1
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|
2
|
Stephan Oroszlan and the Proteolytic Processing of Retroviral Proteins: Following A Pro. Viruses 2021; 13:v13112218. [PMID: 34835024 PMCID: PMC8621278 DOI: 10.3390/v13112218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Abstract
Steve Oroszlan determined the sequences at the ends of virion proteins for a number of different retroviruses. This work led to the insight that the amino-terminal amino acid of the mature viral CA protein is always proline. In this remembrance, we review Steve’s work that led to this insight and show how that insight was a necessary precursor to the work we have done in the subsequent years exploring the cleavage rate determinants of viral protease processing sites and the multiple roles the amino-terminal proline of CA plays after protease cleavage liberates it from its position in a protease processing site.
Collapse
|
3
|
Specificity of the HIV-1 Protease on Substrates Representing the Cleavage Site in the Proximal Zinc-Finger of HIV-1 Nucleocapsid Protein. Viruses 2021; 13:v13061092. [PMID: 34201134 PMCID: PMC8227227 DOI: 10.3390/v13061092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.
Collapse
|
4
|
Weber IT, Wang YF, Harrison RW. HIV Protease: Historical Perspective and Current Research. Viruses 2021; 13:v13050839. [PMID: 34066370 PMCID: PMC8148205 DOI: 10.3390/v13050839] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
The retroviral protease of human immunodeficiency virus (HIV) is an excellent target for antiviral inhibitors for treating HIV/AIDS. Despite the efficacy of therapy, current efforts to control the disease are undermined by the growing threat posed by drug resistance. This review covers the historical background of studies on the structure and function of HIV protease, the subsequent development of antiviral inhibitors, and recent studies on drug-resistant protease variants. We highlight the important contributions of Dr. Stephen Oroszlan to fundamental knowledge about the function of the HIV protease and other retroviral proteases. These studies, along with those of his colleagues, laid the foundations for the design of clinical inhibitors of HIV protease. The drug-resistant protease variants also provide an excellent model for investigating the molecular mechanisms and evolution of resistance.
Collapse
Affiliation(s)
- Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
5
|
Lockbaum GJ, Reyes AC, Lee JM, Tilvawala R, Nalivaika EA, Ali A, Kurt Yilmaz N, Thompson PR, Schiffer CA. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Viruses 2021; 13:174. [PMID: 33503819 PMCID: PMC7911568 DOI: 10.3390/v13020174] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/08/2023] Open
Abstract
Viral proteases are critical enzymes for the maturation of many human pathogenic viruses and thus are key targets for direct acting antivirals (DAAs). The current viral pandemic caused by SARS-CoV-2 is in dire need of DAAs. The Main protease (Mpro) is the focus of extensive structure-based drug design efforts which are mostly covalent inhibitors targeting the catalytic cysteine. ML188 is a non-covalent inhibitor designed to target SARS-CoV-1 Mpro, and provides an initial scaffold for the creation of effective pan-coronavirus inhibitors. In the current study, we found that ML188 inhibits SARS-CoV-2 Mpro at 2.5 µM, which is more potent than against SAR-CoV-1 Mpro. We determined the crystal structure of ML188 in complex with SARS-CoV-2 Mpro to 2.39 Å resolution. Sharing 96% sequence identity, structural comparison of the two complexes only shows subtle differences. Non-covalent protease inhibitors complement the design of covalent inhibitors against SARS-CoV-2 main protease and are critical initial steps in the design of DAAs to treat CoVID 19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; (G.J.L.); (A.C.R.); (J.M.L.); (R.T.); (E.A.N.); (A.A.); (N.K.Y.); (P.R.T.)
| |
Collapse
|
6
|
Biochemical Characterization of Human Retroviral-Like Aspartic Protease 1 (ASPRV1). Biomolecules 2020; 10:biom10071004. [PMID: 32640672 PMCID: PMC7408472 DOI: 10.3390/biom10071004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a mammalian retroviral-like enzyme that catalyzes a critical proteolytic step during epidermal differentiation; therefore, it is also referred to as skin-specific aspartic protease (SASPase). Neutrophil granulocytes were also found recently to express ASPRV1 that is involved in the progression of acute chronic inflammation of the central nervous system, especially in autoimmune encephalomyelitis. Thus, investigation of ASPRV1 is important due to its therapeutic or diagnostic potential. We investigated the structural characteristics of ASPRV1 by homology modeling; analysis of the proposed structure was used for interpretation of in vitro specificity studies. For in-vitro characterization, activities of SASP28 and SASP14 enzyme forms were measured using synthetic oligopeptide substrates. We demonstrated that self-processing of SASP28 precursor causes autoactivation of the protease. The highest activity was measured for GST-SASP14 at neutral pH and at high ionic strength, and we proved that pepstatin A and acetyl-pepstatin can also inhibit the protease. In agreement with the structural characteristics, the relatively lower urea dissociation constant implied lower dimer stability of SASP14 compared to that of HIV-1 protease. The obtained structural and biochemical characteristics support better understanding of ASPRV1 function in the skin and central nervous system.
Collapse
|
7
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
8
|
Frogier PRT, Tran TT, Viani S, Condom R, Guedj R. Fluorinated Analogues of the p17/p24 Sequence Incorporating 3-fluoro and 3,3-difluoro Phenylalanines as Potential Inhibitors of HIV Protease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis and activity of a series of fluorinated peptide analogues of the p17/p24 sequence incorporating 3-fluoro and 3,3-difluoro phenylananines at the P1 position of the scissile bond are described. It was hoped that these might act as potent inhibitors of HIV protease. In fact, none of the compounds studied displayed any anti-HIV activity in vitro. This may be attributed to poor cell penetration of the compounds and metabolic cleavage of their peptide bonds.
