1
|
Morita Y, Yoshida A, Ye S, Tomita T, Yoshida M, Kosono S, Nishiyama M. Protein-protein interaction-mediated regulation of lysine biosynthesis of Thermus thermophilus through the function-unknown protein LysV. J GEN APPL MICROBIOL 2023; 69:91-101. [PMID: 37357393 DOI: 10.2323/jgam.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.
Collapse
Affiliation(s)
- Yutaro Morita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Siyan Ye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Minoru Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
2
|
Breisch J, Schumm C, Poehlein A, Daniel R, Averhoff B. The carnitine degradation pathway of Acinetobacter baumannii and its role in virulence. Environ Microbiol 2022; 24:4437-4448. [PMID: 35652489 DOI: 10.1111/1462-2920.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.
Collapse
Affiliation(s)
- Jennifer Breisch
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Clemens Schumm
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
3
|
Khan MS, Gargiulo S, Soumillion P. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. FEBS Lett 2020; 594:2421-2430. [PMID: 32412093 DOI: 10.1002/1873-3468.13814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022]
Abstract
Promiscuous activities of enzymes may serve as starting points for the evolution of new functions. However, most experimental examples of promiscuity affording an observable phenotype necessitate the artificial overexpression of the target enzyme. Here, we show that 3-isopropylmalate dehydrogenase (IPMDH), an enzyme involved in leucine biosynthesis, has a secondary activity on d-malate, which is sufficient for d-malate assimilation under physiological conditions where the enzyme is upregulated. In vitro, the turnover constant (kcat ) of IPMDH for d-malate is about 30-fold lower than the kcat for 3-isopropylmalate, yet sufficiently high to support the growth on d-malate. From an evolutionary perspective, our results highlight the possibility of phenotype emergence triggered by arbitrary changes in environmental conditions and prior to any mutational event.
Collapse
Affiliation(s)
- Mohammad Shahneawz Khan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,University of Dhaka, Bangladesh
| | - Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Complete Genome Sequences of Thermus thermophilus Strains AA2-20 and AA2-29, Isolated from Arima Onsen in Japan. Microbiol Resour Announc 2019; 8:8/31/e00820-19. [PMID: 31371550 PMCID: PMC6675998 DOI: 10.1128/mra.00820-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated halophilic and thermophilic Thermus thermophilus strains AA2-20 and AA2-29 from nonvolcanic, oceanic Arima Onsen (hot spring) in Japan. Here, we report the complete genome sequences of these organisms to gain insights into halophilicity. We isolated halophilic and thermophilic Thermus thermophilus strains AA2-20 and AA2-29 from nonvolcanic, oceanic Arima Onsen (hot spring) in Japan. Here, we report the complete genome sequences of these organisms to gain insights into halophilicity.
Collapse
|
5
|
Gráczer É, Szimler T, Garamszegi A, Konarev PV, Lábas A, Oláh J, Palló A, Svergun DI, Merli A, Závodszky P, Weiss MS, Vas M. Dual Role of the Active Site Residues of Thermus thermophilus 3-Isopropylmalate Dehydrogenase: Chemical Catalysis and Domain Closure. Biochemistry 2016; 55:560-74. [PMID: 26731489 DOI: 10.1021/acs.biochem.5b00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The key active site residues K185, Y139, D217, D241, D245, and N102 of Thermus thermophilus 3-isopropylmalate dehydrogenase (Tt-IPMDH) have been replaced, one by one, with Ala. A drastic decrease in the kcat value (0.06% compared to that of the wild-type enzyme) has been observed for the K185A and D241A mutants. Similarly, the catalytic interactions (Km values) of these two mutants with the substrate IPM are weakened by more than 1 order of magnitude. The other mutants retained some (1-13%) of the catalytic activity of the wild-type enzyme and do not exhibit appreciable changes in the substrate Km values. The pH dependence of the wild-type enzyme activity (pK = 7.4) is shifted toward higher values for mutants K185A and D241A (pK values of 8.4 and 8.5, respectively). For the other mutants, smaller changes have been observed. Consequently, K185 and D241 may constitute a proton relay system that can assist in the abstraction of a proton from the OH group of IPM during catalysis. Molecular dynamics simulations provide strong support for the neutral character of K185 in the resting state of the enzyme, which implies that K185 abstracts the proton from the substrate and D241 assists the process via electrostatic interactions with K185. Quantum mechanics/molecular mechanics calculations revealed a significant increase in the activation energy of the hydride transfer of the redox step for both D217A and D241A mutants. Crystal structure analysis of the molecular contacts of the investigated residues in the enzyme-substrate complex revealed their additional importance (in particular that of K185, D217, and D241) in stabilizing the domain-closed active conformation. In accordance with this, small-angle X-ray scattering measurements indicated the complete absence of domain closure in the cases of D217A and D241A mutants, while only partial domain closure could be detected for the other mutants. This suggests that the same residues that are important for catalysis are also essential for inducing domain closure.
