1
|
Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, Schuster S. Zonation of hepatic fatty acid metabolism - The diversity of its regulation and the benefit of modeling. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:641-56. [PMID: 25677822 DOI: 10.1016/j.bbalip.2015.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
A pronounced heterogeneity between hepatocytes in subcellular structure and enzyme activities was discovered more than 50years ago and initiated the idea of metabolic zonation. In the last decades zonation patterns of liver metabolism were extensively investigated for carbohydrate, nitrogen and lipid metabolism. The present review focuses on zonation patterns of the latter. We review recent findings regarding the zonation of fatty acid uptake and oxidation, ketogenesis, triglyceride synthesis and secretion, de novo lipogenesis, as well as bile acid and cholesterol metabolism. In doing so, we expose knowledge gaps and discuss contradictory experimental results, for example on the zonation pattern of fatty acid oxidation and de novo lipogenesis. Thus, possible rewarding directions of further research are identified. Furthermore, recent findings about the regulation of metabolic zonation are summarized, especially regarding the role of hormones, nerve innervation, morphogens, gender differences and the influence of the circadian clock. In the last part of the review, a short collection of models considering hepatic lipid metabolism is provided. We conclude that modeling, despite its proven benefit for understanding of hepatic carbohydrate and ammonia metabolisms, has so far been largely disregarded in the study of lipid metabolism; therefore some possible fields of modeling interest are presented.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | - C Tokarski
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - E Marbach
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - M Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Zellmer
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - R Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Schuster
- Department of Bioinformatics, University of Jena, Jena, Germany
| |
Collapse
|
2
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
3
|
Affiliation(s)
- J E Wilson
- Department of Biochemistry, Michigan State University, East Lansing 48824
| |
Collapse
|
4
|
Inoue Y, Inoue J, Lambert G, Yim SH, Gonzalez FJ. Disruption of hepatic C/EBPalpha results in impaired glucose tolerance and age-dependent hepatosteatosis. J Biol Chem 2004; 279:44740-8. [PMID: 15292250 DOI: 10.1074/jbc.m405177200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C/EBPalpha is highly expressed in liver and regulates many genes that are preferentially expressed in liver. Because C/EBPalpha-null mice die soon after birth, it is impossible to analyze the function of C/EBPalpha in the adult with this model. To address the function of C/EBPalpha in adult hepatocytes, liver-specific C/EBPalpha-null mice were produced using a floxed C/EBPalpha allele and the albumin-Cre transgene. Unlike whole body C/EBPalpha-null mice, mice lacking hepatic C/EBPalpha expression did not exhibit hypoglycemia, nor did they show reduced hepatic glycogen in adult. Expression of liver glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase remained at normal levels. However, these mice exhibited impaired glucose tolerance due in part to reduced expression of hepatic glucokinase, and hyperammonemia from reduced expression of hepatic carbamoyl phosphate synthase-I. These mice also had reduced serum cholesterol and steatotic livers that was exacerbated with aging. This phenotype could be explained by increased expression of hepatic lipoprotein lipase and reduced expression of microsomal triglyceride transfer protein, apolipoproteins B100, and A-IV. These data demonstrate that hepatic C/EBPalpha is critical for ammonia detoxification and glucose and lipid homeostasis in adult mice.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Christoffels VM, Habets PE, Das AT, Clout DE, van Roon MA, Moorman AF, Lamers WH. A single regulatory module of the carbamoylphosphate synthetase I gene executes its hepatic program of expression. J Biol Chem 2000; 275:40020-7. [PMID: 11006287 DOI: 10.1074/jbc.m007001200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 469-base pair (bp) upstream regulatory fragment (URF) and the proximal promoter of the carbamoylphosphate synthetase I (CPS) gene were analyzed for their role in the regulation of spatial, developmental, and hormone-induced expression in vivo. The URF is essential and sufficient for hepatocyte-specific expression, periportal localization, perinatal activation and induction by glucocorticoids, and cAMP in transgenic mice. Before birth, the transgene is silent but can be induced by cAMP and glucocorticoids, indicating that these compounds are responsible for the activation of expression at birth. A 102-bp glucocorticoid response unit within the URF, containing binding sites for HNF3, C/EBP, and the glucocorticoid receptor, is the main determinant of the hepatocyte-specific and hormone-controlled activity. Additional sequences are required for a productive interaction between this minimal response unit and the core CPS promoter. These results show that the 469-bp URF, and probably only the 102-bp glucocorticoid response unit, functions as a regulatory module, in that it autonomously executes a correct spatial, developmental and hormonal program of CPS expression in the liver.