Collapse
Affiliation(s)
- P. R. T. Frogier
- Laboratoire de Chimie Bio-Organique, Faculté des Sciences, UNSA, BP 71, 06108 Nice, Cedex-2, France
| | - T. T. Tran
- Laboratoire de Chimie Bio-Organique, Faculté des Sciences, UNSA, BP 71, 06108 Nice, Cedex-2, France
| | - S. Viani
- Laboratoire de Chimie Bio-Organique, Faculté des Sciences, UNSA, BP 71, 06108 Nice, Cedex-2, France
| | - R. Condom
- Laboratoire de Chimie Bio-Organique, Faculté des Sciences, UNSA, BP 71, 06108 Nice, Cedex-2, France
| | - R. Guedj
- Laboratoire de Chimie Bio-Organique, Faculté des Sciences, UNSA, BP 71, 06108 Nice, Cedex-2, France
| |
Collapse
|
9
|
Mahdi M, Matúz K, Tóth F, Tőzsér J. A modular system to evaluate the efficacy of protease inhibitors against HIV-2. PLoS One 2014; 9:e113221. [PMID: 25419967 PMCID: PMC4242608 DOI: 10.1371/journal.pone.0113221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/21/2014] [Indexed: 01/27/2023] Open
Abstract
The human immunodeficiency virus (HIV) protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (MM); (JT)
| | - Krisztina Matúz
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Tóth
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (MM); (JT)
| |
Collapse
|
10
|
Tie Y, Wang YF, Boross PI, Chiu TY, Ghosh AK, Tozser J, Louis JM, Harrison RW, Weber IT. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Protein Sci 2012; 21:339-50. [PMID: 22238126 DOI: 10.1002/pro.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 11/12/2022]
Abstract
Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR₂) than on HIV-1 protease (PR₁). We solved the crystal structure of PR₂ with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR₁ mutant (PR(1M) ) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR₂. PR(1M) more closely resembled PR₂ than PR₁ in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR(1M) with APV, DRV, and SQV were compared with available PR₁ and PR₂ complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR(1M) and PR₁, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR(1M). Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR₁ (M) and PR₂ relative to the strong hydrogen bonds observed in PR₁, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR(1M) partially replicates the specificity of PR₂ and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li M, Gustchina A, Matúz K, Tözsér J, Namwong S, Goldfarb NE, Dunn BM, Wlodawer A. Structural and biochemical characterization of the inhibitor complexes of xenotropic murine leukemia virus-related virus protease. FEBS J 2011; 278:4413-24. [PMID: 21951660 PMCID: PMC3500906 DOI: 10.1111/j.1742-4658.2011.08364.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions between the protease (PR) encoded by the xenotropic murine leukemia virus-related virus and a number of potential inhibitors have been investigated by biochemical and structural techniques. It was observed that several inhibitors used clinically against HIV PR exhibit nanomolar or even subnanomolar values of K(i) , depending on the exact experimental conditions. Both TL-3, a universal inhibitor of retroviral PRs, and some inhibitors originally shown to inhibit plasmepsins were also quite potent, whereas inhibition by pepstatin A was considerably weaker. Crystal structures of the complexes of xenotropic murine leukemia virus-related virus PR with TL-3, amprenavir and pepstatin A were solved at high resolution and compared with the structures of complexes of these inhibitors with other retropepsins. Whereas TL-3 and amprenavir bound in a predictable manner, spanning the substrate-binding site of the enzyme, two molecules of pepstatin A bound simultaneously in an unprecedented manner, leaving the catalytic water molecule in place.
Collapse
Affiliation(s)
- Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Basic Research Program, SAIC-Frederick, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jozsef Tözsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sirilak Namwong
- Department of Biotechnology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
| | - Nathan E. Goldfarb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
12
|
A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network. J Mol Model 2011; 17:2693-705. [PMID: 21279524 DOI: 10.1007/s00894-011-0971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 12/14/2022]
Abstract
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.
Collapse
|
13
|
Ode H, Yokoyama M, Kanda T, Sato H. Identification of folding preferences of cleavage junctions of HIV-1 precursor proteins for regulation of cleavability. J Mol Model 2010; 17:391-9. [PMID: 20480379 DOI: 10.1007/s00894-010-0739-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/30/2010] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) cleaves two viral precursor proteins, Gag and Gag-Pol, at multiple sites. Although the processing proceeds in the rank order to assure effective viral replication, the molecular mechanisms by which the order is regulated are not fully understood. In this study, we used bioinformatics approaches to examine whether the folding preferences of the cleavage junctions influence their cleavabilities by HIV-1 PR. The folding of the eight-amino-acid peptides corresponding to the seven cleavage junctions of the HIV-1(HXB2) Gag and Gag-Pol precursors were simulated in the PR-free and PR-bound states with molecular dynamics and homology modeling methods, and the relationships between the folding parameters and the reported kinetic parameters of the HIV-1(HXB2) peptides were analyzed. We found that a folding preference for forming a dihedral angle of Cβ (P1)-Cα (P1)- Cα (P1')-Cβ (P1') in the range of 150 to 180 degrees in the PR-free state was positively correlated with the 1/K(m) (R = 0.95, P = 0.0008) and that the dihedral angle of the O (P2)-C (P2)- C (P1)- O (P1) of the main chains in the PR-bound state was negatively correlated with k(cat) (R = 0.94, P = 0.001). We further found that these two folding properties influenced the overall cleavability of the precursor protein when the sizes of the side chains at the P1 site were similar. These data suggest that the dihedral angles at the specific positions around the cleavage junctions before and after binding to PR are both critical for regulating the cleavability of precursor proteins by HIV-1 PR.
Collapse
Affiliation(s)
- Hirotaka Ode
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Comparative studies on retroviral proteases: substrate specificity. Viruses 2010; 2:147-165. [PMID: 21994605 PMCID: PMC3185560 DOI: 10.3390/v2010147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Exogenous retroviruses are subclassified into seven genera and include viruses that cause diseases in humans. The viral Gag and Gag-Pro-Pol polyproteins are processed by the retroviral protease in the last stage of replication and inhibitors of the HIV-1 protease are widely used in AIDS therapy. Resistant mutations occur in response to the drug therapy introducing residues that are frequently found in the equivalent position of other retroviral proteases. Therefore, besides helping to understand the general and specific features of these enzymes, comparative studies of retroviral proteases may help to understand the mutational capacity of the HIV-1 protease.
