1
|
Fleming JM, Ginsburg E, McAndrew CW, Heger CD, Cheston L, Rodriguez-Canales J, Vonderhaar BK, Goldsmith P. Characterization of Δ7/11, a functional prolactin-binding protein. J Mol Endocrinol 2013; 50:79-90. [PMID: 23048206 PMCID: PMC3561765 DOI: 10.1530/jme-12-0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prolactin is essential for normal mammary gland development and differentiation, and has been shown to promote tumor cell proliferation and chemotherapeutic resistance. Soluble isoforms of the prolactin receptor (PrlR) have been reported to regulate prolactin bioavailability by functioning as 'prolactin-binding proteins'. Included in this category is Δ7/11, a product of alternate splicing of the PrlR primary transcript. However, the direct interactions of prolactin with Δ7/11, and the resulting effect on cell behavior, have not been investigated. Herein, we demonstrate the ability of Δ7/11 to bind prolactin using a novel proximity ligation assay and traditional immunoprecipitation techniques. Biochemical analyses demonstrated that Δ7/11 was heavily glycosylated, similar to the extracellular domain of the primary PrlR, and that glycosylation regulated the cellular localization and secretion of Δ7/11. Low levels of Δ7/11 were detected in serum samples of healthy volunteers, but were undetectable in human milk samples. Expression of Δ7/11 was also detected in six of the 62 primary breast tumor biopsies analyzed; however, no correlation was found with Δ7/11 expression and tumor histotype or other patient demographics. Functional analysis demonstrated the ability of Δ7/11 to inhibit prolactin-induced cell proliferation as well as alter prolactin-induced rescue of cell cycle arrest/early senescence events in breast epithelial cells. Collectively, these data demonstrate that Δ7/11 is a novel regulatory mechanism of prolactin bioavailability and signaling.
Collapse
Affiliation(s)
- J M Fleming
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Haj Hassan M, Klett D, Cahoreau C, Combarnous Y. Straightforward isolation of phosphatidyl-ethanolamine-binding protein-1 (PEBP-1) and ubiquitin from bovine testis by hydrophobic-interaction chromatography (HIC). J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2935-40. [DOI: 10.1016/j.jchromb.2011.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/18/2011] [Accepted: 08/21/2011] [Indexed: 11/28/2022]
|
3
|
Del Rincón SV, Rogers J, Widschwendter M, Sun D, Sieburg HB, Spruck C. Development and validation of a method for profiling post-translational modification activities using protein microarrays. PLoS One 2010; 5:e11332. [PMID: 20596523 PMCID: PMC2893156 DOI: 10.1371/journal.pone.0011332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/03/2010] [Indexed: 12/20/2022] Open
Abstract
Background Post-translational modifications (PTMs) impact on the stability, cellular location, and function of a protein thereby achieving a greater functional diversity of the proteome. To fully appreciate how PTMs modulate signaling networks, proteome-wide studies are necessary. However, the evaluation of PTMs on a proteome-wide scale has proven to be technically difficult. To facilitate these analyses we have developed a protein microarray-based assay that is capable of profiling PTM activities in complex biological mixtures such as whole-cell extracts and pathological specimens. Methodology/Principal Findings In our assay, protein microarrays serve as a substrate platform for in vitro enzymatic reactions in which a recombinant ligase, or extracts prepared from whole cells or a pathological specimen is overlaid. The reactions include labeled modifiers (e.g., ubiquitin, SUMO1, or NEDD8), ATP regenerating system, and other required components (depending on the assay) that support the conjugation of the modifier. In this report, we apply this methodology to profile three molecularly complex PTMs (ubiquitylation, SUMOylation, and NEDDylation) using purified ligase enzymes and extracts prepared from cultured cell lines and pathological specimens. We further validate this approach by confirming the in vivo modification of several novel PTM substrates identified by our assay. Conclusions/Significance This methodology offers several advantages over currently used PTM detection methods including ease of use, rapidity, scale, and sample source diversity. Furthermore, by allowing for the intrinsic enzymatic activities of cell populations or pathological states to be directly compared, this methodology could have widespread applications for the study of PTMs in human diseases and has the potential to be directly applied to most, if not all, basic PTM research.