Collapse
Affiliation(s)
- Éva Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Tamás Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Anita Garamszegi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Petr V Konarev
- European Molecular Biology Laboratory , Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Anikó Lábas
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Gellért tér 4., H-1111 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Gellért tér 4., H-1111 Budapest, Hungary
| | - Anna Palló
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Dmitri I Svergun
- European Molecular Biology Laboratory , Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Angelo Merli
- Dipartimento di Bioscienze, Universitá degli Studi di Parma , Viale G.P. Usberti 23/A, I-43100 Parma, Italy
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Mária Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Vorobieva AA, Khan MS, Soumillion P. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway. J Biol Chem 2014; 289:29086-96. [PMID: 25160617 DOI: 10.1074/jbc.m114.595363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.
Collapse
Affiliation(s)
- Anastassia A Vorobieva
- From the Laboratoire de Biochimie, Biophysique et Génétique des Microorganismes (BBGM), Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and
| | | | - Patrice Soumillion
- From the Laboratoire de Biochimie, Biophysique et Génétique des Microorganismes (BBGM), Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and
| |
Collapse
|
7
|
Miller SP, Gonçalves S, Matias PM, Dean AM. Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase. Chembiochem 2014; 15:1145-53. [PMID: 24797066 DOI: 10.1002/cbic.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/09/2022]
Abstract
An active site lysine essential to catalysis in isocitrate dehydrogenase (IDH) is absent from related enzymes. As all family members catalyze the same oxidative β-decarboxylation at the (2R)-malate core common to their substrates, it seems odd that an amino acid essential to one is not found in all. Ordinarily, hydride transfer to a nicotinamide C4 neutralizes the positive charge at N1 directly. In IDH, the negatively charged C4-carboxylate of isocitrate stabilizes the ground state positive charge on the adjacent nicotinamide N1, opposing hydride transfer. The critical lysine is poised to stabilize-and perhaps even protonate-an oxyanion formed on the nicotinamide 3-carboxamide, thereby enabling the hydride to be transferred while the positive charge at N1 is maintained. IDH might catalyze the same overall reaction as other family members, but dehydrogenation proceeds through a distinct, though related, transition state. Partial activation of lysine mutants by K(+) and NH4 (+) represents a throwback to the primordial state of the first promiscuous substrate family member.
Collapse
Affiliation(s)
- Stephen P Miller
- Biotechnology Institute, The University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108 (USA)
| | | | | | | |
Collapse
|
8
|
Gráczer É, Lionne C, Závodszky P, Chaloin L, Vas M. Transient kinetic studies reveal isomerization steps along the kinetic pathway ofThermus thermophilus3-isopropylmalate dehydrogenase. FEBS J 2013; 280:1764-72. [DOI: 10.1111/febs.12191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Éva Gráczer
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest; Hungary
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS); UMR 5236 CNRS; University Montpellier I, University Montpellier II; France
| | - Péter Závodszky
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest; Hungary
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS); UMR 5236 CNRS; University Montpellier I, University Montpellier II; France
| | - Mária Vas
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest; Hungary
| |
Collapse
|
9
|
Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC. A synthetic recursive "+1" pathway for carbon chain elongation. ACS Chem Biol 2012; 7:689-97. [PMID: 22242720 DOI: 10.1021/cb200313e] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein-substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic "+1" recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The "+1" chemistry is a valuable metabolic tool in addition to the "+5" chemistry and "+2" chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides.