Collapse
Affiliation(s)
- V M Christoffels
- Department of Anatomy and Embryology and the Genetically Modified Mice Facility, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Christoffels VM, Sassi H, Ruijter JM, Moorman AF, Grange T, Lamers WH. A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. Hepatology 1999; 29:1180-92. [PMID: 10094963 DOI: 10.1002/hep.510290413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the liver, genes are expressed along a portocentral gradient. Based on their adaptive behavior, a gradient versus compartment type, and a dynamic versus stable type of gradient have been recognized. To understand at least in principle the development and maintenance of these gradients in gene expression in relation to the limited number of signal gradients, we propose a simple and testable model. The model uses portocentral gradients of signal molecules as input, while the output depends on two gene-specific variables, viz., the affinity of the gene for its regulatory factors and the degree of cooperativity that determines the response in the signal-transduction pathways. As a preliminary validity test for its performance, the model was tested on control and hormonally induced expression patterns of phosphoenolpyruvate carboxykinase (PCK), carbamoylphosphate synthetase I (CPS), and glutamine synthetase (GS). Affinity was found to determine the overall steepness of the gradient, whereas cooperativity causes these gradients to steepen locally, as is necessary for a compartment-like expression pattern. Interaction between two or more different signal gradients is necessary to ensure a stable expression pattern under different conditions. The diversity in sequence and arrangement of related DNA-response elements of genes appears to account for the gene-specific shape of the portocentral gradients in expression. The feasibility of testing the function of hepatocyte-specific DNA-response units in vivo is demonstrated by integrating such units into a ubiquitously active promoter/enhancer and analyzing the pattern of expression of these constructs in transgenic mice.
Collapse
Affiliation(s)
- V M Christoffels
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Kimura T, Christoffels VM, Chowdhury S, Iwase K, Matsuzaki H, Mori M, Lamers WH, Darlington GJ, Takiguchi M. Hypoglycemia-associated hyperammonemia caused by impaired expression of ornithine cycle enzyme genes in C/EBPalpha knockout mice. J Biol Chem 1998; 273:27505-10. [PMID: 9765281 DOI: 10.1074/jbc.273.42.27505] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ammonia produced by amino acid metabolism is detoxified through conversion into urea by the ornithine cycle in the liver, whereas carbon skeletons of amino acids are converted to glucose by gluconeogenic enzymes. Promoter and enhancer sequences of several genes for ornithine cycle enzymes interact with members of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family. Disruption of the C/EBPalpha gene in mice causes hypoglycemia associated with the impaired expression of gluconeogenic enzymes. Here we examined the expression of ornithine cycle enzyme genes in the livers of C/EBPalpha-deficient mice. mRNA levels for the first, third, fourth, and fifth enzymes of five enzymes in the cycle were decreased in C/EBPalpha-deficient mice. Protein levels for the first, second, fourth, and fifth enzymes were also decreased. In situ hybridization analysis revealed that the enzyme mRNAs were distributed normally in the periportal region but were disordered in C/EBPalpha-deficient mice with relatively higher mRNA levels in the midlobular region. Blood ammonia concentrations in the mutant mice were severalfold higher than in wild-type mice. Thus, C/EBPalpha is crucial for ammonia detoxification by ornithine cycle enzymes and for coordination of gluconeogenesis and urea synthesis.
Collapse
Affiliation(s)
- T Kimura
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver.
