1
|
Béraud-Dufour S, Abderrahmani A, Noel J, Brau F, Waeber G, Mazella J, Coppola T. Neurotensin is a regulator of insulin secretion in pancreatic beta-cells. Int J Biochem Cell Biol 2010; 42:1681-8. [DOI: 10.1016/j.biocel.2010.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
2
|
Henquin JC, Nenquin M, Ravier MA, Szollosi A. Shortcomings of current models of glucose-induced insulin secretion. Diabetes Obes Metab 2009; 11 Suppl 4:168-79. [PMID: 19817799 DOI: 10.1111/j.1463-1326.2009.01109.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-induced insulin secretion by pancreatic beta-cells is generally schematized by a 'consensus model' that involves the following sequence of events: acceleration of glucose metabolism, closure of ATP-sensitive potassium channels (K(ATP) channels) in the plasma membrane, depolarization, influx of Ca(2+) through voltage-dependent calcium channels and a rise in cytosolic-free Ca(2+) concentration that induces exocytosis of insulin-containing granules. This model adequately depicts the essential triggering pathway but is incomplete. In this article, we first make a case for a model of dual regulation in which a metabolic amplifying pathway is also activated by glucose and augments the secretory response to the triggering Ca(2+) signal under physiological conditions. We next discuss experimental evidence, largely but not exclusively obtained from beta-cells lacking K(ATP) channels, which indicates that these channels are not the only possible transducers of glucose effects on the triggering Ca(2+)signal. We finally address the identity of the widely neglected background inward current (Cl(-) efflux vs. Na(+) or Ca(2+) influx through voltage-independent channels) that is necessary to cause beta-cell depolarization when glucose closes K(ATP) channels. More attention should be paid to the possibility that some components of this background current are influenced by glucose metabolism and have their place in a model of glucose-induced insulin secretion.
Collapse
|
3
|
Mears D. Regulation of Insulin Secretion in Islets of Langerhans by Ca2+Channels. J Membr Biol 2004; 200:57-66. [PMID: 15520904 DOI: 10.1007/s00232-004-0692-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/04/2004] [Indexed: 12/21/2022]
Abstract
Insulin secretion from beta-cells of the pancreatic islets of Langerhans is triggered by Ca(2+) influx through voltage-dependent Ca(2+) channels. Electrophysiological and molecular studies indicate that beta-cells express several subtypes of these channels. This review discusses their roles in regulating insulin secretion, focusing on recent studies using beta-cells, exogenous expression systems, and Ca(2+) channel knockout mice. These investigations reveal that L-type Ca(2+) channels in the beta-cell physically interact with the secretory apparatus by binding to synaptic proteins on the plasma membrane and insulin granule. As a result, Ca(2+) influx through L-type channels efficiently and rapidly stimulates release of a pool of insulin granules in close contact with the channels. Thus, L-type Ca(2+) channel activity is preferentially coupled to exocytosis in the beta-cell, and plays a critical role in regulating the dynamics of insulin secretion. Non-L-type channels carry a significant portion of the total voltage-dependent Ca(2+) current in beta-cells and cell lines from some species, but nevertheless account for only a small fraction of insulin secretion. These channels may regulate exocytosis indirectly by affecting membrane potential or second messenger signaling pathways. Finally, voltage-independent Ca(2+) entry pathways and their potential roles in beta-cell function are discussed. The emerging picture is that Ca(2+) channels regulate insulin secretion at multiple sites in the stimulus-secretion coupling pathway, with the specific role of each channel determined by its biophysical and structural properties.
Collapse
Affiliation(s)
- David Mears
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA.
| |
Collapse
|
4
|
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292:1389-94. [PMID: 11326082 DOI: 10.1126/science.1058866] [Citation(s) in RCA: 969] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization.
Collapse
Affiliation(s)
- N Lumelsky
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4092, USA
| | | | | | | | | | | |
Collapse
|
5
|
Satin LS. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 2000; 13:251-62. [PMID: 11216635 DOI: 10.1385/endo:13:3:251] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 06/08/2000] [Indexed: 12/18/2022]
Abstract
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0524, USA.
| |
Collapse
|
6
|
Straub SG, Kornreich B, Oswald RE, Nemeth EF, Sharp GW. The calcimimetic R-467 potentiates insulin secretion in pancreatic beta cells by activation of a nonspecific cation channel. J Biol Chem 2000; 275:18777-84. [PMID: 10751384 DOI: 10.1074/jbc.m000090200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular, G protein-linked Ca(2+)-sensing receptor (CaSR), first identified in the parathyroid gland, is expressed in several tissues and cells and can be activated by Ca(2+) and some other inorganic cations and organic polycations. Calcimimetics such as NPS (R)-N-(3-phenylpropyl)-alpha-methyl-3-methoxybenzylamine hydrochloride (R-467), a phenylalkylamine, are thought to activate CaSR by allosterically increasing the affinity of the receptor for Ca(2+). When tested for its effect on insulin release in C57BL/6 mice, R-467 had no effect under basal conditions but enhanced both phases of glucose-stimulated release. The betaHC9 cell also responded to R-467 and to the enantiomer S-467 with a stimulation of insulin release. In subsequent studies with the betaHC9 cell, it was found that the stimulatory effect was due to activation of a nonspecific cation channel, depolarization of the beta-cell, and increased Ca(2+) entry. No other stimulatory mechanism was uncovered. The depolarization of the cell induced by the calcimimetic could be due to a direct action on the channel or via the CaSR. However, it appeared not to be mediated by G(i), G(o), G(q/11), or G(s). The novel mode of action of the calcimimetic, combined with the glucose-dependence of the stimulation on islets, raises the possibility of a totally new class of drugs that will stimulate insulin secretion during hyperglycemia but which will not cause hypoglycemia.