Collapse
Affiliation(s)
| | | | | | | | | | - Asha Chaubey
- Indian Institute of Integrative Medicine (CSIR), Jammu 180001, India
| | | | | |
Collapse
|
10
|
Nango E, Yamamoto T, Kumasaka T, Eguchi T. Crystal structure of 3-isopropylmalate dehydrogenase in complex with NAD(+) and a designed inhibitor. Bioorg Med Chem 2009; 17:7789-94. [PMID: 19833522 DOI: 10.1016/j.bmc.2009.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Isopropylmalate dehydrogenase (IPMDH) is the third enzyme specific to leucine biosynthesis in microorganisms and plants, and catalyzes the oxidative decarboxylation of (2R,3S)-3-isopropylmalate to alpha-ketoisocaproate using NAD(+) as an oxidizing agent. In this study, a thia-analogue of the substrate was designed and synthesized as an inhibitor for IPMDH. The analogue showed strong competitive inhibitory activity with K(i)=62nM toward IPMDH derived from Thermus thermophilus. Moreover, the crystal structure of T. thermophilus IPMDH in a ternary complex with NAD(+) and the inhibitor has been determined at 2.8A resolution. The inhibitor exists as a decarboxylated product with an enol/enolate form in the active site. The product interacts with Arg 94, Asn 102, Ser 259, Glu 270, and a water molecule hydrogen-bonding with Arg 132. All interactions between the product and the enzyme were observed in the position associated with keto-enol tautomerization. This result implies that the tautomerization step of the thia-analogue during the IPMDH reaction is involved in the inhibition.
Collapse
Affiliation(s)
- Eriko Nango
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | | | | | | |
Collapse
|
11
|
Stokke R, Madern D, Fedøy AE, Karlsen S, Birkeland NK, Steen IH. Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme. Arch Microbiol 2006; 187:361-70. [PMID: 17160675 DOI: 10.1007/s00203-006-0200-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/31/2006] [Accepted: 11/17/2006] [Indexed: 11/30/2022]
Abstract
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55-60 degrees C and an apparent midpoint melting temperature (Tm) of 70 degrees C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48-57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.
Collapse
Affiliation(s)
- Runar Stokke
- Department of Biology, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Miyazaki K. Identification of a novel trifunctional homoisocitrate dehydrogenase and modulation of the broad substrate specificity through site-directed mutagenesis. Biochem Biophys Res Commun 2005; 336:596-602. [PMID: 16139794 DOI: 10.1016/j.bbrc.2005.08.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/16/2005] [Indexed: 11/17/2022]
Abstract
A gene encoding homoisocitrate dehydrogenase (HICDH) of Deinococcus radiodurans was cloned, sequenced, and overexpressed in Escherichia coli. The amino acid sequence was 63% identical to HICDH from Thermus thermophilus (Tth-HICDH). Similar to Tth-HICDH, purified, recombinant Dra-HICDH was a tetramer, required K+ and Mn2+ for activity, and used NAD+ as a coenzyme. However, unlike Tth-HICDH, which has a 20-fold preference for isocitrate over homoisocitrate, Dra-HICDH preferred homoisocitrate to isocitrate by 1.5-fold. Moreover, it catalyzed the oxidation of 3-isopropylmalate, albeit at approximately 0.1% the rate seen with homoisocitrate and isocitrate. Saturation mutagenesis of Dra-HICDH Arg87 was next performed because an orthologous Arg85 to valine mutation in Tth-HICDH results in loss of activity toward isocitrate, but in retention of activity toward homoisocitrate. Unexpectedly, the Arg85Val variant became able to catalyze the oxidation of 3-isopropylmalate. Screening of the saturation mutagenesis library identified two variants, Arg87Val and Arg87Thr, that were able to catalyze the oxidation of homoisocitrate, but not isocitrate or 3-isopropylmalate. Deletion of Dra-HICDH Ala80, a residue missing from Tth-HICDH and predicted to reside at the entrance of alpha-helix Arg87, resulted in alterations in substrate specificity that rendered Dra-HICDH similar to Tth-HICDH; i.e., a 4-fold preference for isocitrate over homoisocitrate and inability to catalyze the oxidation of 3-isopropylmalate. Seemingly minor changes in primary sequence result in changes in substrate specificity of beta-decarboxylating dehydrogenases.
