1
|
Zhang ZY, Dixon JE. Protein tyrosine phosphatases: mechanism of catalysis and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:1-36. [PMID: 8154323 DOI: 10.1002/9780470123140.ch1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Z Y Zhang
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor
| | | |
Collapse
|
2
|
Klann AG, Miller RA, Norman ED, Klann E. Tyrosine phosphatases: cellular functions and therapeutic potential. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.5.675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Jiang G, den Hertog J, Hunter T. Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface. Mol Cell Biol 2000; 20:5917-29. [PMID: 10913175 PMCID: PMC86069 DOI: 10.1128/mcb.20.16.5917-5929.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We reported previously that the N-terminal D1 catalytic domain of receptor protein-tyrosine phosphatase alpha (RPTPalpha) forms a symmetrical, inhibited dimer in a crystal structure, in which a helix-turn-helix wedge element from one monomer is inserted into the catalytic cleft of the other monomer. Previous functional studies also suggested that dimerization inhibits the biological activity of a CD45 chimeric RPTP and the catalytic activity of an isolated RPTPsigma D1 catalytic domain. Most recently, we have also shown that enforced dimerization inhibits the biological activity of full-length RPTPalpha in a wedge-dependent manner. The physiological significance of such inhibition is unknown, due to a lack of understanding of how RPTPalpha dimerization is regulated in vivo. In this study, we show that transiently expressed cell surface RPTPalpha exists predominantly as homodimers, suggesting that dimerization-mediated inhibition of RPTPalpha biological activity is likely to be physiologically relevant. Consistent with our published and unpublished crystallographic data, we show that mutations in the wedge region of D1 catalytic domain and deletion of the entire D2 catalytic domain independently reduced but did not abolish RPTPalpha homodimerization, suggesting that both domains are critically involved but that neither is essential for homodimerization. Finally, we also provide evidence that both the RPTPalpha extracellular domain and the transmembrane domain were independently able to homodimerize. These results lead us to propose a zipper model in which inactive RPTPalpha dimers are stabilized by multiple, relatively weak dimerization interfaces. Dimerization in this manner would provide a potential mechanism for negative regulation of RPTPalpha. Such RPTPalpha dimers could be activated by extracellular ligands or intracellular binding proteins that induce monomerization or by intracellular signaling events that induce an open conformation of the dimer.
Collapse
Affiliation(s)
- G Jiang
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
4
|
Harder KW, Moller NP, Peacock JW, Jirik FR. Protein-tyrosine phosphatase alpha regulates Src family kinases and alters cell-substratum adhesion. J Biol Chem 1998; 273:31890-900. [PMID: 9822658 DOI: 10.1074/jbc.273.48.31890] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of protein-tyrosine phosphatases (PTPs) in processes such as cell growth and adhesion are poorly understood. To explore the ability of specific PTPs to regulate cell signaling pathways initiated by stimulation of growth factor receptors, we expressed the receptor-like PTP, PTPalpha, in A431 epidermoid carcinoma cells. These cells express high levels of the epidermal growth factor (EGF) receptor and proliferate in response to the autocrine production of transforming growth factor-alpha. Conversely, EGF stimulation of A431 cells in vitro leads to growth inhibition and triggers the rapid detachment of these cells from the substratum. Although PTPalpha expression did not alter the growth characteristics of either unstimulated or EGF-stimulated cells, this phosphatase was associated with increased cell-substratum adhesion. Furthermore, PTPalpha-expressing A431 cells were strikingly resistant to EGF-induced cell rounding. Overexpression of PTPalpha in A431 cells was associated with the dephosphorylation/activation of specific Src family kinases, suggesting a potential mechanism for the observed alteration in A431 cell-substratum adhesion. Src kinase activation was dependent on the D1 catalytic subunit of PTPalpha, and there was evidence of association between PTPalpha and Src kinase(s). PTPalpha expression also led to increased association of Src kinase with the integrin-associated focal adhesion kinase, pp125(FAK). In addition, paxillin, a Src and/or pp125(FAK) substrate, displayed increased levels of tyrosine phosphorylation in PTPalpha-expressing cells and was associated with elevated amounts of Csk. In view of these alterations in focal adhesion-associated molecules in PTPalpha-expressing A431 cells, as well as the changes in adhesion demonstrated by these cells, we propose that PTPalpha may have a role in regulating cell-substratum adhesion.