Collapse
|
15
|
Elder JH, Lin YC, Fink E, Grant CK. Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 2010; 8:73-80. [PMID: 20210782 PMCID: PMC2853889 DOI: 10.2174/157016210790416389] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
FIV is a significant pathogen in the cat and is, in addition, the smallest available natural model for the study of lentivirus infections. Although divergent at the amino acid level, the cat lentivirus has an abundance of structural and pathophysiological commonalities with HIV and thus serves well as a model for development of intervention strategies relevant to infection in both cats and man. The following review highlights both the strengths and shortcomings of the FIV/cat model, particular as regards development of antiviral drugs.
Collapse
Affiliation(s)
- John H Elder
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
16
|
Billich A, Aziz A, Lehr P, Charpiot B, Gstach H, Scholz D. Kinetic and Binding Studies on [125I]SDZ-283471, A Radiolabeled Inhibitor of Hiv-1 Proteinase. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/14756369309040764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Amino acid preferences of retroviral proteases for amino-terminal positions in a type 1 cleavage site. J Virol 2008; 82:10111-7. [PMID: 18701588 DOI: 10.1128/jvi.00418-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specificities of the proteases of 11 retroviruses were studied using a series of oligopeptides with amino acid substitutions in the P1, P3, and P4 positions of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr downward arrowPro-Ile-Val-Gln) in human immunodeficiency virus type 1 (HIV-1). Previously, the substrate specificity of the P2 site was studied for the same representative set of retroviral proteases, which included at least one member from each of the seven genera of the family Retroviridae (P. Bagossi, T. Sperka, A. Fehér, J. Kádas, G. Zahuczky, G. Miklóssy, P. Boross, and J. Tözsér, J. Virol. 79:4213-4218, 2005). Our enzyme set comprised the proteases of HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus (AMV), Mason-Pfizer monkey virus, mouse mammary tumor virus (MMTV), Moloney murine leukemia virus, human T-lymphotropic virus type 1, bovine leukemia virus, walleye dermal sarcoma virus, and human foamy virus. Molecular models were used to interpret the similarities and differences in specificity between these retroviral proteases. The results showed that the retroviral proteases had similar preferences (Phe and Tyr) for the P1 position in this sequence context, but differences were found for the P3 and P4 positions. Importantly, the sizes of the P3 and P4 residues appear to be a major contributor for specificity. The substrate specificities correlated well with the phylogenetic tree of the retroviruses. Furthermore, while the specificities of some enzymes belonging to different genera appeared to be very similar (e.g., those of AMV and MMTV), the specificities of the primate lentiviral proteases substantially differed from that observed for a nonprimate lentiviral protease.
Collapse
|
18
|
Schlick P, Skern T. Investigating human immunodeficiency virus-1 proteinase specificity at positions P4 to P2 using a bacterial screening system. Anal Biochem 2008; 377:162-9. [DOI: 10.1016/j.ab.2008.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/28/2008] [Accepted: 03/10/2008] [Indexed: 11/27/2022]
|
19
|
Elder JH, Sundstrom M, de Rozieres S, de Parseval A, Grant CK, Lin YC. Molecular mechanisms of FIV infection. Vet Immunol Immunopathol 2008; 123:3-13. [PMID: 18289701 DOI: 10.1016/j.vetimm.2008.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feline immunodeficiency virus (FIV) is an important viral pathogen worldwide in the domestic cat, which is the smallest animal model for the study of natural lentivirus infection. Thus, understanding the molecular mechanisms by which FIV carries out its life cycle and causes an acquired immune deficiency syndrome (AIDS) in the cat is of high priority. FIV has an overall genome size similar to HIV, the causative agent of AIDS in man, and shares with the human virus genomic features that may serve as common targets for development of broad-based intervention strategies. Specific targets include enzymes encoded by the two lentiviruses, such as protease (PR), reverse transcriptase (RT), RNAse H, and integrase (IN). In addition, both FIV and HIV encode Vif and Rev elements essential for virus replication and also share the use of the chemokine receptor CXCR4 for entry into the host cell. The following review is a brief overview of the current state of characterization of the feline/FIV model and development of its use for generation and testing of anti-viral agents.
Collapse
Affiliation(s)
- John H Elder
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | | | | | | | | | |
Collapse
|
20
|
HIV-1 protease inhibitors: effects on HIV-2 replication and resistance. Trends Pharmacol Sci 2007; 29:42-9. [PMID: 18054799 DOI: 10.1016/j.tips.2007.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/24/2007] [Accepted: 10/29/2007] [Indexed: 11/26/2022]
Abstract
Novel antiretroviral drugs include protease (PR) inhibitors (e.g. atazanavir, tipranavir and darunavir) that block HIV-1 maturation and show remarkable antiviral potency on drug-resistant isolates. However, the strains used as prototypes in the design of the novel drugs belong to a specific clade (i.e. HIV-1 group M subtype B), which is the most prevalent in developed countries. At the same time, there is an increasing concern about the expansion of other HIV-1 clades as well as other related retroviruses, such as HIV-2. The HIV-2 PR is weakly inhibited by some PR inhibitors (e.g. amprenavir), and little is known of the mutational pathways leading to drug resistance in this virus. The design of specific PR inhibitors targeting HIV-2, or potent drugs showing broad specificity on HIV-1 and HIV-2 clades, remains a major challenge for the future.
Collapse
|
21
|
Kontijevskis A, Wikberg JES, Komorowski J. Computational proteomics analysis of HIV-1 protease interactome. Proteins 2007; 68:305-12. [PMID: 17427231 DOI: 10.1002/prot.21415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.