Collapse
Affiliation(s)
- Sonia V Del Rincón
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | |
Collapse
|
4
|
Trott JF, Farley NR, Taatjes DJ, Hovey RC. Cloning and functional characterization of allelic variation in the porcine prolactin receptor. Domest Anim Endocrinol 2007; 33:313-34. [PMID: 16905289 DOI: 10.1016/j.domaniend.2006.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 11/18/2022]
Abstract
Prolactin (PRL) regulates various functions in pigs including reproduction, mammary development and lactation. We used 5'-rapid amplification of cDNA ends (5'-RACE) to clone three full-length alleles of the porcine PRL receptor (pPRLR) from Landrace (alleles LR2 and LR4) and Yucatan miniature (MP) pigs, corresponding to the A and B alleles previously reported to be associated with reproductive traits. When expressed in Chinese hamster ovary (CHO-K1) cells, all three pPRLRs transduced differentiation signals to a beta-casein promoter with the same effectiveness, where human growth hormone (hGH) and porcine PRL (pPRL) were more effective ligands than ovine PRL (oPRL). The pPRLR had a lower binding affinity for oPRL than pPRL while binding affinity for hGH was not different between the three pPRLR variants. The pPRLRs primarily localized to the cytoplasm with perinuclear concentration. In conclusion, we have cloned three allelic variants of the pPRLR and have functionally characterized these as different from the hPRLR. However, our data do not support the proposal that allelic variation of the pPRLR confers functional differences in vivo.
Collapse
Affiliation(s)
- Josephine F Trott
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, 221 Terrill Hall, 570 Main Street, Burlington, VT 05405, United States
| | | | | | | |
Collapse
|
5
|
Lu JC, Piazza TM, Schuler LA. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem 2005; 280:33909-16. [PMID: 16103113 PMCID: PMC1976473 DOI: 10.1074/jbc.m508118200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin regulates a variety of physiological processes, including mammary gland growth and differentiation, and recent findings support an important role in breast cancer development and progression. However, little is known about the trafficking of its receptor, a member of the cytokine receptor superfamily. In the present study, we examined the effect of ligand on the endogenous "long" isoform of the prolactin receptor in breast cancer cells. We found that prolactin caused rapid and prolonged down-regulation of this receptor. The prolactin-induced increase in degradation was blocked by inhibitors of both proteasomes and lysosomes. However, the ubiquitin-conjugating system was not required for internalization. Prolactin also resulted in the concomitant appearance of a cell-associated prolactin receptor fragment containing the extracellular domain. This latter process required proteasomal, but not metalloprotease, activity, distinguishing it from ectodomain "shedding" of other membrane receptors, which are secreted as binding proteins. The prolactin receptor fragment was labeled by surface biotinylation and independent of protein synthesis. Together, these data indicated that prolactin binding initiates limited proteasomal cleavage of its receptor, generating a cell-associated fragment containing the extracellular domain. Our findings described a new potential mediator of prolactin action and a novel mechanism whereby proteasomes modulate cellular processes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
| | - Timothy M. Piazza
- From the Department of Comparative Biosciences
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
| | - Linda A. Schuler
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
- To whom correspondence should be addressed: Dept. of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706. Tel.: 608-263-9825; Fax: 608-263-3926; E-mail:
| |
Collapse
|
6
|
Dupré S, Urban-Grimal D, Haguenauer-Tsapis R. Ubiquitin and endocytic internalization in yeast and animal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:89-111. [PMID: 15571811 DOI: 10.1016/j.bbamcr.2004.09.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Endocytosis is involved in a wide variety of cellular processes, and the internalization step of endocytosis has been extensively studied in both lower and higher eukaryotic cells. Studies in mammalian cells have described several endocytic pathways, with the main emphasis on clathrin-dependent endocytosis. Genetic studies in yeast have underlined the critical role of actin and actin-binding proteins, lipid modification, and the ubiquitin conjugation system. The combined results of studies of endocytosis in higher and lower eukaryotic cells reveal an interesting interplay in the two systems, including a crucial role for ubiquitin-associated events. The ubiquitylation of yeast cell-surface proteins clearly acts as a signal triggering their internalization. Mammalian cells display variations on the common theme of ubiquitin-linked endocytosis, according to the cell-surface protein considered. Many plasma membrane channels, transporters and receptors undergo cell-surface ubiquitylation, required for the internalization or later endocytic steps of some cell-surface proteins, whereas for others, internalization involves interaction with the ubiquitin conjugation system or with ancillary proteins, which are themselves ubiquitylated. Epsins and Eps15 (or Eps15 homologs), are commonly involved in the process of endocytosis in all eukaryotes, their critical role in this process stemming from their capacity to bind ubiquitin, and to undergo ubiquitylation.
