838(92)90264-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two forms (MR1 and MR2) of S-methylcoenzyme M reductase were purified from Methanobacterium thermoautotrophicum (strain delta H) as recently described (Rospert, S., Linder, D., Ellerman, J. and Thauer, R.K. (1990) Eur. J. Biochem. 194, 871-877). MR2 was at least 50-fold more active than MR1, independent of assay conditions. The two forms are spectroscopically similar, but not identical, by UV-visible, magnetic circular dichroism and resonance Raman spectroscopies. MR2 exhibited an EPR signal corresponding to 20% of the enzyme-bound nickel. Strong EPR signals similar to those previously assigned to Ni(I)F430 bound to methylreductase in Methanobacterium thermoautotrophicum (strain Marburg) (Albracht, S.P.J., Ankel-Fuchs, D., Bocher, R., Ellerman, J., Moll, J., Van der Zwann, J.W. and Thauer, R.K. (1988) Biochim. Biophys. Acta 955, 86-102) were observed in MR2-rich, log-phase, as well as in MR1-rich, slow-growing bacteria. Log-phase cells had dramatically different EPR spectra depending on whether they were removed from the fermenter (under gas flow) before or after cooling to 10 degrees C. EPR spectra of slow-growing cells were insensitive to harvesting conditions. The possible biological significance of the alternate form of methylreductase is discussed.
Collapse
Affiliation(s)
- M C Brenner
- Department of Chemistry, University of Georgia, Athens 30602
| | | | | | | |
Collapse
|
30
|
Abstract
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.
Collapse
Affiliation(s)
- J G Ferry
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| |
Collapse
|
31
|
Rospert S, Breitung J, Ma K, Schwörer B, Zirngibl C, Thauer RK, Linder D, Huber R, Stetter KO. Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO2 and H2 in the extreme thermophile Methanopyrus kandleri. Arch Microbiol 1991; 156:49-55. [PMID: 1772346 DOI: 10.1007/bf00418187] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110 degrees C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogen known so far. Methyl-coenzyme M reductase, the enzyme catalyzing the methane forming step in the energy metabolism of methanogens, was purified from this hyperthermophile. The yellow protein with an absorption maximum at 425 nm was found to be similar to the methyl-coenzyme M reductase from other methanogenic bacteria in that it was composed each of two alpha-, beta- and gamma-subunits and that it contained the nickel porphinoid coenzyme F430 as prosthetic group. The purified reductase was inactive. The N-terminal amino acid sequence of the gamma-subunit was determined. A comparison with the N-terminal sequences of the gamma-subunit of methyl-coenzyme M reductases from other methanogenic bacteria revealed a high degree of similarity. Besides methyl-coenzyme M reductase cell extracts of M. kandleri were shown to contain the following enzyme activities involved in methanogenesis from CO2 (apparent Vmax at 65 degrees C): formylmethanofuran dehydrogenase, 0.3 U/mg protein; formyl-methanofuran:tetrahydro-methanopterin formyltransferase, 13 U/mg; N5,N10-methylenetetrahydromethanopterin cyclohydrolase, 14U/mg; N5,N10-methenyltetrahydromethanopterin dehydrogenase (H2-forming), 33 U/mg; N5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420 dependent), 4 U/mg; heterodisulfide reductase, 2 U/mg; coenzyme F420-reducing hydrogenase, 0.01 U/mg; and methylviologen-reducing hydrogenase, 2.5 U/mg. Apparent Km values for these enzymes and the effect of salts on their activities were determined. The coenzyme F420 present in M. kandleri was identified as coenzyme F420-2 with 2-gamma-glutamyl residues.
Collapse
Affiliation(s)
- S Rospert
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Marburg/Lahn, Federal Republic of Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Turkowsky A, Blotevogel KH, Fischer U. Properties of a soluble thiosulfate sulfur transferase (rhodanese) of the marine methanogen Methanosarcina frisia. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04767.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 1991. [DOI: 10.1007/bf00244962] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Berkessel A. Methyl-coenzyme M reductase: Model studies on pentadentate nickel complexes and a hypothetical mechanism. Bioorg Chem 1991. [DOI: 10.1016/0045-2068(91)90047-s] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Immunocytochemical localization of the coenzyme F420-reducing hydrogenase in Methanosarcina barkeri Fusaro. J Bacteriol 1991; 173:978-84. [PMID: 1991734 PMCID: PMC207214 DOI: 10.1128/jb.173.3.978-984.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytological localization of the 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing hydrogenase of Methanosarcina barkeri Fusaro was determined by immunoelectron microscopy, using a specific polyclonal rabbit antiserum raised against the homogeneous deazaflavin-dependent enzyme. In Western blot (immunoblot) experiments this antiserum reacted specifically with the native coenzyme F420-reducing hydrogenase, but did not cross-react with the coenzyme F420-nonreducing hydrogenase activity also detectable in crude extracts prepared from methanol-grown Methanosarcina cells. Immunogold labelling of ultrathin sections of anaerobically fixed methanol-grown cells from the exponential growth phase revealed that the coenzyme F420-reducing hydrogenase was predominantly located in the vicinity of the cytoplasmic membrane. From this result we concluded that the deazaflavin-dependent hydrogenase is associated with the cytoplasmic membrane in intact cells of M. barkeri during growth on methanol as the sole methanogenic substrate, and a possible role of this enzyme in the generation of the electrochemical proton gradient is discussed.