Collapse
|
22
|
Kontijevskis A, Prusis P, Petrovska R, Yahorava S, Mutulis F, Mutule I, Komorowski J, Wikberg JES. A look inside HIV resistance through retroviral protease interaction maps. PLoS Comput Biol 2007; 3:e48. [PMID: 17352531 PMCID: PMC1817660 DOI: 10.1371/journal.pcbi.0030048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/24/2007] [Indexed: 11/19/2022] Open
Abstract
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.
Collapse
Affiliation(s)
- Aleksejs Kontijevskis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Peteris Prusis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ramona Petrovska
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sviatlana Yahorava
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Felikss Mutulis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ilze Mutule
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Jarl E. S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
You L, Garwicz D, Rögnvaldsson T. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. J Virol 2005; 79:12477-86. [PMID: 16160175 PMCID: PMC1211560 DOI: 10.1128/jvi.79.19.12477-12486.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 07/01/2005] [Indexed: 11/20/2022] Open
Abstract
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.
Collapse
Affiliation(s)
- Liwen You
- School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden
| | | | | |
Collapse
|
24
|
Bagossi P, Sperka T, Fehér A, Kádas J, Zahuczky G, Miklóssy G, Boross P, Tözsér J. Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites. J Virol 2005; 79:4213-8. [PMID: 15767422 PMCID: PMC1061542 DOI: 10.1128/jvi.79.7.4213-4218.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/31/2004] [Indexed: 11/20/2022] Open
Abstract
The specificities of the proteases of 11 retroviruses representing each of the seven genera of the family Retroviridae were studied using a series of oligopeptides with amino acid substitutions in the P2 position of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr Pro-Ile-Val-Gln; the arrow indicates the site of cleavage) in human immunodeficiency virus type 1 (HIV-1). This position was previously found to be one of the most critical in determining the substrate specificity differences of retroviral proteases. Specificities at this position were compared for HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus, Mason-Pfizer monkey virus, mouse mammary tumor virus, Moloney murine leukemia virus, human T-cell leukemia virus type 1, bovine leukemia virus, human foamy virus, and walleye dermal sarcoma virus proteases. Three types of P2 preferences were observed: a subgroup of proteases preferred small hydrophobic side chains (Ala and Cys), and another subgroup preferred large hydrophobic residues (Ile and Leu), while the protease of HIV-1 preferred an Asn residue. The specificity distinctions among the proteases correlated well with the phylogenetic tree of retroviruses prepared solely based on the protease sequences. Molecular models for all of the proteases studied were built, and they were used to interpret the results. While size complementarities appear to be the main specificity-determining features of the S2 subsite of retroviral proteases, electrostatic contributions may play a role only in the case of HIV proteases. In most cases the P2 residues of naturally occurring type 1 cleavage site sequences of the studied proteases agreed well with the observed P2 preferences.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shah K, Tung CH, Chang CH, Slootweg E, O'Loughlin T, Breakefield XO, Weissleder R. In vivo imaging of HIV protease activity in amplicon vector-transduced gliomas. Cancer Res 2004; 64:273-8. [PMID: 14729634 DOI: 10.1158/0008-5472.can-03-1123] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo imaging of endogenously expressed mammalian proteases has been useful for the detection of cancer and preneoplastic lesions, for staging of inflammatory and autoimmune diseases, and for testing the efficacy of novel protease inhibitors. Here we report on the synthesis of a novel imaging probe that is specific for HIV-1 protease (PR). The probe was designed to be biocompatible, i.v. injectable, and detectable by fluorescence imaging. Human Gli36 glioblastoma cells infected with an human simplex virus amplicon vector expressing HIV-1PR showed specific fluorescence activation, an effect that could be inhibited by the HIV-1PR inhibitor, indinavir. The transfer of the HIV-1PR marker gene could be detected in vivo after intratumoral delivery of the human simplex virus-amplicon vector. These results are the first proof of principle that viral proteases can directly be imaged in vivo. These findings may be directly applicable in using viral protease expression as a transgene marker in tumor therapy and may have implications in testing the efficacy of HIV-1PR inhibitors in vivo.
Collapse
Affiliation(s)
- Khalid Shah
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R. Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 2002; 76:10226-33. [PMID: 12239298 PMCID: PMC136535 DOI: 10.1128/jvi.76.20.10226-10233.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag precursor is highly regulated, with differential rates of cleavage at the five major processing sites to give characteristic processing intermediates. We examined the role of the P1 amino acid in determining the rate of cleavage at each of these five sites by using libraries of mutants generated by site-directed mutagenesis. Between 12 and 17 substitution mutants were tested at each P1 position in Gag, using recombinant HIV-1 protease (PR) in an in vitro processing reaction of radiolabeled Gag substrate. There were three sites in Gag (MA/CA, CA/p2, NC/p1) where one or more substitutions mediated enhanced rates of cleavage, with an enhancement greater than 60-fold in the case of NC/p1. For the other two sites (p2/NC, p1/p6), the wild-type amino acid conferred optimal cleavage. The order of the relative rates of cleavage with the P1 amino acids Tyr, Met, and Leu suggests that processing sites can be placed into two groups and that the two groups are defined by the size of the P1' amino acid. These results point to a trans effect between the P1 and P1' amino acids that is likely to be a major determinant of the rate of cleavage at the individual sites and therefore also a determinant of the ordered cleavage of the Gag precursor.