Collapse
Affiliation(s)
- S Dupré
- Institut Jacques Monod-CNRS Universités Paris VI and Paris VII, 2 place Jussieu 75005 Paris, France
| | | | | |
Collapse
|
7
|
Nakamura M, Tsunematsu T, Tanigawa Y. Biochemical analysis of a T cell receptor alpha-like molecule involved in antigen-nonspecific suppression. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:196-202. [PMID: 12007794 DOI: 10.1016/s0167-4889(02)00172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Monoclonal nonspecific suppressor factor (MNSF), a lymphokine produced by murine T cell hybridoma, possesses a pleiotropic antigen-nonspecific suppressive function. We have shown that 70 kDa MNSF comprises an 8 kDa ubiquitin-like polypeptide (Ubi-L) and 62 kDa T cell receptor (TCR) alpha-like molecule. Ubi-L binds specifically to its 82 kDa receptor protein on target cells. In the current study, we have further characterized the biochemical nature of the TCR(alpha)-like molecule. The 62 kDa protein was separated into two species of 46 kDa and 16 kDa on reverse-phase HPLC. Anti-TCR(alpha) monoclonal antibody recognized the 46 kDa, but not the 16 kDa protein. Anti-TCRbeta monoclonal antibody failed to recognize these proteins. Ubi-L conjugated to the 46 kDa protein, whereas Ubi-L lacking its C-terminal Gly-Gly did not. Although Ubi-L was labile both to heating at 56 degrees C and to acidification to pH 4, the Ubi-L-46 kDa protein complex was unaffected by these treatments. In addition, the 46 kDa protein elongated the Ubi-L-induced protein tyrosine phosphorylation in a concanavalin A-activated murine T helper type 2 clone, D10 cells. One of the four tryptic peptide sequences derived from the 46 kDa protein was in alignment with a related sequence found in the J(alpha) region of the TCR(alpha), including the highly conserved motif F-G-X-G-T-X-L.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Clone Cells
- Hydrogen-Ion Concentration
- Immunosuppression Therapy
- Mice
- Peptides/chemistry
- Peptides/metabolism
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Cell Surface/metabolism
- Suppressor Factors, Immunologic/chemistry
- Temperature
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Morihiko Nakamura
- Department of Biochemistry, Shimane Medical University, Izumo, Japan.
| | | | | |
Collapse
|
8
|
Sommer T, Jarosch E, Lenk U. Compartment-specific functions of the ubiquitin-proteasome pathway. Rev Physiol Biochem Pharmacol 2001; 142:97-160. [PMID: 11190579 DOI: 10.1007/bfb0117492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T Sommer
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | | | |
Collapse
|
9
|
Nakamura M, Tanigawa Y. Protein tyrosine phosphorylation induced by ubiquitin-like polypeptide in murine T helper clone type 2. Biochem Biophys Res Commun 2000; 274:565-70. [PMID: 10913378 DOI: 10.1006/bbrc.2000.3179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubi-L, an isoform of the monoclonal nonspecific suppressor factor (MNSF), is an 8.5-kDa ubiquitin-like polypeptide. Ubi-L shows an antigen-nonspecific immunosuppressive action on various target cells including murine T helper type 2 clone, D10 cells. Most recently, we have characterized the biochemical nature of the receptor for Ubi-L. In this study, we observed that Ubi-L receptor ligation rapidly and transiently stimulated tyrosine phosphorylation of 65- and 31-kDa proteins in concanavalin A-activated D10 cells. The addition of neutralizing antibody to Ubi-L receptor inhibited the protein tyrosine phosphorylations and the Ubi-L-mediated suppression of IL-4 production by D10 cells. Genistein, a tyrosine kinase inhibitor, also reduced the induction of these protein tyrosine phosphorylations. IFNgamma, which is also known to inhibit the proliferative response of D10 cells, showed a synergistic effect with Ubi-L. Interestingly, IFNgamma enhanced the Ubi-L-induced tyrosine phosphorylation of the 31-kDa protein. These results suggest that tyrosine phosphorylation may be a key step in the initiation of the Ubi-L receptor-mediated transmembrane signaling.