Collapse
Affiliation(s)
- S G Straub
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850-6401, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
8
|
Dryselius S, Grapengiesser E, Hellman B, Gylfe E. Voltage-dependent entry and generation of slow Ca2+ oscillations in glucose-stimulated pancreatic beta-cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E512-8. [PMID: 10070018 DOI: 10.1152/ajpendo.1999.276.3.e512] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of voltage-dependent Ca2+ entry for glucose generation of slow oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) was evaluated in individual mouse pancreatic beta-cells. Like depolarization with K+, a rise of the glucose concentration resulted in an enhanced influx of Mn2+, which was inhibited by nifedipine. This antagonist of L-type Ca2+ channels also blocked the slow oscillations of [Ca2+]i induced by glucose. The slow oscillations occurred in synchrony with variations in Mn2+ influx and bursts of action currents, with the elevation of [Ca2+]i being proportional to the frequency of the action currents. A similar relationship was obtained when Ca2+ was replaced with Sr2+. Occasionally, the slow [Ca2+]i oscillations were superimposed with pronounced spikes temporarily arresting the action currents. It is concluded that the glucose-induced slow oscillations of [Ca2+]i are caused by periodic depolarization with Ca2+ influx through L-type channels. Ca2+ spiking, due to intracellular mobilization, may be important for chopping the slow oscillations of [Ca2+]i into shorter ones characterizing beta-cells situated in pancreatic islets.
Collapse
Affiliation(s)
- S Dryselius
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
9
|
Jijakli H, Malaisse WJ. Verapamil- and cadmium-resistant stimulation of calcium uptake and insulin release by D-glucose in depolarised pancreatic islets exposed to diazoxide. Cell Signal 1998; 10:661-5. [PMID: 9794248 DOI: 10.1016/s0898-6568(98)00009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possible activation by D-glucose of voltage-insensitive Ca2+ channels in rat pancreatic islets was investigated by measuring the release of insulin, as well as the net uptake and efflux of 45Ca, in islets incubated in the presence of 30 mM K+, 0.25 mM diazoxide and either 0.05 mM verapamil or 0.04 mM Cd2+. In the presence of verapamil, D-glucose (16.7 mM) stimulated, over 90-min incubation, both 45Ca net uptake and insulin release. Likewise, in prelabelled perifused islets, a rise in D-glucose concentration from 2.8 to 16.7 mM augmented both 45Ca outflow and insulin output. When the concentration of the hexose was raised from zero to 8.3 mM, in which case the glucose-induced stimulation of Ca2+ influx is thought to occur mainly at the intervention of voltage-insensitive Ca2+ channels, and when Cd2+ was used to selectively block L-type Ca2+ channels, a stimulation of both 45Ca efflux and insulin release was again observed in islets perifused, at high extracellular K+ concentration, in the presence of diazoxide. These findings support the view that, in depolarised islets in which the ATP-sensitive K+ channels are fully activated by diazoxide, the stimulation of insulin release by D-glucose might involve the gating of voltage-insensitive Ca2+ channels.
Collapse
Affiliation(s)
- H Jijakli
- Laboratory of Experimental Medicine, Brussels Free University, Belgium
| | | |
Collapse
|
10
|
Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1158-73. [PMID: 9575813 DOI: 10.1152/ajpcell.1998.274.4.c1158] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We continue our development of a kinetic model of bursting electrical activity in the pancreatic beta-cell (J. Keizer and G. Magnus. Biophys. J. 56: 229-242, 1989), including the influence of Ca2+ handling by the mitochondria. Our minimal model of mitochondrial Ca2+ handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded to include the D-glucose dependence of the rate of production of mitochondrial reducing equivalents. The Ca2+ dependence of the mitochondrial dehydrogenases, which is also included in the model, plays only a small role in the simulations, since the dehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to produce bursting. A previous model of ionic currents in the plasma membrane is updated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+ (KATP) current on adenine nucleotides. The resulting whole cell model is complex, involving 12 dynamic variables that couple Ca2+ handling in the cytoplasm and the mitochondria with electrical activity in the plasma and inner mitochondrial membranes. Simulations with the whole cell model give rise to bursting electrical activity similar to that seen in pancreatic islets and clusters of pancreatic beta-cells. The full D-glucose dose response of electrical activity is obtained if the cytosolic rate of ATP hydrolysis is a sigmoidal function of glucose. The simulations give the correct shape, period, and phase of the associated oscillations in cytosolic Ca2+, predict that the conductance of the KATP current oscillates out of phase with electrical activity [as recently observed in ob/ob mice (O. Larsson, H. Kindmark, R. Bränstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad. Sci. USA 93: 5161-5165, 1996)], and make other novel predictions. In this model, bursting results because Ca2+ uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current and repolarizes the plasma membrane.