Collapse
Affiliation(s)
- Steve C Pettit
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
27
|
Fehér A, Weber IT, Bagossi P, Boross P, Mahalingam B, Louis JM, Copeland TD, Torshin IY, Harrison RW, Tözsér J. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4114-20. [PMID: 12180988 DOI: 10.1046/j.1432-1033.2002.03105.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HIV-1 proteinase (PR) has proved to be a good target for antiretroviral therapy of AIDS, and various PR inhibitors are now in clinical use. However, there is a rapid selection of viral variants bearing mutations in the proteinase that are resistant to clinical inhibitors. Drug resistance also involves mutations of the nucleocapsid/p1 and p1/p6 cleavage sites of Gag, both in vitro and in vivo. Cleavages at these sites have been shown to be rate limiting steps for polyprotein processing and viral maturation. Furthermore, these sites show significant sequence polymorphism, which also may have an impact on virion infectivity. We have studied the hydrolysis of oligopeptides representing these cleavage sites with representative mutations found as natural variations or that arise as resistant mutations. Wild-type and five drug resistant PRs with mutations within or outside the substrate binding site were tested. While the natural variations showed either increased or decreased susceptibility of peptides toward the proteinases, the resistant mutations always had a beneficial effect on catalytic efficiency. Comparison of the specificity changes obtained for the various substrates suggested that the maximization of the van der Waals contacts between substrate and PR is the major determinant of specificity: the same effect is crucial for inhibitor potency. The natural nucleocapsid/p1 and p1/p6 sites do not appear to be optimized for rapid hydrolysis. Hence, mutation of these rate limiting cleavage sites can partly compensate for the reduced catalytic activity of drug resistant mutant HIV-1 proteinases.
Collapse
Affiliation(s)
- Anita Fehér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dauber DS, Ziermann R, Parkin N, Maly DJ, Mahrus S, Harris JL, Ellman JA, Petropoulos C, Craik CS. Altered substrate specificity of drug-resistant human immunodeficiency virus type 1 protease. J Virol 2002; 76:1359-68. [PMID: 11773410 PMCID: PMC135855 DOI: 10.1128/jvi.76.3.1359-1368.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 10/29/2001] [Indexed: 11/20/2022] Open
Abstract
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.
Collapse
Affiliation(s)
- Deborah S Dauber
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Beck ZQ, Lin YC, Elder JH. Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases. J Virol 2001; 75:9458-69. [PMID: 11533208 PMCID: PMC114513 DOI: 10.1128/jvi.75.19.9458-9469.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.
Collapse
Affiliation(s)
- Z Q Beck
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Mahalingam B, Louis JM, Hung J, Harrison RW, Weber IT. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins 2001; 43:455-64. [PMID: 11340661 DOI: 10.1002/prot.1057] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emergence of drug-resistant mutants of HIV-1 protease is an ongoing problem in the fight against AIDS. The mechanisms governing resistance are both complex and varied. We have determined crystal structures of HIV-1 protease mutants, D30N, K45I, N88D, and L90M complexed with peptide inhibitor analogues of CA-p2 and p2-NC cleavage sites in the Gag-pol precursor in order to study the structural mechanisms underlying resistance. The structures were determined at 1.55-1.9-A resolution and compared with the wild-type structure. The conformational disorder seen for most of the hydrophobic side-chains around the inhibitor binding site indicates flexibility of binding. Eight water molecules are conserved in all 9 structures; their location suggests that they are important for catalysis as well as structural stability. Structural differences among the mutants were analyzed in relation to the observed changes in protease activity and stability. Mutant L90M shows steric contacts with the catalytic Asp25 that could destabilize the catalytic loop at the dimer interface, leading to its observed decreased dimer stability and activity. Mutant K45I reduces the mobility of the flap and the inhibitor and contributes to an enhancement in structural stability and activity. The side-chain variations at residue 30 relative to wild-type are the largest in D30N and the changes are consistent with the altered activity observed with peptide substrates. Polar interactions in D30N are maintained, in agreement with the observed urea sensitivity. The side-chains of D30N and N88D are linked through a water molecule suggesting correlated changes at the two sites, as seen with clinical inhibitors. Structural changes seen in N88D are small; however, water molecules that mediate interactions between Asn88 and Thr74/Thr31/Asp30 in other complexes are missing in N88D.
Collapse
Affiliation(s)
- B Mahalingam
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
31
|
Okimoto N, Kitayama K, Hata M, Hoshino T, Tsuda M. Molecular dynamics simulations of a complex of HIV-1 protease and substrate: substrate-dependent efficiency of catalytic activity. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(00)00834-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Louis JM, Weber IT, Tözsér J, Clore GM, Gronenborn AM. HIV-1 protease: maturation, enzyme specificity, and drug resistance. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:111-46. [PMID: 11013762 DOI: 10.1016/s1054-3589(00)49025-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- J M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes, Bethesda, Maryland 20892-0580, USA
| | | | | | | | | |
Collapse
|
33
|
Tözsér J. Specificity of Retroviral Proteinases Based on Substrates Containing Tyrosine and Proline at the Site of Cleavage. Pathol Oncol Res 2001; 3:142-146. [PMID: 11173643 DOI: 10.1007/bf02907811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The retroviral proteinase (PR) plays crucial roles in the viral life cycle, therefore it is a target for chemotherapy. However, resistance rapidly develops due to frequent mutations. Studies to determine the common features of the specificity of different retroviral PRs may help to design broad spectrum inhibitors and reduce the possibility of viable mutants. We have studied the specificity of various retroviral proteinases including those the PR of HIV-1, HIV-2, equine infectious anemia virus and avian myeloblastosis virus using oligopeptide substrates. A series of oligopeptides containing substitutions in a sequence Val-Ser-Gln-Asn-Tyr*Pro-Ile-Val-Gln (asterisk indicates the site of cleavage) representing a naturally occurring cleavage site in HIV-1 was used to characterize the seven substrate binding subsites of the enzymes. The unsubstituted substrate is a typical class 1 cleavage site substrate containing an aromatic amino acid and a proline residue at the site of cleavage. The largest differences in kinetics of substrate hydrolysis were obtained with peptides containing substitutions of the Ser and Asn residues. Detailed analysis of the results by molecular modeling and comparison with previously reported data revealed the common characteristics of the specificity of the PRs as well as its strong dependence on the sequence context of the substrate. However, molecular modeling in many cases provided explanation for the sequence context dependence. Also, comparison of the specificity of the enzymes suggests that the specificity of HIV-1 and -2 PRs is rather exceptional preferring hydrophilic residues at the most discriminative positions while other PRs prefer hydrophobic residues.