Collapse
Affiliation(s)
- M Nakamura
- Department of Biochemistry, Shimane Medical University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | | |
Collapse
|
10
|
Héricourt F, Blanc S, Redeker V, Jupin I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 2000; 349:417-25. [PMID: 10880340 PMCID: PMC1221164 DOI: 10.1042/0264-6021:3490417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence.
Collapse
Affiliation(s)
- F Héricourt
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS-Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
11
|
Bebington C, Doherty FJ, Ndukwe G, Fleming SD. The progesterone receptor and ubiquitin are differentially regulated within the endometrial glands of the natural and stimulated cycle. Mol Hum Reprod 2000; 6:264-8. [PMID: 10694275 DOI: 10.1093/molehr/6.3.264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initiation of human pregnancy requires precisely timed development of the endometrium to receive the implanting blastocyst. The ovarian steroid hormones are essential for development and maintenance of a hospitable uterine environment. The hormonal regimes employed in assisted reproduction procedures are known to alter the abundance of specific endometrial receptors for these steroids. Since, in the presence of ligand, the progesterone receptor (PR) is known to be modified by the small intracellular protein ubiquitin, we have investigated the localization of ubiquitin and PR within the endometrial glands of 28 fertile women during a monitored menstrual cycle and also during a stimulated cycle prior to oocyte donation. We have also observed the number of gland cells undergoing cell division as demonstrated by the presence of Ki67 immunostaining. We demonstrate that the percentage of ubiquitin-positive nuclei increases from day four post-ovulation to day 10 post-ovulation in the natural cycle, but that this increase is not seen during a stimulated cycle. The presence of PR within glandular epithelium and the proliferation of gland cells were only observed during the early secretory phase and did not appear to vary significantly between the two cycles. We conclude that ubiquitin may play an important role in endometrial development and that perturbation of ubiquitin may be related to the lower implantation rate seen in the stimulated cycle.
Collapse
Affiliation(s)
- C Bebington
- Department of Obstetrics & Gynaecology, University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia
| | | | | | | |
Collapse
|
12
|
van Kerkhof P, Govers R, Alves dos Santos CM, Strous GJ. Endocytosis and degradation of the growth hormone receptor are proteasome-dependent. J Biol Chem 2000; 275:1575-80. [PMID: 10636847 DOI: 10.1074/jbc.275.3.1575] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin conjugation system is involved in ligand-induced endocytosis of the growth hormone receptor (GHR) via a cytosolic 10-amino acid ubiquitin-dependent endocytosis motif. Herein, we demonstrate that the proteasome is also involved in growth hormone receptor down-regulation. Ligand-induced degradation was blocked in the presence of specific proteasomal inhibitors. In addition, growth hormone (GH) internalization was inhibited, whereas the transferrin receptor cycle remained unaffected. A truncated GHR entered the cells independent of proteasome action. In addition, we show that GH internalization is independent of the presence of lysine residues in the cytosolic domain of the receptor, whereas its internalization can still be inhibited by proteasomal inhibitors. Thus, GHR internalization requires proteasome action in addition to an active ubiquitin conjugation system, but ubiquitination of the GHR itself seems not to be required.
Collapse
Affiliation(s)
- P van Kerkhof
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, Heidelberglaan 100, AZU-G02.525, 3584CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
13
|
Abstract
Internalization of membrane proteins has been studied for more than three decades without solving all the underlying mechanisms. Our knowledge of clathrin-mediated endocytosis is certainly sufficient to understand the basic principles. However, more detailed insight is required to recognize why different proteins enter clathrin-coated pits with different rates and affinities. In addition to clathrin coat components, at least two adaptor systems and even more accessory proteins have been described to preselect membrane proteins before they can enter cells. Recent experimental data have identified the ubiquitin-proteasome system as a regulatory system for endocytosis. This system is well-known for its basic regulatory function in protein degradation, and controls a magnitude of key events. The ubiquitin-proteasome system is now identified as a regulator of the endocytosis of selected membrane proteins. In this review, we will discuss the complexity and implications of this mechanism for receptor-mediated endocytosis.