Collapse
|
36
|
H2: heterodisulfide oxidoreductase, a second energy-conserving system in the methanogenic strain G�1. Arch Microbiol 1991. [DOI: 10.1007/bf00252211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Friedmann HC, Klein A, Thauer RK. Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiol Rev 1990; 7:339-48. [PMID: 2128801 DOI: 10.1111/j.1574-6968.1990.tb04934.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- H C Friedmann
- Fachbereich Biologie, Philipps-Universität, Marburg, F.R.G
| | | | | |
Collapse
|
38
|
Smith SG, Rouvière PE. Purification and characterization of the reduced-nicotinamide-dependent 2,2'-dithiodiethanesulfonate reductase from Methanobacterium thermoautotrophicum delta H. J Bacteriol 1990; 172:6435-41. [PMID: 2228967 PMCID: PMC526830 DOI: 10.1128/jb.172.11.6435-6441.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel reduced nicotinamide-dependent disulfide reductase, the 2,2'-dithiodiethanesulfonate [(S-CoM)2] reductase (CoMDSR) of Methanobacterium thermoautotrophicum was purified 405-fold to electrophoretic homogeneity. Both NADPH and NADH functioned as electron donors, although rates with NADPH were three times higher. Reduced factor F420, the deazaflavin electron carrier characteristic of methanogenic bacteria, was not a substrate for the enzyme. The enzyme was most active with (S-CoM)2 but could also reduce L-cystine at 23% the (S-CoM)2 rate. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the enzyme was monomeric with an Mr of about 64,000; spectral analysis showed that it was a flavoprotein with an estimated composition of one molecule of flavin per polypeptide. Maximal activity occurred at 64 degrees C, and the pH optimum was 8.5. The apparent Km for both NADPH and (S-CoM)2 was 80 microM. The enzyme was completely inactivated by oxygen in crude cell extracts but was oxygen stable in the homogeneous state. The low activity of the CoMDSR in cell extracts as well as its relatively low rate of reducing CoM-S-S-HTP (the heterodisulfide of the two thiol cofactors involved in the last step of methanogenesis) make it unlikely that it plays a role in the methylreductase system. It may be involved in the redox balance of the cell, such as the NADPH-dependent bis-gamma-glutamylcystine reductase with which it shows physical similarity in another archaebacterium, Halobacterium halobium (A. R. Sundquist and R. C. Fahey, J. Bacteriol. 170:3459-3467, 1988). The CoMDSR might also be involved in regenerating the coenzyme M trapped as its homodisulfide, a nonutilizable form of the cofactor.
Collapse
Affiliation(s)
- S G Smith
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
39
|
Hedderich R, Berkessel A, Thauer RK. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:255-61. [PMID: 2121478 DOI: 10.1111/j.1432-1033.1990.tb19331.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reduction of the heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) is a key reaction in the metabolism of methanogenic bacteria. The heterodisulfide reductase catalyzing this step was purified 80-fold to apparent homogeneity from Methanobacterium thermoautotrophicum. The native enzyme showed an apparent molecular mass of 550 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of three different subunits of apparent molecular masses 80 kDa, 36 kDa, and 21 kDa. The enzyme, which was brownish yellow, contained per mg protein 7 +/- 1 nmol FAD, 130 +/- 10 nmol non-heme iron and 130 +/- 10 nmol acid-labile sulfur, corresponding to 4 mol FAD and 72 mol FeS/mol native enzyme. The purified heterodisulfide reductase catalyzed the reduction of CoM-S-S-HTP (app. Km = 0.1 mM) with reduced benzylviologen at a specific rate of 30 mumol.min-1.mg protein-1 (kcat = 68 s-1) and the reduction of methylene blue with H-S-CoM (app. Km = 0.2 mM) plus H-S-HTP (app. Km less than 0.05 mM) at a specific rate of 15 mumol.min-1.mg-1. The enzyme was highly specific for CoM-S-S-HTP and H-S-CoM plus H-S-HTP. The physiological electron donor/acceptor remains to be identified.
Collapse
Affiliation(s)
- R Hedderich
- Laboratorium für Mikrobiologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
40
|
|
41
|
Stimulation of the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction in cell-free extracts of Methanobacterium thermoautotrophicum by the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate. Arch Microbiol 1990. [DOI: 10.1007/bf00423326] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|