Collapse
Affiliation(s)
- József Tözsér
- University Medical School of Debrecen, Department of Biochemistry, Debrecen, Hungary
| |
Collapse
|
34
|
Tözsér J, Zahuczky G, Bagossi P, Louis JM, Copeland TD, Oroszlan S, Harrison RW, Weber IT. Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6287-95. [PMID: 11012683 DOI: 10.1046/j.1432-1327.2000.01714.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.
Collapse
Affiliation(s)
- J Tözsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Beck ZQ, Hervio L, Dawson PE, Elder JH, Madison EL. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development. Virology 2000; 274:391-401. [PMID: 10964781 DOI: 10.1006/viro.2000.0420] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recognition sequences for substrate cleavage by aspartic protease of HIV-1 are diverse and cleavage specificities are controlled by complex interactions between at least six amino acids around the cleavage site. We have identified 45 efficiently cleaved peptide substrates of HIV-1 protease (PR) using substrate phage display, an approach that can elucidate both context-dependent and context-independent preferences at individual subsites of a protease substrate. Many of the selected peptides were cleaved more efficiently and had lower K(m) values than physiologically relevant substrates of HIV-1 PR. Therefore, mutations occurring in the cleavage sites of the Gag and Gag-pol polyproteins of HIV-1 could significantly lower the K(m) values to better compete against drugs for protease binding while maintaining cleavage rates necessary for viral replication. The most efficiently cleaved peptide substrate derived from these phage, Ac-GSGIF*LETSL-NH(2), was cleaved 60 times more efficiently and had a K(m) approximately 260 times lower than a nine-amino-acid peptide based on the natural reverse transcriptase/integrase cleavage site when assayed at pH 5.6, 0.2 M NaCl. The peptide substrates selected served as frameworks for synthesis of tight binding reduced amide inhibitors of HIV-1 PR. The results show that the most efficiently cleaved substrates serve as the best templates for synthesis of the tightest binding inhibitors. Thus, defining changes in substrate preferences for drug-resistant proteases may aid in the development of more efficacious inhibitors.
Collapse
Affiliation(s)
- Z Q Beck
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Zahuczky G, Boross P, Bagossi P, Emri G, Copeland TD, Oroszlan S, Louis JM, Tözsér J. Cloning of the bovine leukemia virus proteinase in Escherichia coli and comparison of its specificity to that of human T-cell leukemia virus proteinase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:1-8. [PMID: 10719169 DOI: 10.1016/s0167-4838(99)00240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The proteinase of bovine leukemia virus (BLV) was cloned into pMal-c2 vector with N-terminal or with N- as well as C-terminal flanking sequences, and expressed in fusion with maltose binding protein. The proteinase self-processed itself from the fusion protein during expression and formed inclusion bodies. The enzyme was purified from inclusion bodies by cation-exchange chromatography followed by gel filtration. Specificity of the enzyme was compared to that of human T-cell leukemia proteinase type 1. Although the two viruses belong to the same subfamily of retroviruses, the differences in their proteinase specificity, based on kinetics with oligopeptide substrates representing naturally occurring cleavage sites as well as on inhibition pattern, appear to be pronounced.
Collapse
Affiliation(s)
- G Zahuczky
- Department of Biochemistry and Molecular Biology, University Medical School of Debrecen, P.O. Box 6, H-4012, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wlodawer A, Gustchina A. Structural and biochemical studies of retroviral proteases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:16-34. [PMID: 10708846 DOI: 10.1016/s0167-4838(99)00267-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Retroviral proteases form a unique subclass of the family of aspartic proteases. These homodimeric enzymes from a number of viral sources have by now been extensively characterized, both structurally and biochemically. The importance of such knowledge to the development of new drugs against AIDS has been, to a large extent, the driving force behind this progress. High-resolution structures are now available for enzymes from human immunodeficiency virus types 1 and 2, simian immunodeficiency virus, feline immunodeficiency virus, Rous sarcoma virus, and equine infectious anemia virus. In this review, structural and biochemical data for retroviral proteases are compared in order to analyze the similarities and differences between the enzymes from different sources and to enhance our understanding of their properties.
Collapse
Affiliation(s)
- A Wlodawer
- Macromolecular Crystallography Laboratory, Program in Structural Biology, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | |
Collapse
|
38
|
Tözsér J, Bagossi P, Boross P, Louis JM, Majerova E, Oroszlan S, Copeland TD. Effect of serine and tyrosine phosphorylation on retroviral proteinase substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:423-9. [PMID: 10491200 DOI: 10.1046/j.1432-1327.1999.00756.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vimentin, a cellular substrate of HIV type 1 (HIV-1) proteinase, contains a protein kinase C (PKC) phosphorylation site at one of its cleavage sites. Peptides representing this site were synthesized in P2 Ser-phosphorylated and nonphosphorylated forms. While the nonphosphorylated peptide was a fairly good substrate of the enzyme, phosphorylation prevented hydrolysis. Phosphorylation of human recombinant vimentin by PKC prevented its processing within the head domain, where the phosphorylation occurred. Oligopeptides representing naturally occurring cleavage sites at the C-terminus of the Rous sarcoma virus integrase were assayed as substrates of the avian proteinase. Unlike the nonphosphorylated peptides, a Ser-phosphorylated peptide was not hydrolyzed by the enzyme at the Ser-Pro bond, suggesting the role of previously established phosphorylation in processing at this site. Ser-phosphorylated and Tyr-phosphorylated forms of model substrates were also tested as substrates of the HIV-1 and the avian retroviral proteinases. In contrast to the moderate effect of P4 Ser phosphorylation, phosphorylation of P1 Tyr prevented substrate hydrolysis by HIV-1 proteinase. Substrate phosphorylation had substantially smaller effects on the hydrolysis by the avian retroviral proteinase. As the active retroviral proteinase as well as various protein kinases are incorporated into mature virions, substrate phosphorylation resulting in attenuation or prevention of proteolytic processing may have important consequences in the regulation of the retroviral life cycle as well as in virus-host cell interactions.