Collapse
Affiliation(s)
- K W Harder
- Centre for Molecular Medicine and Therapeutics and the Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
5
|
Schaapveld R, Wieringa B, Hendriks W. Receptor-like protein tyrosine phosphatases: alike and yet so different. Mol Biol Rep 1997; 24:247-62. [PMID: 9403867 DOI: 10.1023/a:1006870016238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reversible phosphorylation on tyrosine residues is an extremely rapid and powerful posttranslational modification that is used in signalling pathways for the regulation of cell growth and differentiation. Over the past several years an impressive number of receptor-like protein tyrosine phosphatase (RPTPase) family members have been identified by molecular cloning, and undoubtedly many more will follow. This review provides an overview of the molecular data that are available for the currently identified RPTPases and discusses their possible biological implications.
Collapse
Affiliation(s)
- R Schaapveld
- Department of Cell Biology & Histology, Institute of Cellular Signalling, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
6
|
Ng DH, Jabali MD, Maiti A, Borodchak P, Harder KW, Brocker T, Malissen B, Jirik FR, Johnson P. CD45 and RPTPalpha display different protein tyrosine phosphatase activities in T lymphocytes. Biochem J 1997; 327 ( Pt 3):867-76. [PMID: 9581568 PMCID: PMC1218869 DOI: 10.1042/bj3270867] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To examine the substrate specificity and function of two receptor protein tyrosine phosphatases, CD45 and RPTPalpha, RPTPalpha was expressed in a CD45(-), T-cell receptor (TCR)+, BW5147 T-lymphoma cell. High levels of expression of RPTPalpha did not fully restore either proximal or distal TCR-mediated signalling events. RPTPalpha was unable to reconstitute the phosphorylation of CD3zeta and did not increase the expression of the activation marker, CD69, on stimulation with TCR/CD3. RPTPalpha did not significantly alter the phosphorylation state or kinase activity of two CD45 substrates, p56(lck) or p59(fyn), suggesting that RPTPalpha does not have the same specificity or function as CD45 in T-cells. Further comparison of the two phosphatases indicated that immunoprecipitated RPTPalpha was approx. one-seventh to one-tenth as active as CD45 when tested against artificial substrates. This difference in activity was also observed in vitro with purified recombinant enzymes at physiological pH. Additional analysis with Src family phosphopeptides and recombinant p56(lck) as substrates indicated that CD45 was consistently more active than RPTPalpha, having both higher Vmax and lower Km values. Thus CD45 is intrinsically a much more active phosphatase than RPTPalpha, which provides one reason why RPTPalpha cannot effectively dephosphorylate p56(lck) and substitute for CD45 in T-cells. This work establishes that these two related protein tyrosine phosphatases are not interchangeable in T-cells and that this is due, at least in part, to quantitative differences in phosphatase activity.
Collapse
Affiliation(s)
- D H Ng
- Department of Microbiology and Immunology, 300-6174 University Boulevard, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ng DH, Watts JD, Aebersold R, Johnson P. Demonstration of a direct interaction between p56lck and the cytoplasmic domain of CD45 in vitro. J Biol Chem 1996; 271:1295-300. [PMID: 8576115 DOI: 10.1074/jbc.271.3.1295] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
p56lck is a potential in vivo substrate for the tyrosine-specific phosphatase, CD45. In this study, recombinant purified p56lck was found to specifically associate with recombinant CD45 cytoplasmic domain protein, but not to the cytoplasmic domain of another related tyrosine phosphatase, receptor protein-tyrosine phosphatase alpha. Under equilibrium binding conditions, the binding was saturable and occurred at a 1:1 molar stoichiometry. A fusion protein containing only the amino-terminal region of p56lck (residues 34-150) also bound to recombinant CD45, and further analysis of this region indicated that glutathione S-transferase fusion proteins of the unique amino-terminal region and the SH2 domain, but not the SH3 domain of p56lck, bound to recombinant CD45. The SH2 domain protein bound with a higher affinity than the amino-terminal region, but both were able to compete for the binding of p56lck to CD45, and when added together worked synergistically to compete for p56lck binding. The SH2 domain interaction with CD45 was specific as glutathione S-transferase-SH2 fusion proteins from p85 alpha subunit of phosphatidylinositol 3-kinase and SHC did not bind to CD45. In addition, this interaction occurred in the absence of any detectable tyrosine phosphorylation on CD45, suggesting a nonconventional SH2 domain interaction.