Collapse
Affiliation(s)
- G Magnus
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA
| | | |
Collapse
|
11
|
Kawahara M, Arispe N, Kuroda Y, Rojas E. Alzheimer's disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 1997; 73:67-75. [PMID: 9199772 PMCID: PMC1180909 DOI: 10.1016/s0006-3495(97)78048-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that the 40-residue peptide termed amyloid beta-protein (A beta P[1-40]) in solution forms cation-selective channels across artificial phospholipid bilayer membranes. To determine whether A beta P[1-40] also forms channels across natural membranes, we used electrically silent excised membrane patches from a cell line derived from hypothalamic gonadotrophin-releasing hormone GnRH neurons. We found that exposing either the internal or the external side of excised membrane patches to A beta P[1-40] leads to the spontaneous formation of cation-selective channels. With Cs+ as the main cation in both the external as well as the internal saline, the amplitude of the A beta P[1-40] channel currents was found to follow the Cs+ gradient and to exhibit spontaneous conductance changes over a wide range (50-500 pS). We also found that free zinc (Zn2+), reported to bind to amyloid beta-protein in solution, can block the flow of Cs+ through the A beta P[1-40] channel. Because the Zn2+ chelator o-phenanthroline can reverse this blockade, we conclude that the underlying mechanism involves a direct interaction between the transition element Zn2+ and sites in the A beta P[1-40] channel pore. These properties of the A beta P[1-40] channel are rather similar to those observed in the artificial bilayer system. We also show here, by immunocytochemical confocal microscopy, that amyloid beta-protein molecules form deposits closely associated with the plasma membrane of a substantial fraction of the GnRH neurons. Taken together, these results suggest that the interactions between amyloid beta-protein and neuronal membranes also occur in vivo, lending further support to the idea that A beta P[1-40] channel formation might be a mechanism of amyloid beta-protein neurotoxicity.
Collapse
Affiliation(s)
- M Kawahara
- Department of Molecular and Cellular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
Pancreatic islets prelabelled with either 86Rb or 45Ca were exposed to a rise in D-glucose concentration from 2.8 to 16.7 mM whilst perifused in the presence of 2 microM glibenclamide, 30 mM extracellular K+ and both 30 mM K+ and 250 microM diazoxide. In all three situations, the rise in glucose concentration provoked a dramatic increase in insulin output, despite unchanged or even increased efflux of 86Rb from the prelabelled islets. Also in all three situations, glucose sharply decreased effluent radioactivity from islets prelabelled with 45Ca but perifused in the absence of extracellular Ca2+, while augmenting 45Ca efflux, to a variable extent, from islets perifused at normal extracellular Ca2+ concentration (1.0 mM). It is proposed, therefore, that the insulinotropic action of D-glucose in depolarized islets, and presumably also under normal conditions, may involve the gating of voltage-insensitive Ca2+ channels.
Collapse
Affiliation(s)
- H Jijakli
- Laboratory of Experimental Medicine, Erasmus School of Medicine, Brussels Free University, Belgium
| | | |
Collapse
|
13
|
Schöfl C, Rössig L, Leitolf H, Mader T, von zur Mühlen A, Brabant G. Generation of repetitive Ca2+ transients by bombesin requires intracellular release and influx of Ca2+ through voltage-dependent and voltage independent channels in single HIT cells. Cell Calcium 1996; 19:485-93. [PMID: 8842515 DOI: 10.1016/s0143-4160(96)90057-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the bombesin-induced changes in cytosolic free Ca2+ ([Ca2+]i) were investigated in single Fura-2 loaded SV-40 transformed hamster beta-cells (HIT). Bombesin (50-500 pM) caused frequency-modulated repetitive Ca2+ transients. The average frequency of the Ca2+ transients induced by bombesin (200 pM) was 0.58 +/- 0.02 min-1 (n = 121 cells). High concentrations of bombesin (> or = 2 nM) triggered a large initial Ca2+ transient followed by a sustained plateau or by a decrease to basal levels. In Ca(2+)- free medium, bombesin caused only one or two Ca2+ transients and withdrawal of extracellular Ca2+ abolished the Ca2+ transients. The voltage-dependent Ca2+ channel (VDCC) blockers, verapamil (50 microM) and nifedipine (10 microM), reduced amplitude and frequency of the Ca2+ transients and stopped the Ca2+ transients in some cells. Thapsigargin caused a sustained rise in [Ca2+]i in the presence of extracellular Ca2+ while in its absence the rise in [Ca2+]i was transient. Verapamil (50 microM) inhibited the thapsigargin-induced increase in [Ca2+]i by about 50%. Depletion of intracellular Ca2+ stores by repetitive stimulation with increasing concentrations of bombesin or thapsigargin in Ca(2+)-free medium caused an agonist-independent increase in [Ca2+]i when extracellular Ca2+ was restored, which was larger than in control cells that had been incubated in Ca(2+)-free medium for the same period of time. This rise in [Ca2+]i and the thapsigargin-induced increase in [Ca2+]i were only partly inhibited by VDCC-blockers. Thus, depletion of the agonist-sensitive Ca2+ pool enhances Ca2+ influx through VDCC and voltage-independent Ca2+ channels (VICC). In conclusion, the bombesin-induced Ca2+ response in single HIT cells is periodic in nature with frequency-modulated repetitive Ca2+ transients. Intracellular Ca2+ is mobilized during each Ca2+ transient, but Ca2+ influx through VDCC and VICC is required for maintaining the sustained nature of the Ca2+ response. Ca2+ influx in whole or part is activated by a capacitative Ca2+ entry mechanism.