Collapse
Affiliation(s)
- J Tözsér
- Department of Biochemistry and Molecular Biology, University Medical School of Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
A protocol for the rapid energetic analysis of protein-ligand complexes has been developed. This protocol involves the generation of protein-ligand complex ensembles followed by an analysis of the binding free energy components. We apply this methodology toward understanding the origin of binding specificity within the human immunodeficiency virus/feline immunodeficiency virus (HIV/FIV) protease system, a model system for drug resistance studies. A distinct difference in the internal strain of an inhibitor within each protein environment clearly favors the HIV protease complex, as observed experimentally. Our analysis also predicts that residues within the S2-S3 pockets of the FIV protease active site are responsible for this strain. Close examination of the active site residue contributions to interaction energy and desolvation energy identifies specific amino acids that may also play a role in determining the binding preferences of these two enzymes. Proteins 1999;36:318-331.
Collapse
Affiliation(s)
- B N Dominy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
40
|
Boden D, Markowitz M. Resistance to human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 1998; 42:2775-83. [PMID: 9797203 PMCID: PMC105943 DOI: 10.1128/aac.42.11.2775] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Boden
- Aaron Diamond AIDS Research Center, New York, New York 10016, USA
| | | |
Collapse
|
41
|
Pettit SC, Sheng N, Tritch R, Erickson-Viitanen S, Swanstrom R. The regulation of sequential processing of HIV-1 Gag by the viral protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:15-25. [PMID: 9561194 DOI: 10.1007/978-1-4615-5373-1_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S C Pettit
- Lineberger Comprehensive Cancer Center, DuPont Merck Pharmaceutical Co., Wilmington, Delaware 19880, USA
| | | | | | | | | |
Collapse
|
42
|
Weber IT, Cavanaugh DS, W. Harrison R. Models of HIV-1 protease with peptides representing its natural substrates. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0166-1280(96)04869-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Weber IT, Wu J, Adomat J, Harrison RW, Kimmel AR, Wondrak EM, Louis JM. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:523-30. [PMID: 9370363 DOI: 10.1111/j.1432-1033.1997.00523.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease hydrolysis of the Gag CA-p2 cleavage site is crucial for virion maturation and is optimal at acidic pH. To understand the processing of the CA-p2 site, we have determined the structure of HIV-1 protease complexed with an analog of the CA-p2 site, the reduced peptide inhibitor Arg-Val-Leu-r-Phe-Glu-Ala-Ahx-NH2 [r denotes the reduced peptide bond and Ahx 2-aminohexanoic acid (norleucine), respectively]. The crystal structure was refined to an R-factor of 0.17 at 0.21-nm resolution. The crystals have nearly the same lattice as related complexes in P2(1)2(1)2(1) which have twofold disordered inhibitor, but are in space group P2(1). and the asymmetric unit contains two dimers of HIV-1 protease related by 180 degrees rotation. An approximate non-crystallographic symmetry has replaced the exact crystal symmetry resulting in well-ordered inhibitor structure. Each protease dimer binds one ordered inhibitor molecule, but in opposite orientations. The interactions of the inhibitor with the two dimers are very similar for the central P2 Val to P2' Glu residues, but show more variation for the distal P3 Arg and P4' Ahx residues. Importantly, the carboxylate oxygens of Glu at P2' in the inhibitor are within hydrogen-bonding distance of a carboxylate oxygen of Asp30 of the protease suggesting that the two side chains share a proton. This interaction suggests that the enzyme-substrate complex is additionally stabilized at lower pH. The importance of this interaction is emphasized by the absence of polymorphisms of Asp30 in the protease and variants of P2' Glu in the critical CA-p2 cleavage site.
Collapse
Affiliation(s)
- I T Weber
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Tözsér J, Bagossi P, Weber IT, Louis JM, Copeland TD, Oroszlan S. Studies on the symmetry and sequence context dependence of the HIV-1 proteinase specificity. J Biol Chem 1997; 272:16807-14. [PMID: 9201986 DOI: 10.1074/jbc.272.27.16807] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two major types of cleavage sites with different sequence preferences have been proposed for the human immunodeficiency virus type 1 (HIV-1) proteinase. To understand the nature of these sequence preferences better, single and multiple amino acid substitutions were introduced into a type 1 cleavage site peptide, thus changing it to a naturally occurring type 2 cleavage site sequence. Our results indicated that the previous classification of the retroviral cleavage sites may not be generally valid and that the preference for a residue at a particular position in the substrate depends strongly on the neighboring residues, including both those at the same side and at the opposite side of the peptide backbone of the substrate. Based on these results, pseudosymmetric (palindromic) substrates were designed. The retroviral proteinases are symmetrical dimers of two identical subunits; however, the residues of naturally occurring cleavage sites do not show symmetrical arrangements, and no obvious symmetrical substrate preference has been observed for the specificity of HIV proteinase. To examine the role of the asymmetry created by the peptide bonds on the specificity of the respective primed and nonprimed halves of the binding site, amino acid substitutions were introduced into a palindromic sequence. In general, the results suggested that the asymmetry does not result in substantial differences in specificity of the S3 and S3' subsites, whereas its effect is more pronounced for the S2 and S2' subsites. Although it was possible to design several good palindromic substrates, asymmetrical arrangements may be preferred by the HIV proteinase.