Collapse
Affiliation(s)
- T Oinonen
- National Public Health Institute, Alcohol Research Center, PB 719, 00101 Helsinki, Finland
| | | |
Collapse
|
9
|
Christoffels VM, van den Hoff MJ, Lamers MC, van Roon MA, de Boer PA, Moorman AF, Lamers WH. The upstream regulatory region of the carbamoyl-phosphate synthetase I gene controls its tissue-specific, developmental, and hormonal regulation in vivo. J Biol Chem 1996; 271:31243-50. [PMID: 8940127 DOI: 10.1074/jbc.271.49.31243] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carbamoyl-phosphate synthetase I gene is expressed in the periportal region of the liver, where it is activated by glucocorticosteroids and glucagon (via cyclic AMP), and in the crypts of the intestinal mucosa. The enhancer of the gene is located 6.3 kilobase pairs upstream of the transcription start site and has been shown to direct the hormone-dependent hepatocyte-specific expression in vitro. To analyze the function of the upstream region in vivo, three groups of transgenic mice were generated. In the first group the promoter drives expression of the reporter gene, whereas the promoter and upstream region including the far upstream enhancer drive expression of the reporter gene in the second group. In the third group the far upstream enhancer was directly coupled to a minimized promoter fragment. Reporter-gene expression was virtually undetectable in the first group. In the second group spatial, temporal, and hormonal regulation of expression of the reporter gene and the endogenous carbamoyl-phosphate synthetase gene were identical. The third group showed liver-specific periportal reporter gene expression, but failed to activate expression in the intestine. These results show that the upstream region of the carbamoyl-phosphate synthetase gene controls four characteristics of its expression: tissue specificity, spatial pattern of expression within the liver and intestine, hormone sensitivity, and developmental regulation. Within the upstream region, the far upstream enhancer at -6.3 kilobase pairs is the determinant of the characteristic hepatocyte-specific periportal expression pattern of carbamoyl-phosphate synthetase.
Collapse
Affiliation(s)
- V M Christoffels
- University of Amsterdam, Department of Anatomy and Embryology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Lie-Venema H, Labruyère WT, van Roon MA, de Boer PA, Moorman AF, Berns AJ, Lamers WH. The spatio-temporal control of the expression of glutamine synthetase in the liver is mediated by its 5'-enhancer. J Biol Chem 1995; 270:28251-6. [PMID: 7499322 DOI: 10.1074/jbc.270.47.28251] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In previous studies of the glutamine synthetase gene, the promoter and two enhancer elements, one in the upstream region and one within the first intron, were identified. To analyze the role of the far-upstream enhancer element in the regulation of the expression of the glutamine synthetase gene, two classes of transgenic mice were generated. In GSK mice, the basal promoter directs the expression of the chloramphenicol acetyltransferase reporter gene. In GSL mice reporter gene expression is driven, in addition, by the upstream regulatory region, including the far-upstream enhancer. Whereas chloramphenicol acetyltransferase expression was barely detectable in GSK mice, high levels were detected in GSL mice. By comparing chloramphenicol acetyltransferase expression with that of endogenous glutamine synthetase in GSL mice, three groups of organs were distinguished in which the effects of the upstream regulatory region on the expression of glutamine synthetase were quantitatively different. The chloramphenicol acetyltransferase mRNA in the GSL mice was shown to be localized in the pericentral hepatocytes of the liver. The developmental changes in chloramphenicol acetyltransferase enzyme activity in the liver were similar to those in endogenous glutamine synthetase. These results show that the upstream region is a major determinant for three characteristics of glutamine synthetase expression: its organ specificity, its pericentral expression pattern in the liver, and its developmental appearance in the liver.