Collapse
Affiliation(s)
- D H Ng
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
8
|
Saadat M, Nakamura K, Mizuno Y, Kikuchi K, Yoshida MC. Regional localization of rat and mouse protein-tyrosine phosphatase PTP alpha/LRP gene (Ptpra) by fluorescence in situ hybridization. IDENGAKU ZASSHI 1995; 70:669-74. [PMID: 8790445 DOI: 10.1266/jjg.70.669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein tyrosine phosphatases (PTPases) negatively regulate the effect(s) of protein tyrosine kinases and are implicated in the regulation of a variety of biological events including cell activation, differentiation, and neoplastic transformation. To gain insight into the role(s) of the PTPases, we mapped the gene encoding for the widely expressed receptor-like protein tyrosine phosphatase PTP alpha/LRP (locus symbol Ptpra) to rat chromosome 3q36 and mouse chromosome 2G by fluorescence in situ hybridization method. These results indicate that there is a conserved syntenic group between human 20p13, rat 3q36, and mouse 2G.
Collapse
Affiliation(s)
- M Saadat
- Department of Biology, Faculty of Science, Shiraz University, Iran
| | | | | | | | | |
Collapse
|
9
|
Tracy S, van der Geer P, Hunter T. The receptor-like protein-tyrosine phosphatase, RPTP alpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J Biol Chem 1995; 270:10587-94. [PMID: 7537734 DOI: 10.1074/jbc.270.18.10587] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To determine whether the receptor-like protein-tyrosine phosphatase, RPTP alpha, which is widely expressed in both the developing and adult mouse, is regulated by phosphorylation, we raised antiserum against a C-terminal peptide. This antiserum precipitated a 140-kDa protein from metabolically 35S-labeled NIH3T3 cells. Using this antiserum, we showed that endogenous RPTP alpha is constitutively phosphorylated in NIH3T3 cells, predominantly on two serines, which we identified as Ser-180 and Ser-204, lying in the juxtamembrane domain. 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of quiescent NIH3T3 cells rapidly increased phosphorylation of Ser-180 and Ser-204. Purified protein kinase C (PKC) phosphorylated bacterially expressed RPTP alpha at Ser-180 and Ser-204. When wild type and S180A/S204A double mutant RPTP alpha S were transiently expressed in 293 human embryonic kidney cells, TPA stimulated phosphorylation of wild type but not of double mutant RPTP alpha. PKC down-regulation following prolonged exposure to TPA diminished TPA-stimulated RPTP alpha phosphorylation. Taken together, these results indicate that RPTP alpha is a direct substrate for (PKC). Examination of 293 cells expressing exogenous RPTP alpha using immunofluorescence confocal microscopy showed that RPTP alpha exists predominantly in two subcellular compartments: in dense intracellular granules or dispersed within the plasma membrane. TPA treatment caused redistribution of some intracellular RPTP alpha to the cell surface, but this did not require direct phosphorylation of RPTP alpha at Ser-180/Ser-204. Our results suggest that activation of PKC by cytokines modulates RPTP alpha function in several different ways.
Collapse
Affiliation(s)
- S Tracy
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
10
|
Ogata M, Sawada M, Fujino Y, Hamaoka T. cDNA cloning and characterization of a novel receptor-type protein tyrosine phosphatase expressed predominantly in the brain. J Biol Chem 1995; 270:2337-43. [PMID: 7836467 DOI: 10.1074/jbc.270.5.2337] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatase has the potential to control various cellular events by negatively regulating the extent of tyrosine phosphorylation. Here, we report the isolation of a murine receptor protein tyrosine phosphatase, PTPBR7, which is expressed almost exclusively in the brain. Though the cytoplasmic portion of PTPBR7 reveals high similarity to HePTP/LC-PTP and STEP, these are, unlike PTPBR7, non-receptor protein tyrosine phosphatases. Unlike most receptor protein tyrosine phosphatases, PTPBR7 has only one cytoplasmic phosphatase domain, and its extracellular domain reveals no obvious structural similarity to known molecules. Thus, PTPBR7 defines a new subfamily of receptor-type protein tyrosine phosphatases. The putative extracellular domain of PTPBR7 was expressed in COS-7 cells as a chimeric fusion protein with an immunoglobulin Fc portion (PTPBR7-Fc). PTPBR7-Fc was secreted in the culture supernatant, confirming the capability of the extracellular domain of PTPBR7 to translocate across the cytoplasmic membrane. The cytoplasmic portion of PTPBR7 was expressed as a fusion protein in bacteria and was demonstrated to have catalytic activity. The expression of PTPBR7 was detectable in brain and especially in cerebellum but undetectable in liver, lung, heart, kidney, thymus, bone marrow, and spleen. In situ hybridization analysis revealed the most prominent signal in Purkinje cells. The predominant expression of PTPBR7 in the brain suggests that PTPBR7 may have role(s) in neuronal cells.