Collapse
Affiliation(s)
- C Schöfl
- Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Mears D, Sheppard NF, Atwater I, Rojas E. Magnitude and modulation of pancreatic beta-cell gap junction electrical conductance in situ. J Membr Biol 1995; 146:163-76. [PMID: 7473686 DOI: 10.1007/bf00238006] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parallel gap junction electrical conductance between a beta-cell and its nearest neighbors was measured by using an intracellular microelectrode to clamp the voltage of a beta-cell within a bursting islet of Langerhans. The holding current records consisted of bursts of inward current due to the synchronized oscillations in membrane potential of the surrounding cells. The membrane potential record of the impaled cell, obtained in current clamp mode, was used to estimate the behavior of the surrounding cells during voltage clamp, and the coupling conductance was calculated by dividing the magnitude of the current bursts by that of the voltage bursts. The histogram of coupling conductance magnitude from 26 cells was bimodal with peaks at 2.5 and 3.5 nS, indicating heterogeneity in extent of electrical communication within the islet of Langerhans. Gap junction conductance reversibly decreased when the temperature was lowered from 37 to 30 degrees C and when the extracellular calcium concentration was raised from 2.56 to 7.56 mM. The coupling conductance decreased slightly during the active phase of the burst. Activation of adenylate cyclase with forskolin (10 microM) resulted in an increase in cell-to-cell electrical coupling. We conclude that beta-cell gap junction conductance can be measured in situ under near physiological conditions. Furthermore, the magnitude and physiological regulation of beta-cell gap junction conductance suggest that intercellular electrical communication plays an important role in the function of the endocrine pancreas.
Collapse
Affiliation(s)
- D Mears
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
15
|
Leech CA, Holz GG, Habener JF. Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose dependent in pancreatic beta-cells. Endocrinology 1994; 135:365-72. [PMID: 8013370 PMCID: PMC2922863 DOI: 10.1210/endo.135.1.8013370] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic beta-cells and HIT-T15 cells exhibit oscillations of cytosolic calcium ([Ca2+]i) that are dependent on glucose metabolism and appear to trigger pulsatile insulin secretion. Significantly, differences in the pattern of this [Ca2+]i oscillatory activity may have important implications for our understanding of how glucose homeostasis is achieved during the feeding and fasting states. When single beta-cells are exposed to a stepwise increase in glucose concentration that mimics the transition from fasting to feeding states, fast irregular oscillations of [Ca2+]i are observed. Alternatively, when single beta-cells are equilibrated in a steady state concentration of glucose that mimics the fasting state, slow periodic oscillations of [Ca2+]i are noted. Here we report a fundamental difference in the mechanism by which glucose induces these two types of [Ca2+]i oscillatory activity. In agreement with previous studies, we substantiate a role for L-type voltage-dependent Ca2+ channels as mediators of the fast oscillations of [Ca2+]i observed after a stepwise increase in glucose concentration. In marked contrast, we report that voltage-independent calcium channels (VICCs) mediate slow oscillations of [Ca2+]i that occur when beta-cells are equilibrated in steady state concentrations of glucose. Slow [Ca2+]i oscillations are mediated by VICCs which are pharmacologically and biophysically distinguishable from voltage-dependent Ca2+ channels that mediate fast oscillations. Specifically, slow [Ca2+]i oscillations are blocked by extracellular La3+, but not by nifedipine, and are independent of changes in membrane potential. Measurement of membrane conductance also indicate an important role for VICCs, as demonstrated by a steady state inward Ca2+ current that is blocked by La3+. The steady state Ca2+ current appears to generate slow [Ca2+]i oscillations by triggering Ca(2+)-induced Ca2+ release from intracellular Ca2+ stores, a process that is mimicked by extracellular application of caffeine, a sensitizer of the ryanodine receptor/Ca2+ release channel. Depletion of intracellular Ca2+ stores with thapsigargin stimulated Mn2+ influx, suggesting the presence of Ca(2+)-release-activated Ca2+ channels. Taken together, these observations are consistent with a role for VICCs (possibly G-type channels) and/or Ca(2+)-release-activated Ca2+ channels as mediators of slow [Ca2+]i oscillations in beta-cells. We propose that slow oscillations of [Ca2+]i probably serve as important initiators of insulin secretion under conditions in which tight control of glucose homeostasis is necessary, as is the case during the fasting normoglycemic state.