Collapse
Affiliation(s)
- Kentaro Miyazaki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
13
|
Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I. Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution. J Biol Chem 2003; 278:36897-904. [PMID: 12855708 DOI: 10.1074/jbc.m304091200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADP+-dependent monomeric isocitrate dehydrogenase (IDH) from the nitrogen-fixing bacterium Azotobacter vinelandii (AvIDH) is one of members of the beta-decarboxylating dehydrogenase family and catalyzes the dehydration and decarboxylation of isocitrate to yield 2-oxoglutrate and CO2 in the Krebs cycle. We solved the crystal structure of the AvIDH in complex with cofactor NADP+ (AvIDH-NADP+ complex). The final refined model shows the closed form that has never been detected in any previously solved structures of beta-decarboxylating dehydrogenases. The structure also reveals all of the residues that interact with NADP+. The structure-based sequence alignment reveals that these residues were not conserved in any other dimeric NADP+-dependent IDHs. Therefore the NADP+ specificity of the monomeric and dimeric IDHs was independently acquired through the evolutional process. The AvIDH was known to show an exceptionally high turnover rate. The structure of the AvIDH-NADP+ complex indicates that one loop, which is not present in the Escherichia coli IDHs, reliably stabilizes the conformation of the nicotinamide mononucleotide of the bound NADP+ by forming a few hydrogen bonds, and such interactions are considered to be important for the monomeric enzyme to initiate the hydride transfer reaction immediately. Finally, the structure of the AvIDH is compared with that of other dimeric NADP-IDHs. Several structural features demonstrate that the monomeric IDHs are structurally more related to the eukaryotic dimeric IDHs than to the bacterial dimeric IDHs.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Steen IH, Madern D, Karlström M, Lien T, Ladenstein R, Birkeland NK. Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. J Biol Chem 2001; 276:43924-31. [PMID: 11533060 DOI: 10.1074/jbc.m105999200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the aim of gaining insight into the molecular and phylogenetic relationships of isocitrate dehydrogenase (IDH) from hyperthermophiles, we carried out a comparative study of putative IDHs identified in the genomes of the eubacterium Thermotoga maritima and the archaea Aeropyrum pernix and Pyrococcus furiosus. An optimum for activity at 90 degrees C or above was found for each IDH. PfIDH and ApIDH were the most thermostable with a melting temperature of 103.7 and 109.9 degrees C, respectively, compared with 98.3 and 98.5 degrees C for TmIDH and AfIDH, respectively. Analytical ultracentrifugation revealed a tetrameric oligomeric state for TmIDH and a homodimeric state for ApIDH and PfIDH. TmIDH and ApIDH were NADP-dependent (K(m)((NADP)) of 55.2 and 44.4 microm, respectively) whereas PfIDH was NAD-dependent (K(m)((NAD)) of 68.3 microm). These data document that TmIDH represents a novel tetrameric NADP-dependent form of IDH and that PfIDH is a homodimeric NAD-dependent IDH not previously found among the archaea. The homodimeric NADP-IDH present in A. pernix is the most common form of IDH known so far. The evolutionary relationships of ApIDH, PfIDH, and TmIDH with all of the available amino acid sequences of di- and multimeric IDHs are described and discussed.