Collapse
Affiliation(s)
- M Ogata
- Biomedical Research Center, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
11
|
SAADAT M, NAKAMURA K, MIZUNO Y, KIKUCHI K, YOSHIDA MC. Regional localization of rat and mouse protein-tyrosine phosphatase PTPα/LRP gene (Ptpra) by fluorescence in situ hybridization. Genes Genet Syst 1995. [DOI: 10.1266/ggs.70.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Su J, Batzer A, Sap J. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32227-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Daum G, Regenass S, Sap J, Schlessinger J, Fischer E. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34091-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Mei L, Doherty C, Huganir R. RNA splicing regulates the activity of a SH2 domain-containing protein tyrosine phosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32709-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Brautigan DL. Great expectations: protein tyrosine phosphatases in cell regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1114:63-77. [PMID: 1390871 DOI: 10.1016/0304-419x(92)90007-l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D L Brautigan
- Brown University, J.W. Wilson Laboratory, Providence, RI 02912
| |
Collapse
|
16
|
Schepens J, Zeeuwen P, Wieringa B, Hendriks W. Identification and typing of members of the protein-tyrosine phosphatase gene family expressed in mouse brain. Mol Biol Rep 1992; 16:241-8. [PMID: 1454056 DOI: 10.1007/bf00419663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein-tyrosine phosphatases (PTPases) form a novel and important class of cell regulatory proteins. We evaluated the expression of PTPases in mouse brain by polymerase chain amplification of cDNA segments that encode the catalytic domains of these enzymes. Degenerate primer pairs devised on the basis of conserved protein motifs were used to generate a series of distinct PCR-derived clones. In this way, murine homologues of the human PTPases LRP, PTP beta, PTP delta, PTP epsilon and LAR were obtained. Corresponding regions in their catalytic domains were used to reveal the evolutionary relationships between all currently known mammalian PTPase protein family members. Phylogenetic reconstruction displayed considerable differences in mutation rates for closely related PTPases.
Collapse
Affiliation(s)
- J Schepens
- Department of Cell Biology & Histology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Pot DA, Dixon JE. A thousand and two protein tyrosine phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:35-43. [PMID: 1643113 DOI: 10.1016/0167-4889(92)90082-m] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D A Pot
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606
| | | |
Collapse
|
18
|
Rao VV, Löffler C, Sap J, Schlessinger J, Hansmann I. The gene for receptor-linked protein-tyrosine-phosphatase (PTPA) is assigned to human chromosome 20p12-pter by in situ hybridization (ISH and FISH). Genomics 1992; 13:906-7. [PMID: 1639427 DOI: 10.1016/0888-7543(92)90186-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V V Rao
- Institut für Humangenetik, Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Hashimoto N, Feener E, Zhang W, Goldstein B. Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49639-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Hashimoto N, Zhang WR, Goldstein BJ. Insulin receptor and epidermal growth factor receptor dephosphorylation by three major rat liver protein-tyrosine phosphatases expressed in a recombinant bacterial system. Biochem J 1992; 284 ( Pt 2):569-76. [PMID: 1599438 PMCID: PMC1132676 DOI: 10.1042/bj2840569] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein-tyrosine phosphatases (PTPases) play an essential role in the regulation of signal transduction mediated by reversible protein-tyrosine phosphorylation. In order to characterize individual rat hepatic PTPases that might have specificity for autophosphorylated receptor tyrosine kinases, we isolated cDNA segments encoding three PTPases (PTPase 1B, LAR and LRP) that are expressed in insulin-sensitive liver and skeletal muscle tissue, and evaluated