Collapse
Affiliation(s)
- G J Strous
- Department of Cell Biology, Faculty of Medicine and Institute of Biomembranes, Utrecht University AZU G02.525, The Netherlands.
| | | |
Collapse
|
14
|
Abstract
In unstimulated mammary epithelial cells from virgin mice, the prolactin receptor exists as two isoforms: a 78 and a 70 kDa species. Both proteins are reduced to a single 61 kDa molecule after N-glycanase F treatment, indicating that their size difference is solely a result of carbohydrate content. Membrane fractionation experiments reveal that the smaller species is exclusively intracellular, while the larger one is located on the cell surface. Nitric oxide (NO) stimulates the migration of prolactin receptors from an internal pool to the plasmalemma in only 30 min and this redistribution is associated with an increase in molecular weight. Redistribution is blocked by swainsonine, but not by castanospermine or 1-deoxymannojirimycin, suggesting that the glycosylation step involved with translocation is either alpha-mannosidase II or N-acetylglucosamine (NAG) transferase I. The former is unaffected by NO but the activity of the latter is doubled 30 min after exposure to NO. These data suggest that prolactin receptors are retained intracellularly because of their incomplete N-glycosylation and that NO triggers their redistribution by stimulating the completion of this process, in part by increasing NAG transferase I activity.
Collapse
Affiliation(s)
- F F Bolander
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA.
| |
Collapse
|
15
|
Altmann F, Staudacher E, Wilson IB, März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 1999; 16:109-23. [PMID: 10612411 DOI: 10.1023/a:1026488408951] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells. With regard to protein folding and post-translational processing, insect cells are second only to mammalian cell lines. Evidence is presented that many processing events known in mammalian systems do also occur in insects. In this review, emphasis is laid, however, on protein glycosylation, particularly N-glycosylation, which in insects differs in many respects from that in mammals. For instance, truncated oligosaccharides containing just three or even only two mannose residues and sometimes fucose have been found on expressed proteins. These small structures can be explained by post-synthetic trimming reactions. Indeed, cell lines having a low level of N-acetyl-beta-glucosaminidase, e.g. Estigmene acrea cells, produce N- glycans with non-reducing terminal N-acetylglucosamine residues. The Trichoplusia ni cell line TN-5B1-4 was even found to produce small amounts of galactose terminated N-glycans. However, there appears to be no significant sialylation of N-glycans in insect cells. Insect cells expressed glycoproteins may, though, be alpha1,3-fucosylated on the reducing-terminal GlcNAc residue. This type of fucosylation renders the N-glycans on one hand resistant to hydrolysis with PNGase F and on the other immunogenic. Even in the absence of alpha1,3-fucosylation, the truncated N-glycans of glycoproteins produced in insect cells constitute a barrier to their use as therapeutics. Attempts and strategies to "mammalianise" the N-glycosylation capacity of insect cells are discussed.
Collapse
Affiliation(s)
- F Altmann
- Institut für Chemie der Universität für Bodenkultur Wien.
| | | | | | | |
Collapse
|
16
|
Govers R, ten Broeke T, van Kerkhof P, Schwartz AL, Strous GJ. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J 1999; 18:28-36. [PMID: 9878047 PMCID: PMC1171099 DOI: 10.1093/emboj/18.1.28] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In addition to its role in selective protein degradation, the conjugation of ubiquitin to proteins has also been implicated in the internalization of plasma membrane proteins, including the alpha-factor receptor Ste2p, uracil permease Fur4p, epithelial sodium channel ENaC and the growth hormone receptor (GHR). Binding of GH to its receptor induces receptor dimerization, resulting in the activation of signal transduction pathways and an increase of GHR ubiquitination. Previously, we have shown that the ubiquitin conjugation system mediates GH-induced GHR internalization. Here, we present evidence that a specific domain of the GHR regulates receptor endocytosis via the ubiquitin conjugation system. This ubiquitin-dependent endocytosis (UbE) motif consists of the amino acid sequence DSWVEFIELD and is homologous to sequences in other proteins, several of which are known to be ubiquitinated. In addition, we show that GH internalization by a truncated GHR is independent of the presence of lysine residues in the cytosolic domain of this receptor, while internalization still depends on an intact ubiquitin conjugation system. Thus, GHR internalization requires the recruitment of the ubiquitin conjugation system to the GHR UbE motif rather than the conjugation of ubiquitin to the GHR itself.