Collapse
Affiliation(s)
- I H Steen
- Department of Microbiology, University of Bergen, P. O. Box 7800, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
15
|
Hayashi-Iwasaki Y, Oshima T. Purification and characterization of recombinant 3-isopropylmalate dehydrogenases from Thermus thermophilus and other microorganisms. Methods Enzymol 2001; 324:301-22. [PMID: 10989439 DOI: 10.1016/s0076-6879(00)24240-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Y Hayashi-Iwasaki
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Japan
| | | |
Collapse
|
16
|
Chen R, Yang H. A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Arch Biochem Biophys 2000; 383:238-45. [PMID: 11185559 DOI: 10.1006/abbi.2000.2082] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The monomeric isocitrate dehydrogenase (IDH) of Corynebacterium glutamicum is compared to the topologically distinct dimeric IDH of Escherichia coli. Both IDHs have evolved to efficiently catalyze identical reactions with similar pH optimum as well as striking specificity toward NADP and isocitrate. However, the monomeric IDH is 10-fold more active (calculated as kcat/Km.isocitrate/Km.NADP) and 7-fold more NADP-specific than the dimeric enzyme, favoring NADP over NAD by a factor of 50,000. Such an extraordinary coenzyme specificity is not rivaled by any other characterized dehydrogenases. In addition, the monomeric enzyme is 10-fold more specific for isocitrate. The spectacular substrate specificity may be predominantly attributed to the isocitrate-assisted stabilization of catalytic complex during hydride transfer. No significant overall sequence identity is found between the monomeric and dimeric enzymes. However, structure-based alignment leads to the identification of three regions in the monomeric enzyme that match closely the three motifs located in the central region of dimeric IDHs and the homologous isopropylmalate dehydrogenases. The role of Lys253 as catalytic residue has been demonstrated by site-directed mutagenesis. Our results suggest that monomeric and dimeric forms of IDHs are functionally and structurally homologous.
Collapse
Affiliation(s)
- R Chen
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
17
|
Kawaguchi H, Inagaki K, Matsunami H, Nakayama Y, Tano T, Tanaka H. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans. J Biosci Bioeng 2000; 90:459-61. [PMID: 16232891 DOI: 10.1016/s1389-1723(01)80020-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Accepted: 07/10/2000] [Indexed: 11/17/2022]
Abstract
3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.
Collapse
Affiliation(s)
- H Kawaguchi
- Department of Bioresources Chemistry, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
18
|
KAWAGUCHI HIROSHI, INAGAKI KENJI, MATSUNAMI HIDEYUKI, NAKAYAMA YUMI, TANO TATSUO, TANAKA HIDEHIKO. Purification and Characterization of 3-Isopropylmalate Dehydrogenase from Thiobacillus thiooxidans. J Biosci Bioeng 2000. [DOI: 10.1263/jbb.90.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Chiba A, Arai N, Eguchi T, Kakinuma K. 3-Isopropylidenemalic Acid: A Mechanism-based Inhibitor of 3-Isopropylmalate Dehydrogenase. CHEM LETT 1999. [DOI: 10.1246/cl.1999.1313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Chiba A, Aoyama T, Suzuki R, Eguchi T, Oshima T, Kakinuma K. Synthetic and Mechanistic Studies of (2R,3S)-3-Vinylmalic Acid as a Mechanism-Based Inhibitor of 3-Isopropylmalate Dehydrogenase. J Org Chem 1999. [DOI: 10.1021/jo982206c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Chiba
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tetsuya Aoyama
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| | - Rieko Suzuki
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tairo Oshima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| | - Katsumi Kakinuma
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji-shi, Tokyo 192-0392, Japan
| |
Collapse
|
21
|