their catalytic activity in vitro. The intrinsic PTPase activities of the full-length PTPase 1B protein and the cytoplasmic domains of LAR and LRP were studied by expression of recombinant cDNA constructs in the inducible bacterial vector pKK233-2 using extracts of a host strain of Escherichia coli that lacks endogenous PTPase activity. Each of the cloned cDNAs dephosphorylated a cognate phosphopeptide derived from the regulatory region of the insulin receptor. Despite having only 30-39% sequence identity in their catalytic domains, LAR and PTPase 1B had similar relative activities between the peptide substrate and intact insulin receptors, and also displayed similar initial rates of simultaneous dephosphorylation of insulin and epidermal growth factor (EGF) receptors. In contrast, LRP exhibited a higher rate of dephosphorylation of both intact receptors relative to the peptide substrate, and also dephosphorylated EGF receptors more rapidly than insulin receptors. These studies indicate that three PTPases with markedly divergent structures have the catalytic potential to dephosphorylate both insulin and EGF receptors in intact cells and that redundant PTPase activity may occur in vivo. For these PTPases to have specific physiological actions in intact cells, they must be influenced by steric effects of the additional protein segments of the native transmembrane enzymes, cellular compartmentalization and/or interactions with regulatory proteins.
Collapse
Affiliation(s)
- N Hashimoto
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | | |
Collapse
|
21
|
Trowbridge IS, Johnson P, Ostergaard H, Hole N. Structure and function of CD45: a leukocyte-specific protein tyrosine phosphatase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 323:29-37. [PMID: 1485564 DOI: 10.1007/978-1-4615-3396-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- I S Trowbridge
- Department of Cancer Biology, Salk Institute, San Diego, CA 92186-5800
| | | | | | | |
Collapse
|
22
|
Abstract
Protein-tyrosine phosphatases (PTPases) play an important role in the regulation of insulin action by dephosphorylating the active (autophosphorylated) form of the insulin receptor and attenuating its tyrosine kinase activity. PTPases can also modulate post-receptor signalling by catalyzing the dephosphorylation of cellular substrates of the insulin receptor kinase. Dramatic advances have recently been made in our understanding of PTPases as an extensive family of transmembrane and intracellular proteins that are involved in a number of pathways of cellular signal transduction. Identification of the PTPase(s) which act on various components of the insulin action cascade will not only enhance our understanding of insulin signalling but will also clarify the potential involvement of PTPases in the pathophysiology of insulin-resistant disease states. This brief review provides a summary of reversible tyrosine phosphorylation events in insulin action and available data on candidate PTPases in liver and skeletal muscle that may be involved in the regulation of insulin action.
Collapse
Affiliation(s)
- B J Goldstein
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215
| |
Collapse
|
23
|
|
24
|
Trowbridge IS, Ostergaard HL, Johnson P. CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1095:46-56. [PMID: 1834176 DOI: 10.1016/0167-4889(91)90043-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- I S Trowbridge
- Department of Cancer Biology, Salk Institute, San Diego, CA 92186-5800
| | | | | |
Collapse
|
25
|
Shaw A, Thomas ML. Coordinate interactions of protein tyrosine kinases and protein tyrosine phosphatases in T-cell receptor-mediated signalling. Curr Opin Cell Biol 1991; 3:862-8. [PMID: 1931087 DOI: 10.1016/0955-0674(91)90061-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T-cell receptor stimulation leads to a rapid increase in tyrosine phosphorylation which is regulated by both the CD45 transmembrane protein tyrosine phosphatase and by intracellular protein tyrosine kinases. The Src-family members, Fyn and Lck, have been implicated in T-cell receptor signalling and may be regulated by CD45.