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Nagy P, Bisgaard HC, Thorgeirsson SS. Expression of hepatic transcription factors during liver development and oval cell differentiation. J Cell Biol 1994; 126:223-33. [PMID: 8027180 PMCID: PMC2120103 DOI: 10.1083/jcb.126.1.223] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The oval cells are thought to be the progeny of a liver stem cell compartment and strong evidence now exists indicating that these cells can participate in liver regeneration by differentiating into different hepatic lineages. To better understand the regulation of this process we have studied the expression of liver-enriched transcriptional factors (HNF1 alpha and HNF1 beta, HNF3 alpha, HNF3 beta, and HNF3 gamma, HNF4, C/EBP, C/EBP beta, and DBP) in an experimental model of oval cell proliferation and differentiation and compared the expression of these factors to that observed during late stages of hepatic ontogenesis. The steady-state mRNA levels of four (HNF1 alpha, HNF3 alpha, HNF4, and C/EBP beta) "liver-enriched" transcriptional factors gradually decrease during the late period of embryonic liver development while three factors (HNF1 beta, HNF3 beta, and DBP) increase. In the normal adult rat liver the expression of all the transcription factors are restricted to the hepatocytes. However, during early stages of oval cell proliferation both small and large bile ducts start to express HNF1 alpha and HNF1 beta, HNF3 gamma, C/EBP, and DBP but not HNF4. At the later stages all of these factors are also highly expressed in the proliferating oval cells. Expression of HNF4 is first observed when the oval cells differentiate morphologically and functionally into hepatocytes and form basophilic foci. At that time the expression of some of the other factors is also further increased. Based on these data we suggest that the upregulation of the "establishment" factors (HNF1 and -3) may be an important step in oval cell activation. The high levels of these factors in the oval cells and embryonic hepatoblasts further substantiates the similarity between the two cell compartments. Furthermore, the data suggest that HNF4 may be responsible for the final commitment of a small portion of the oval cells to differentiate into hepatocytes which form the basophilic foci and eventually regenerate the liver parenchyma.
Collapse
Affiliation(s)
- P Nagy
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892-0037
| | | | | |
Collapse
|
12
|
Developmental changes in the expression of the liver-enriched transcription factors LF-B1, C/EBP, DBP and LAP/LIP in relation to the expression of albumin, α-fetoprotein, carbamoylphosphate synthase and lactase mRNA. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf00209246] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Witters LA, Christensen A, Fassihi K, King AN, Widmer J, Quistorff B. Application of dual-digitonin-pulse perfusion to the study of hepatic mRNA zonation. Biochem J 1993; 294 ( Pt 3):809-12. [PMID: 8104398 PMCID: PMC1134533 DOI: 10.1042/bj2940809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heterogeneous zonation of hepatic protein expression over the liver lobule has been recognized by using several analytical techniques, including microdissection, selective cell isolation, immunohistochemistry and hybridization of mRNA in situ. We previously employed the technique of dual-digitonin-pulse perfusion for the highly selective collection and analysis of periportal and perivenous soluble protein. In the present work we have now documented the feasibility of the application of this technique to the study of zonal distribution of mRNA. By using a split-stream design, both protein and RNA fractions can be simultaneously collected from hepatic zones. High-quality RNA (average yield approximately 9-33 micrograms of total RNA per mg of eluted protein) is obtained for analysis. As analysed by immunoblotting and Northern-blot analysis, the zonal distribution of several important cytosolic metabolic enzymes and their mRNAs can be documented. This technique is also applicable to the study of mRNAs for organelle- and membrane-associated proteins that are not recoverable with this digitonin-lysis technique. The application of this experimental technique should allow further molecular insight into the mechanisms underlying zonation of hepatic function.
Collapse
Affiliation(s)
- L A Witters
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755
| | | | | | | | | | | |
Collapse
|
14
|
Moorman AF, De Boer PA, Vermeulen JL, Lamers WH. Practical aspects of radio-isotopic in situ hybridization on RNA. THE HISTOCHEMICAL JOURNAL 1993; 25:251-66. [PMID: 7684033 DOI: 10.1007/bf00159117] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A F Moorman
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
15
|
Relative roles of CCAAT/enhancer-binding protein beta and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54195-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|