Collapse
Affiliation(s)
- C A Leech
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston 02114
| | | | | |
Collapse
|
16
|
Background Ca2+ influx mediated by a dihydropyridine- and voltage-insensitive channel in pancreatic beta-cells. Modulation by Ni2+, diphenylamine-2-carboxylate, and glucose metabolism. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32525-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Satin LS, Tavalin SJ, Smolen PD. Inactivation of HIT cell Ca2+ current by a simulated burst of Ca2+ action potentials. Biophys J 1994; 66:141-8. [PMID: 8130333 PMCID: PMC1275673 DOI: 10.1016/s0006-3495(94)80759-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel voltage-clamp protocol was developed to test whether slow inactivation of Ca2+ current occurs during bursting in insulin-secreting cells. Single insulin-secreting HIT cells were patch-clamped and their Ca2+ currents were isolated pharmacologically. A computed beta-cell burst was used as a voltage-clamp command and the net Ca2+ current elicited was determined as a cadmium difference current. Ca2+ current rapidly activated during the computed plateau and spike depolarizations and then slowly decayed. Integration of this Ca2+ current yielded an estimate of total Ca influx. To further analyze Ca2+ current inactivation during a burst, repetitive test pulses to + 10 mV were added to the voltage command. Current elicited by these pulses was constant during the interburst, but then slowly and reversibly decreased during the depolarizing plateau. This inactivation was reduced by replacing external Ca2+ with Ba2+ as a charge carrier, and in some cells inactivation was slower in Ba2+. Experimental results were compared with the predictions of the Keizer-Smolen mathematical model of bursting, after subjecting model equations to identical voltage commands. In this model, bursting is driven by the slow, voltage-dependent inactivation of Ca current during the plateau active phase. The K-S model could account for the slope of the slow decay of spike-elicited Ca current, the waveform of individual Ca current spikes, and the suppression of test pulse-elicited Ca current during a burst command. However, the extent and rate of fast inactivation were underestimated by the model. Although there are significant differences between the data obtained and the predictions of the K-S model, the overall results show that as predicted by the model, Ca current slowly inactivates during a burst of imposed spikes, and inactivation is dependent on both Ca2+ influx and membrane depolarization. We thus show that clamping cells to their physiological voltage waveform can be readily accomplished and is a powerful approach for understanding the contribution of individual ion currents to bursting.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virgina, Richmond
| | | | | |
Collapse
|
18
|
Leech CA, Holz GG. Application of patch clamp methods to the study of calcium currents and calcium channels. Methods Cell Biol 1994; 40:135-51. [PMID: 8201974 PMCID: PMC3509330 DOI: 10.1016/s0091-679x(08)61113-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C A Leech
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston 02114
| | | |
Collapse
|
19
|
Wagoner PK, Chen C, Worley JF, Dukes ID, Oxford GS. Amylin modulates beta-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci U S A 1993; 90:9145-9. [PMID: 8415669 PMCID: PMC47518 DOI: 10.1073/pnas.90.19.9145] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The release of insulin from the pancreatic beta cell is dependent upon a complex interplay between stimulators and inhibitors. Recently, amylin, a peptide secreted by pancreatic beta cells, has been implicated in the development of type II (noninsulin dependent) diabetes through its modulation of the peripheral effects of insulin. However, the effect of amylin on insulin secretion from the beta cell has remained controversial. It is reported here that in single beta cells exhibiting normal glucose sensing, amylin causes membrane hyperpolarization, increases in net outward current, and reductions in insulin secretion. In contrast, in cells with abnormal glucose sensing (e.g., from db/db diabetic mice), amylin has no effect on electrical activity or secretion. Thus, amylin's effects on excitation-secretion coupling in the beta cell of the pancreas appear to be linked to the cell's capacity for normal glucose sensing.
Collapse
Affiliation(s)
- P K Wagoner
- Department of Cell Physiology and Biophysics, Glaxo Research Institute, Glaxo, Inc., Research Triangle Park, NC 27709
| | | | | | | | | |
Collapse
|
20
|
Rosário LM, Barbosa RM, Antunes CM, Silva AM, Abrunhosa AJ, Santos RM. Bursting electrical activity in pancreatic beta-cells: evidence that the channel underlying the burst is sensitive to Ca2+ influx through L-type Ca2+ channels. Pflugers Arch 1993; 424:439-47. [PMID: 7504808 DOI: 10.1007/bf00374906] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In glucose-stimulated pancreatic beta-cells, the membrane potential alternates between a hyperpolarized silent phase and a depolarized phase with Ca2+ action potentials. The molecular and ionic mechanisms underlying these bursts of electrical activity remain unknown. We have observed that 10.2-12.8 mM Ca2+, 1 microM Bay K 8644 and 2 mM tetraethylammonium (TEA) trigger bursts of electrical activity and oscillations of intracellular free Ca2+ concentration ([Ca2+]i) in the presence of 100 microM tolbutamide. The [Ca2+]i was monitored from single islets of Langerhans using fura-2 microfluorescence techniques. Both the high-Ca(2+)- and Bay-K-8644-evoked [Ca2+]i oscillations overshot the [Ca2+]i recorded in tolbutamide. Nifedipine (10-20 microM) caused an immediate membrane hyperpolarization, which was followed by a slow depolarization to a level close to the burst active phase potential. The latter depolarization was accompanied by suppression of spiking activity. Exposure to high Ca2+ in the presence of nifedipine caused a steady depolarization of approximately 8 mV. Ionomycin (10 microM) caused membrane hyperpolarization in the presence of 7.7 mM Ca2+, which was not abolished by nifedipine. Charybdotoxin (CTX, 40-80 nM), TEA (2 mM) and quinine (200 microM) did not suppress the high-Ca(2+)-evoked bursts. It is concluded that: (1) the channel underlying the burst is sensitive to [Ca2+]i rises mediated by Ca2+ influx through L-type Ca2+ channels, (2) both the ATP-dependent K+ channel and the CTX- and TEA-sensitive Ca(2+)-dependent K+ channel are highly unlikely to provide the pacemaker current underlying the burst.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L M Rosário