Chiba A, Eguchi T, Oshima T, Kakinuma K. Synthesis of cyclopropane substrate analog for 3-isopropylmalate dehydrogenase and its mechanism-based inhibition. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00074-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Imada K, Inagaki K, Matsunami H, Kawaguchi H, Tanaka H, Tanaka N, Namba K. Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism. Structure 1998; 6:971-82. [PMID: 9739088 DOI: 10.1016/s0969-2126(98)00099-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND 3-Isopropylmalate dehydrogenase (IPMDH) and isocitrate dehydrogenase (ICDH) belong to a unique family of bifunctional decarboxylating dehydrogenases. Although the ICDH dimer catalyzes its reaction under a closed conformation, known structures of the IPMDH dimer (without substrate) adopt a fully open or a partially closed form. Considering the similarity in the catalytic mechanism, the IPMDH dimer must be in a fully closed conformation during the reaction. A large conformational change should therefore occur upon substrate binding. RESULTS We have determined the crystal structure of IPMDH from Thiobacillus ferrooxidans (Tf) complexed with 3-isopropylmalate (IPM) at 2.0 A resolution by the molecular replacement method. The structure shows a fully closed conformation and the substrate-binding site is quite similar to that of ICDH except for a region around the gamma-isopropyl group. The gamma group is recognized by a unique hydrophobic pocket, which includes Glu88, Leu91 and Leu92 from subunit 1 and Val193' from subunit 2. CONCLUSIONS A large movement of domain 1 is induced by substrate binding, which results in the formation of the hydrophobic pocket for the gamma-isopropyl moiety of IPM. A glutamic acid in domain 1, Glu88, participates in the formation of the hydrophobic pocket. The C beta and C gamma atoms of Glu88 interact with the gamma-isopropyl moiety of IPM and are central to the recognition of substrate. The acidic tip of Glu88 is likely to interact with the nicotinamide mononucleotide (NMN) ribose of NAD+ in the ternary complex. This structure clearly explains the substrate specificity of IPMDH.
Collapse
Affiliation(s)
- K Imada
- International Institute for Advanced Research, Matsushita Electric Industrial Co., Ltd., Seika, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Matsunami H, Kawaguchi H, Inagaki K, Eguchi T, Kakinuma K, Tanaka H. Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. Biosci Biotechnol Biochem 1998; 62:372-3. [PMID: 9532798 DOI: 10.1271/bbb.62.372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We constructed an overexpression system in Escherichia coli of the leuB gene coding for 3-isopropylmalate dehydrogenase in Thiobacillus ferrooxidans. E. coli harboring the plasmid we constructed, pKK leuB1, produced 17-fold the enzyme protein of the expression system previously used for purification. The substrate specificity of the enzyme was analyzed with synthetic (2R, 3S)-3-alkylmalates. The 3-isopropylmalate dehydrogenase of Thiobacillus ferrooxidans had broad specificity toward the alkylmalates.
Collapse
Affiliation(s)
- H Matsunami
- Department of Bioresources Chemistry, Faculty of Agriculture, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Synthesis of conformationally restricted substrate analogs and their interaction with 3-isopropylmalate dehydrogenase derived from Thermus thermophilus. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Suzuki T, Inoki Y, Yamagishi A, Iwasaki T, Wakagi T, Oshima T. Molecular and phylogenetic characterization of isopropylmalate dehydrogenase of a thermoacidophilic archaeon, Sulfolobus sp. strain 7. J Bacteriol 1997; 179:1174-9. [PMID: 9023199 PMCID: PMC178813 DOI: 10.1128/jb.179.4.1174-1179.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The archaeal leuB gene encoding isopropylmalate dehydrogenase of Sulfolobus sp. strain 7 was cloned, sequenced, and expressed in Escherichia coli. The recombinant Sulfolobus sp. enzyme was extremely stable to heat. The substrate and coenzyme specificities of the archaeal enzyme resembled those of the bacterial counterparts. Sedimentation equilibrium analysis supported an earlier proposal that the archaeal enzyme is homotetrameric, although the corresponding enzymes studied so far have been reported to be dimeric. Phylogenetic analyses suggested that the archaeal enzyme is homologous to mitochondrial NAD-dependent isocitrate dehydrogenases (which are tetrameric or octameric) as well as to isopropylmalate dehydrogenases from other sources. These results suggested that the present enzyme is the most primitive among isopropylmalate dehydrogenases belonging in the decarboxylating dehydrogenase family.