Collapse
Affiliation(s)
- A Shaw
- Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|
26
|
Pot D, Woodford T, Remboutsika E, Haun R, Dixon J. Cloning, bacterial expression, purification, and characterization of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55047-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Gebbink MF, van Etten I, Hateboer G, Suijkerbuijk R, Beijersbergen RL, Geurts van Kessel A, Moolenaar WH. Cloning, expression and chromosomal localization of a new putative receptor-like protein tyrosine phosphatase. FEBS Lett 1991; 290:123-30. [PMID: 1655529 DOI: 10.1016/0014-5793(91)81241-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated a mouse cDNA of 5.7 kb, encoding a new member of the family of receptor-like protein tyrosine phosphatases, termed mRPTP mu. The cDNA predicts a protein of 1432 amino acids (not including signal peptide) with a calculated Mr of 161,636. In addition, we have cloned the human homologue, hRPTP mu, which shows 98.7% amino acid identity to mRPTP mu. The predicted mRPTP mu protein consists of a 722 amino acid extracellular region, containing 13 potential N-glycosylation sites, a single transmembrane domain and a 688 amino acid intracellular part containing 2 tandem repeats homologous to the catalytic domains of other tyrosine phosphatases. The N-terminal extracellular part contains a region of about 170 amino acids with no sequence similarities to known proteins, followed by one Ig-like domain and 4 fibronectin type III-like domains. The intracellular part is unique in that the region between the transmembrane domain and the first catalytic domain is about twice as large as in other receptor-like protein tyrosine phosphatases. RNA blot analysis reveals a single transcript, that is most abundant in lung and present in much lower amounts in brain and heart. Transfection of the mRPTP mu cDNA into COS cells results in the synthesis of a protein with an apparent Mr of 195,000, as detected in immunoblots using an antipeptide antibody. The human RPTP mu gene is localized on chromosome 18pter-q11, a region with frequent abnormalities implicated in human cancer.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Chromosomes, Human, Pair 18
- Cloning, Molecular
- DNA/genetics
- Gene Expression
- Humans
- Membrane Glycoproteins/genetics
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Molecular Sequence Data
- Oligonucleotides/chemistry
- Polymerase Chain Reaction
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/immunology
- RNA, Messenger/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Receptor-Like Protein Tyrosine Phosphatases, Class 8
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Restriction Mapping
- Sequence Alignment
Collapse
Affiliation(s)
- M F Gebbink
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | | | |
Collapse
|
28
|
CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol Cell Biol 1991. [PMID: 1652055 DOI: 10.1128/mcb.11.9.4415] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD45 is a high-molecular-weight transmembrane protein tyrosine phosphatase expressed only by nucleated cells of hematopoietic origin. To examine function, mouse CD8+ cytolytic T-cell clones were derived that had a specific defect in the expression of CD45. Northern (RNA) blot analysis indicates that the CD45 deficiency is due to either a transcriptional defect or mRNA instability. The CD45-deficient cells were greatly diminished in their ability to respond to antigen. All functional parameters of T-cell receptor signalling analyzed (cytolysis of targets, proliferation, and cytokine production) were markedly diminished. A CD45+ revertant was isolated, and the ability to respond to antigen was restored. These results support a central and immediate role for this transmembrane protein tyrosine phosphatase in T-cell receptor signalling.
Collapse
|
29
|
Weaver CT, Pingel JT, Nelson JO, Thomas ML. CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol Cell Biol 1991; 11:4415-22. [PMID: 1652055 PMCID: PMC361304 DOI: 10.1128/mcb.11.9.4415-4422.1991] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD45 is a high-molecular-weight transmembrane protein tyrosine phosphatase expressed only by nucleated cells of hematopoietic origin. To examine function, mouse CD8+ cytolytic T-cell clones were derived that had a specific defect in the expression of CD45. Northern (RNA) blot analysis indicates that the CD45 deficiency is due to either a transcriptional defect or mRNA instability. The CD45-deficient cells were greatly diminished in their ability to respond to antigen. All functional parameters of T-cell receptor signalling analyzed (cytolysis of targets, proliferation, and cytokine production) were markedly diminished. A CD45+ revertant was isolated, and the ability to respond to antigen was restored. These results support a central and immediate role for this transmembrane protein tyrosine phosphatase in T-cell receptor signalling.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte
- Blotting, Northern
- CD8 Antigens
- Cell Division
- Cell Line
- Clone Cells
- Female
- Flow Cytometry
- Histocompatibility Antigens/biosynthesis
- Histocompatibility Antigens/metabolism
- Leukocyte Common Antigens
- Lymphokines/metabolism
- Mice
- Mice, Inbred CBA
- Mice, Inbred DBA
- Phosphoprotein Phosphatases/metabolism
- Protein Tyrosine Phosphatases
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- C T Weaver
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 6311
| | | | | | | |
Collapse
|
30
|
Lombroso PJ, Murdoch G, Lerner M. Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A 1991; 88:7242-6. [PMID: 1714595 PMCID: PMC52270 DOI: 10.1073/pnas.88.16.7242] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cDNA clone encoding a neural-specific putative protein-tyrosine-phosphatase (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48) has been isolated from a rat striatal cDNA library. The deduced amino acid sequence predicts a protein of approximately 369 amino acids with a strong homology to other members of the family of protein-tyrosine-phosphatases. In vitro translation produces a protein with an apparent molecular mass of 46 kDa. A potential attachment mechanism to the cytoplasmic membrane is suggested by a myristoylation amino acid-consensus sequence at the N terminus of the protein. RNA analyses of various regions of rat brain reveal a 3-kilobase (kb) and a 4.4-kb mRNA. The 3-kb mRNA is highly enriched within the striatum relative to other brain areas and has been termed a "striatum enriched phosphatase" (STEP). In contrast, the 4.4-kb message is most abundant in the cerebral cortex and rare in the striatum. These two messages appear to be alternatively processed RNA transcripts of a single gene.