- Departamento de Bioquímica, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
Billaudel BJ, Delbancut AP, Sutter BC, Faure AG. Stimulatory effect of 1,25-dihydroxyvitamin D3 on calcium handling and insulin secretion by islets from vitamin D3-deficient rats. Steroids 1993; 58:335-41. [PMID: 8212082 DOI: 10.1016/0039-128x(93)90094-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Among the various vitamin D3 metabolites, 1,25-(OH)2D3 is the specific secosteroid hormone that can enhance, in vitro, the weak insulin response to glucose of islets from vitamin D3-deficient rats. Because this potentiating effect is preceded by an increase in Ca2+ handling, several putative sites of action were studied by measuring 45Ca2+ and 86Rb+ (as K+ tracer) efflux during perifusions in the presence of various stimuli known to affect Ca2+ movements in different ways: high glucose without calcium, high calcium without glucose, high potassium, or barium-theophylline without calcium or glucose. The present results show that 1,25-(OH)2D3 may activate Ca2+ handling by at least two mechanisms: (1) an increase of Ca2+ entry via voltage-dependent Ca2+ channels in the experiments in which extracellular Ca2+ was present and where Ca2+ channels were opened; this 1,25-(OH)2D3 influence on Ca2+ channels was not mediated by a possible indirect influence on K+ channels because 86Rb+ fluxes were never observed to be affected by the steroid; (2) an enhancement of 45Ca2+ mobilization from intracellular stores as suggested by barium-theophylline stimulation and probably also via the Ca2+ stimulus. Both of these 1,25-(OH)2D3 influences tended to provide more calcium to the B cell of vitamin D3-deficient rats. But this prerequisite was not sufficient in itself to potentiate the insulin response; indeed, experiments with barium-theophylline suggested that 1,25-(OH)2D3 may also activate a cAMP-dependent exocytosis process.
Collapse
Affiliation(s)
- B J Billaudel
- Laboratoire d'Endocrinologie, UFR de Biologie, Université Bordeaux I, Talence, France
| | | | | | | |
Collapse
|
22
|
Smolen P, Rinzel J, Sherman A. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys J 1993; 64:1668-80. [PMID: 8369400 PMCID: PMC1262502 DOI: 10.1016/s0006-3495(93)81539-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous mathematical modeling of beta cell electrical activity has involved single cells or, recently, clusters of identical cells. Here we model clusters of heterogeneous cells that differ in size, channel density, and other parameters. We use gap-junctional electrical coupling, with conductances determined by an experimental histogram. We find that, for reasonable parameter distributions, only a small proportion of isolated beta cells will burst when uncoupled, at any given value of a glucose-sensing parameter. However, a coupled, heterogeneous cluster of such cells, if sufficiently large (approximately 125 cells), will burst synchronously. Small clusters of such cells will burst only with low probability. In large clusters, the dynamics of intracellular calcium compare well with experiments. Also, these clusters possess a dose-response curve of increasing average electrical activity with respect to a glucose-sensing parameter that is sharp when the cluster is coupled, but shallow when the cluster is decoupled into individual cells. This is in agreement with comparative experiments on cells in suspension and islets.
Collapse
Affiliation(s)
- P Smolen
- Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
23
|
Keizer J, De Young G. Effect of voltage-gated plasma membrane Ca2+ fluxes on IP3-linked Ca2+ oscillations. Cell Calcium 1993; 14:397-410. [PMID: 8390921 DOI: 10.1016/0143-4160(93)90044-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a theoretical investigation of the effect of Ca2+ influx through ion channels in the plasma membrane on Ca2+ oscillations induced by agonist stimulation of Ca2+ release from internal stores. We expand a recent model of internal Ca2+ oscillations based on activation and inhibition of the IP3-receptor in the endoplasmic reticulum by introducing plasma membrane voltage-gated Ca2+ and K+ channels based on patch-clamp experiments on mouse pancreatic beta cells. Simulations of voltage- and current-clamped experiments are carried out. The amplitude and frequency of the oscillations as well as the sensitivity to agonist are strongly affected by altering the value of the voltage-clamp. We show that the fundamental quantity governing voltage clamp measurements is the inward flux of Ca2+, which acts as a control parameter to alter characteristics of the oscillations. Under current clamp conditions (I(applied) = 0) that lead to continuous spiking electrical activity, we examine the coupling between electrical activity and Ca2+ by introducing a small whole cell Ca(2+)-activated K+ conductance. Results of calculations are similar to those observed in agonist-stimulated beta cells and gonadotrophs. We conclude, however, that glucose-induced bursting and agonist induced bursting in beta cells are distinct phenomena and suggest a mechanism by which agonist-induced Ca2+ oscillations might potentiate insulin secretion. This leads to a general principle for selective signal transduction by Ca2+ oscillations.