Collapse
Affiliation(s)
- T Suzuki
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Wallon G, Yamamoto K, Kirino H, Yamagishi A, Lovett ST, Petsko GA, Oshima T. Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:105-12. [PMID: 9003442 DOI: 10.1016/s0167-4838(96)00157-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
3-isopropylmalate dehydrogenase (IPMDH) from Escherichia coli was overexpressed, purified and crystallized. The enzyme was characterized and compared to its thermophilic counterpart from Thermus thermophilus strain HB8. As in the thermophile enzyme, the activity of E. coli IPMDH was dependent on the divalent cations, Mg2+ or Mn2+, with Mn2+ being the preferred cation. Activity was also strongly influenced by KCl: 0.3 M were necessary for the optimal activity. At 40 degrees C the K(m) of E. coli IPMDH was 105 microM for IPM and 321 microM for NAD, the kcat was 69 s-1. The half denaturation temperature was 64 degrees C, which was 20 degrees C lower than that of the thermophile enzyme.
Collapse
Affiliation(s)
- G Wallon
- Rosenstiel Medical Sciences Research Center, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dean AM, Dvorak L. The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase. Protein Sci 1995; 4:2156-67. [PMID: 8535253 PMCID: PMC2142978 DOI: 10.1002/pro.5560041022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The kinetic mechanism of the oxidative decarboxylation of 2R,3S-isopropylmalate by the NAD-dependent isopropylmalate dehydrogenase of Thermus thermophilus was investigated. Initial rate results typical of random or steady-state ordered sequential mechanisms are obtained for both the wild-type and two mutant enzymes (E87G and E87Q) regardless of whether natural or alternative substrates (2R-malate, 2R,3S-tartrate and/or NADP) are utilized. Initial rate data fail to converge on a rapid equilibrium-ordered pattern despite marked reductions in specificity (kcat/Km) caused by the mutations and alternative substrates. Although the inhibition studies alone might suggest an ordered kinetic mechanism with cofactor binding first, a detailed analysis reveals that the expected noncompetitive patterns appear uncompetitive because the dissociation constants from the ternary complexes are far smaller than those from the binary complexes. Equilibrium fluorescence studies both confirm the random binding of substrates and the kinetic estimates of the dissociation constants of the substrates from the binary complexes. The latter are not distributed markedly by the mutations at site 87. Mutations at site 87 do not affect the dissociation constants from the binary complexes, but do greatly increase the Michaelis constants, indicating that E87 helps stabilize the Michaelis complex of the wild-type enzyme. The available structural data, the patterns of the kinetics results, and the structure of a pseudo-Michaelis complex of the homologous isocitrate dehydrogenase of Escherichia coli suggest that E87 interacts with the nicotinamide ring.
Collapse
Affiliation(s)
- A M Dean
- Department of Biological Chemistry, Chicago Medical School, Illinois 60064-3095, USA
| | | |
Collapse
|
28
|
Zhang T, Koshland DE. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase. Protein Sci 1995; 4:84-92. [PMID: 7773180 PMCID: PMC2142962 DOI: 10.1002/pro.5560040111] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Thermus thermophilus 3-isopropylmalate dehydrogenase (IPMDH) and Escherichia coli isocitrate dehydrogenase (ICDH) are two functionally and evolutionarily related enzymes with distinct substrate specificities. To understand the determinants of substrate specificities of the two proteins, the substrate and coenzyme in IPMDH were docked into their respective binding sites based on the published structure for apo IPMDH and its sequence and structural homology to ICDH. This modeling study suggests that (1) the substrate and coenzyme (NAD) binding modes of IPMDH are significantly different from those of ICDH, (2) the interactions between the substrates and coenzymes help explain the differences in substrate specificities of IPMDH and ICDH, and (3) binding of the substrate and coenzyme should induce a conformational change in the structure of IPMDH.
Collapse
Affiliation(s)
- T Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
29
|
|