Collapse
Affiliation(s)
- P J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
31
|
Babcook J, Watts J, Aebersold R, Ziltener HJ. Automated nonisotopic assay for protein-tyrosine kinase and protein-tyrosine phosphatase activities. Anal Biochem 1991; 196:245-51. [PMID: 1723248 DOI: 10.1016/0003-2697(91)90461-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sensitive, automated, and nonisotopic assay for protein-tyrosine kinases and phosphatases has been developed. The assay uses commercially available antiphosphotyrosine monoclonal antibodies and the recently developed particle concentration immunofluorescence immunoassay technology. The assay is specific for phosphotyrosine residues, can be performed faster, and is at least 100-fold more sensitive than the current standard filter type radioassay. Myelin basic protein and a synthetic peptide corresponding to the autophosphorylation site of p56lck performed equally well in the detection of p56lck kinase activity. Myelin basic protein phosphorylated on tyrosine residues by p56lck was successfully used as substrate in the detection of phosphatase activity and vanadate or molybdate were shown to inhibit the phosphatase activity. The assay is particularly useful for the rapid detection of enzyme activities in column fractions from biochemical procedures steps and also for screening of large numbers of potential inhibitors or activators of protein-tyrosine kinases and phosphatases.
Collapse
Affiliation(s)
- J Babcook
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
32
|
Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 1991; 253:401-6. [PMID: 1650499 DOI: 10.1126/science.1650499] [Citation(s) in RCA: 799] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein tyrosine phosphatases (PTPs) represent a diverse family of enzymes that exist as integral membrane and nonreceptor forms. The PTPs, with specific activities in vitro 10 to 1000 times greater than those of the protein tyrosine kinases would be expected to effectively control the amount of phosphotyrosine in the cell. They dephosphorylate tyrosyl residues in vivo and take part in signal transduction and cell cycle regulation. Most of the transmembrane forms, such as the leukocyte common antigen (CD45), contain two conserved intracellular catalytic domains; but their external segments are highly variable. The structural features of the transmembrane forms suggest that these receptor-linked PTPs are capable of transducing external signals; however, the ligands remain unidentified. A hypothesis is proposed explaining how phosphatases might act synergistically with the kinases to elicit a full physiological response, without regard to the state of phosphorylation of the target proteins.
Collapse
Affiliation(s)
- E H Fischer
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
33
|
De Vries L, Li RY, Ragab A, Ragab-Thomas JM, Chap H. Expression of a truncated protein-tyrosine phosphatase mRNA in human lung. FEBS Lett 1991; 282:285-8. [PMID: 1645282 DOI: 10.1016/0014-5793(91)80496-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-tyrosine phosphatases (PTPases) are becoming an important family of enzymes that might regulate key events in cell growth and transformation. While isolating a new member of this family via amplification of human lung cDNA by the polymerase chain reaction, we found a clone identical to but truncated at the 3'-end of the coding region of human PTPase beta (HPTP beta) mRNA. This difference in sequence is situated in the most conserved part of the catalytic domain of the enzyme. The expression level of the truncated form of HPTP beta mRNA in human lung was lower than its normal form.
Collapse
Affiliation(s)
- L De Vries
- INSERM Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | | | |
Collapse
|