Collapse
Affiliation(s)
- J Keizer
- Institute of Theoretical Dynamics, University of California, Davis
| | | |
Collapse
|
24
|
Larsson-Nyrén G, Sehlin J. Interaction between perchlorate and nifedipine on insulin secretion from mouse pancreatic islets. Biosci Rep 1993; 13:107-17. [PMID: 8397006 DOI: 10.1007/bf01145963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In order to elucidate the mechanisms responsible for the stimulatory effect of perchlorate (ClO4-) on insulin secretion, we have investigated the interaction between this chaotropic anion and the organic calcium antagonist nifedipine. This drug, known as a blocker of L-type calcium channels, was chosen as a tool to test the idea that ClO4- acts on insulin secretion by stimulating the gating of voltage-controlled Ca2+ channels. ClO4- amplified the stimulatory effect of D-glucose on insulin release from perfused pancreas (first and second phases) as well as from isolated islets incubated in static incubations for 60 min. This indicates that ClO4- amplifies physiologically regulated insulin secretion. Nifedipine reduced D-glucose-induced (20 mM) insulin release in a dose-dependent manner with half-maximum effect at about 0.8 microM and apparent maximum effect at 5 microM nifedipine. In the presence of 20 mM D-glucose, the inhibitory effects of 0.5, 1 or 5 microM nifedipine were only slightly, if at all, counteracted by perchlorate. When 12 mM ClO4- and 20 mM D-glucose were combined, calculation of the specific effect of ClO4- revealed that nifedipine produced almost maximum inhibition already at 0.05 microM. Thus, the perchlorate-induced amplification of D-glucose-stimulated insulin release shows higher sensitivity to nifedipine than the D-glucose-effect as such. This supports the hypothesis that perchlorate primarily affects the voltage-sensitive L-type calcium channel in the beta-cell.
Collapse
Affiliation(s)
- G Larsson-Nyrén
- Department of Histology and Cell Biology, University of Umeå, Sweden
| | | |
Collapse
|
25
|
Hellman B, Gylfe E, Grapengiesser E, Lund PE, Berts A. Cytoplasmic Ca2+ oscillations in pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1113:295-305. [PMID: 1450203 DOI: 10.1016/0304-4157(92)90003-s] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last 15 years it has been a growing interest in the cyclic variations of circulating insulin [46]. After the suggestion that this phenomenon may be due to oscillations of the beta-cell membrane potential [8,39], it was demonstrated that [Ca2+]i oscillates in the glucose-stimulated beta-cell with a similar frequency to that of pulsatile insulin release. The present review describes four types of [Ca2+]i oscillations in the pancreatic beta-cell. The slow sinusoidal oscillations, referred to as type-a, are those which most closely correspond to pulsatile insulin release. Although not affecting the properties of the type-a oscillations in individual beta-cells, the concentration of glucose is a determinant for their generation and further transformation into a sustained increase. Accordingly, cytoplasmic Ca2+ is regulated by sudden transitions between oscillatory and steady-state levels at threshold concentrations of glucose, which are characteristic for the individual beta-cell. This behaviour explains the observation of a gradual recruitment of previously non-secreting cells with increase of the extracellular glucose concentration [44]. However, it still remains to be elucidated how the sudden transitions between these three states translate into the co-ordinated slow oscillations of [Ca2+]i in the intact islet. Cyclic variations of circulating insulin require a synchronization of the [Ca2+]i cycles also among the islets in the pancreas. It is still an open question by which means the millions of islets communicate mutually to establish a pattern of pulsatile insulin release from the whole pancreas. The discovery that the beta-cell is not only the functional unit for insulin synthesis but also generates the [Ca2+]i oscillations required for pulsatile insulin release has both physiological and clinical implications. The fact that minor damage to the beta-cells prevents the type-a oscillations with maintenance of a glucose response in terms of raised [Ca2+]i reinforces previous arguments [54] that loss of insulin oscillations is an early indicator of type-2 diabetes. Further analyses of the [Ca2+]i oscillations in the beta-cells should include not only the mechanisms for their generation and subsequent propagation within or among the islets but also how modulation of their frequency affects the insulin sensitivity of various target cells. The latter approach may be important in the attempts to maintain normoglycemia under conditions minimizing the vascular effects of insulin supposed to precipitate hypertonia and atherosclerosis [70,71,77].
Collapse
Affiliation(s)
- B Hellman
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
26
|
Fournier L, Bégin-Heick N, Whitfield JF, Schwartz JL. Comparison of the properties of the ATP-sensitive K+ channels of pancreatic beta-cells of lean and obese (ob/ob) C57BL/6J mice. J Membr Biol 1992; 129:267-76. [PMID: 1433278 DOI: 10.1007/bf00232908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cultures of pancreatic islet cells from obese and lean mice of the C57BL/6J strain were established and their secretory response to glucose stimulation was measured. Insulin secretion (as % of total cellular insulin content) from the cells of the obese mouse cultures was significantly higher than from lean mouse cells. The properties of the glucose- and ATP-sensitive potassium channels present in these cultured beta-cells were compared using the cell-attached and the inside-out configurations of the patch-clamp technique. The channels of both types of mouse were indistinguishable in terms of conductance, ionic selectivity, kinetic behavior, voltage dependence or sensitivity to glucose, ATP and ADP. It is concluded that the depolarized state and the hypersecretory response of obese mouse beta-cells are not related to an altered behavior of their ATP-sensitive potassium channels.