Collapse
Affiliation(s)
- J Tözsér
- Department of Biochemistry, University Medical School of Debrecen, H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Schock HB, Garsky VM, Kuo LC. Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity. J Biol Chem 1996; 271:31957-63. [PMID: 8943242 DOI: 10.1074/jbc.271.50.31957] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Site-specific substitutions of as few as four amino acids (M46I/L63P/V82T/I84V) of the human immunodeficiency virus type 1 (HIV-1) protease engenders cross-resistance to a panel of protease inhibitors that are either in clinical trials or have recently been approved for HIV therapy (Condra, J. H., Schleif, W. A., Blahy, O. M. , Gadryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) Nature 374, 569-571). These four substitutions are among the prominent mutations found in primary HIV isolates obtained from patients undergoing therapy with several protease inhibitors. Two of these mutations (V82T/I84V) are located in, while the other two (M46I/L63P) are away from, the binding cleft of the enzyme. The functional role of these mutations has now been delineated in terms of their influence on the binding affinity and catalytic efficiency of the protease. We have found that the double substitutions of M46I and L63P do not affect binding but instead endow the enzyme with a catalytic efficiency significantly exceeding (110-360%) that of the wild-type enzyme. In contrast, the double substitutions of V82T and I84V are detrimental to the ability of the protease to bind and, thereby, to catalyze. When combined, the four amino acid replacements institute in the protease resistance against inhibitors and a significantly higher catalytic activity than one containing only mutations in its active site. The results suggest that in raising drug resistance, these four site-specific mutations of the protease are compensatory in function; those in the active site diminish equilibrium binding (by increasing Ki), and those away from the active site enhance catalysis (by increasing kcat/KM). This conclusion is further supported by energy estimates in that the Gibbs free energies of binding and catalysis for the quadruple mutant are quantitatively dictated by those of the double mutants.
Collapse
Affiliation(s)
- H B Schock
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | |
Collapse
|
46
|
Gustchina A, Kervinen J, Powell DJ, Zdanov A, Kay J, Wlodawer A. Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein Sci 1996; 5:1453-65. [PMID: 8844837 PMCID: PMC2143478 DOI: 10.1002/pro.5560050802] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Equine infectious anemia virus (EIAV), the causative agent of infectious anemia in horses, is a member of the lentiviral family. The virus-encoded proteinase (PR) processes viral polyproteins into functional molecules during replication and it also cleaves viral nucleocapsid protein during infection. The X-ray structure of a complex of the 154G mutant of EIAV PR with the inhibitor HBY-793 was solved at 1.8 A resolution and refined to a crystallographic R-factor of 0.136. The molecule is a dimer in which the monomers are related by a crystallographic twofold axis. Although both the enzyme and the inhibitor are symmetric, the interactions between the central part of the inhibitor and the active site aspartates are asymmetric, and the inhibitor and the two flaps are partially disordered. The overall fold of EIAV PR is very similar to that of other retroviral proteinases. However, a novel feature of the EIAV PR structure is the appearance of the second alpha-helix in the monomer in a position predicted by the structural template for the family of aspartic proteinases. The parts of the EIAV PR with the highest resemblance to human immunodeficiency virus type 1 PR include the substrate-binding sites; thus, the differences in the specificity of both enzymes have to be explained by enzyme-ligand interactions at the periphery of the active site as well.
Collapse
Affiliation(s)
- A Gustchina
- Macromolecular Structure Laboratory, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tözsér J, Bagossi P, Weber IT, Copeland TD, Oroszlan S. Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J Biol Chem 1996; 271:6781-8. [PMID: 8636100 DOI: 10.1074/jbc.271.12.6781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The retroviral proteinase (PR) seems to play crucial roles in the viral life cycle, therefore it is an attractive target for chemotherapy. Previously we studied the specificity of human immunodeficiency virus (HIV) type 1 and type 2 as well as equine infectious anemia virus PRs using oligopeptide substrates. Here a similar approach is used to characterize the specificity of avian myeloblastosis virus (AMV) PR and to compare it with those of the previously characterized lentiviral PRs. All peptides representing naturally occurring Gag and Gag-Pol cleavage sites were substrates of the AMV PR. Only half of these peptides were substrates of HIV-1 PR. The Km values for AMV PR were in a micromolar range previously found for the lentiviral PRs; however, the kcat values were in a 10 30-fold lower range. A series of peptides containing single amino acid substitutions in a sequence representing a naturally occurring HIV cleavage site was used to characterize the seven substrate binding subsites of the AMV PR. The largest differences were found at the P4 and P2 positions of the substrate. Detailed analysis of the results by molecular modeling and comparison with previously reported data revealed the common characteristics of the specificity of the retroviral PRs as well as its strong dependence on the sequence context of the substrate.
Collapse
Affiliation(s)
- J Tözsér
- Department of Biochemistry, University Medical School of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
48
|
Menéndez-Arias L, Weber IT, Oroszlan S. Mutational analysis of the substrate binding pocket of murine leukemia virus protease and comparison with human immunodeficiency virus proteases. J Biol Chem 1995; 270:29162-8. [PMID: 7493942 DOI: 10.1074/jbc.270.49.29162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The differences in substrate specificity between Moloney murine leukemia virus protease (MuLV PR) and human immunodeficiency virus (HIV) PR were investigated by site-directed mutagenesis. Various amino acids, which are predicted to form the substrate binding site of MuLV PR, were replaced by the equivalent ones in HIV-1 and HIV-2 PRs. The expressed mutants were assayed with the substrate Val-Ser-Gln-Asn-Tyr decreases Pro-Ile-Val-Gln-NH2 (decreases indicates the cleavage site) and a series of analogs containing single amino acid substitutions in positions P4(Ser) to P3'(Val). Mutations at the predicted S2/S2' subsites of MuLV PR have a strong influence on the substrate specificity of this enzyme, as observed with mutants H37D, V39I, V54I, A57I, and L92I. On the other hand, substitutions at the flap region of MuLV PR often rendered enzymes with low activity (e.g. W53I/Q55G). Three amino acids (His-37, Val-39, and Ala-57) were identified as the major determinants of the differences in substrate specificity between MuLV and HIV PRs.
Collapse
Affiliation(s)
- L Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
49
|
Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 1994; 68:8017-27. [PMID: 7966591 PMCID: PMC237265 DOI: 10.1128/jvi.68.12.8017-8027.1994] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.
Collapse
Affiliation(s)
- S C Pettit
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill
| | | | | | | | | | | | | |
Collapse
|
50
|
|