Collapse
Affiliation(s)
- L Fournier
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Abstract
Ionic and electrical events play a central role in the stimulus-secretion coupling of the pancreatic B cell. Potassium permeability is critically involved in the regulation of B cell membrane potential and insulin secretion. In the absence of glucose, membrane potential remains stable, around -65 mV. This resting potential is mainly determined by the high potassium conductance of the membrane. The ATP generated by glucose metabolism in B cells blocks the K+(ATP) channels controlling resting membrane potential. Thus, glucose metabolism leads to closure of the ATP-dependent potassium channels; the resulting decrease in K+ permeability induces depolarization and opening of voltage-activated Ca-channels. The subsequent increase in Ca2+ influx raises the cytoplasmic concentration of free Ca2+, which in turn triggers exocytosis of secretory granules. Other types of K+ channels have also been identified in the B cell, such as voltage- and Ca(2+)-dependent K+ channels, which are not a target for the action of glucose, but may play a role in the repolarization of spikes. The modulation of insulin release by some hormones and neurotransmitters involves, among other mechanisms, an interference with the plasma membrane K+ conductance. Thus, galanine, somatostatin and adrenaline, which inhibit insulin release, increase K+ conductance by a G protein-dependent mechanism; both peptides were reported to open ATP-sensitive K+ channels in insulin-secreting cell line RINm5F. It was also observed that extracellular purine nucleotides could interfere with K+ channels. Among the various drugs interfering with insulin secretion, sulfonylureas, such as tolbutamide and glibenclamide, directly inhibit ATP-dependent K+ channels in the B cell membrane and thereby initiate insulin release. In contrast, potassium channel openers such as diazoxide, antagonize the effects of glucose by increasing K+ permeability of the B cell membrane. Furthermore, other classes of drugs have recently been shown to interact with K+ (ATP) channels. Thus, K+ channels of the pancreatic B cell, particularly ATP-dependent ones, play a crucial role in the electrophysiology of insulin secretion; they are an important target for pharmacological agents designed to modulate this secretion.
Collapse
Affiliation(s)
- P Petit
- Laboratoire de Pharmacologie, URA 599 du CNRS, Faculté de Médecine, Montpellier, France
| | | |
Collapse
|
28
|
Spitzer NC. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. JOURNAL OF NEUROBIOLOGY 1991; 22:659-73. [PMID: 1722506 DOI: 10.1002/neu.480220702] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
29
|
Ceña V, Brocklehurst KW, Pollard HB, Rojas E. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: mechanism may be by direct activation of L-type and G-type calcium channels. J Membr Biol 1991; 122:23-31. [PMID: 1714959 DOI: 10.1007/bf01872736] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that pertussis toxin (PTX) stimulates delayed-onset, [Ca2+]o-dependent catecholamine (CA) release from bovine chromaffin cells. We now show that this effect of PTX is inhibited in part (50%) by dihydropyridine Ca(2+)-channel antagonists niludipine and nifedipine, and is potentiated by the dihydropyridine Ca(2+)-channel agonist Bay K-8644. We and others have shown that pretreatment of chromaffin cells with PTX results in enhanced catecholamine secretion in response to high [K+]o, nicotine and muscarine, and here we extend these observations by showing that toxin pretreatment also enhances the secretory response to [Ba2+]o. All these data are consistent with the concept that PTX may act on Ca2+ channels. To examine the possibility of a direct action of the toxin on the voltage-gated L-type Ca2+ channel known to be present in these cells, we studied the effects of the toxin on whole cell Ca2+ currents. We found and report here that spontaneous electrical activity was considerably increased in PTX-treated cells. Our measurements of whole cell inward Ca2+ currents indicate that the underlying mechanism is a marked shift of the activation curve of the L-type Ca2+ current along the voltage axis towards more negative potentials. While treatment of the cells with PTX had no effect on L-type Ca(2+)-channel conductance (6 nS/cell at 2.6 mM [Ca2+]o). PTX evoked the activation of a new class of Ca(2+)-selective channels (5 pS in 25 mM [Ca2+]pipet), which are rather insensitive to membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Ceña
- Laboratory of Cell Biology and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Keizer J, Smolen P. Bursting electrical activity in pancreatic beta cells caused by Ca(2+)- and voltage-inactivated Ca2+ channels. Proc Natl Acad Sci U S A 1991; 88:3897-901. [PMID: 1850840 PMCID: PMC51560 DOI: 10.1073/pnas.88.9.3897] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigate the hypothesis that two classes of Ca2+ currents, one quickly inactivated by Ca2+ and one slowly inactivated by voltage, contribute to bursting electrical activity in pancreatic islets. A mathematical model of these currents is fit to the experimental whole-cell current-voltage and inactivation profiles, thereby fixing the Ca2+ conductance and all activation and inactivation parameters. Incorporating these currents into a model that includes delayed rectifier K+ channels and ATP-sensitive K+ channels, we show that only abnormal bursting is obtained. Modification of activation parameters to increase Ca2+ channel open times, as suggested by experiment, yields a more robust bursting similar to that observed in intact islets. This reinforces the suggestion that in addition to ATP-sensitive K+ channels, Ca2+ channels may serve as glucose sensors in the beta cell.
Collapse
Affiliation(s)
- J Keizer
- Institute of Theoretical Dynamics, University of California, Davis 95616
| | | |
Collapse
|
31
|
Boschero AC, Bordin S, Herchuelz A, Lebrun P. Effects of glucose on 45Ca2+ outflow, cytosolic Ca2+ concentration and insulin release from freshly isolated and cultured adult rat islets. Cell Calcium 1990; 11:603-9. [PMID: 2285929 DOI: 10.1016/0143-4160(90)90015-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.
Collapse
Affiliation(s)
- A C Boschero
- Department of Physiology and Biophysics, UNICAMP, Campinas, Brazil
| | | | | | | |
Collapse
|
32
|
Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1989; 54:87-143. [PMID: 2484976 DOI: 10.1016/0079-6107(89)90013-8] [Citation(s) in RCA: 783] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|