Collapse
Affiliation(s)
- R Govers
- Department of Cell Biology, Faculty of Medicine and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Hirosawa-Takamori M, Matsruura Y, Tanaka S, Ogawa T, Shiota K. Characterization of Rat Mid-Pregnancy-Specific Placental Lactogen Produced by Baculovirus / Insect Cell Expression System. J Reprod Dev 1999. [DOI: 10.1262/jrd.45.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Satoshi Tanaka
- Animal Resource Science/Veterinary Medical Science, University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoya Ogawa
- Animal Resource Science/Veterinary Medical Science, University of Tokyo, Tokyo 113-8657, Japan
| | - Kunio Shiota
- Animal Resource Science/Veterinary Medical Science, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
19
|
Weiss-Messer E, Ber R, Amit T, Barkey RJ. Characterization and regulation of prolactin receptors in MA-10 Leydig cells. Mol Cell Endocrinol 1998; 143:53-64. [PMID: 9806350 DOI: 10.1016/s0303-7207(98)00134-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to further characterize the prolactin receptors (PRL-R) previously reported in the murine Leydig tumor MA-10 cell line, as well as to study their homologous and heterologous regulation. Two forms of PRL-R, a high and a low molecular weight form, were revealed by studies of covalent crosslinking of 125I-human GH to cultured MA-10 cells or cell membranes and immunoprecipitation of the solubilized PRL-R complexes with polyclonal anti PRL-R antibody, followed by SDS-PAGE and autoradiography. The long form had a molecular weight of 101 kDa and was predominant when the study was performed in the presence of protease inhibitors. The short form, with a molecular weight of 39 kDa, appeared, at least in part, to be a proteolytic product of the longer form. The same size forms of PRL-R were detected by crosslinking studies in the parental C57BL/6 mouse testicular Leydig cells, indicating the physiological relevance of the MA-10 cell model to the study of Leydig cell PRL-R. Homologous down-regulation of PRL-R was demonstrated in cultured MA-10 cells exposed for 24 h to increasing concentrations of PRL. In contrast, heterologous, 3 5-fold up-regulation of PRL-R was induced by various cAMP-elevating agents, including 8-bromo-cAMP (10(-4) -10(-3) M), dibutyryl cAMP (3 x 10(-3) M) and cholera toxin (1-10 ng/ml), although not by hCG (up to 100 ng/ml). This up-regulatory effect was apparently the result of a change in affinity, since cholera toxin caused a 2.4-fold increase in PRL-R affinity, with no change in the number of binding sites. In summary, these studies provide further evidence that MA-10 Leydig cells can serve as a physiologically relevant model for the study of PRL and PRL-R interactions, both at the functional level, as shown in our previous study, and at the structural and regulatory levels as shown in the current study.
Collapse
Affiliation(s)
- E Weiss-Messer
- Department of Pharmacology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | | | |
Collapse
|
20
|
Buteau H, Pezet A, Ferrag F, Perrot-Applanat M, Kelly PA, Edery M. N-glycosylation of the prolactin receptor is not required for activation of gene transcription but is crucial for its cell surface targeting. Mol Endocrinol 1998; 12:544-55. [PMID: 9544990 DOI: 10.1210/mend.12.4.0085] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The functional importance of the three oligosaccharide chains linked to Asn35, Asn80 and Asn108, of the long form of the PRL receptor (PRLR) was investigated by individual or multiple substitutions of asparagyl residues using site-directed mutagenesis and transient transfection of these mutated forms of PRLR in monkey kidney cells, Chinese hamster ovary, and human 293 fibroblast cells that exhibit different levels of protein expression. Scatchard analysis performed on monkey kidney cells revealed that the mutants possess the same affinity for PRL as compared with wild-type PRLR. A strong reduction (90%) of the aglycosylated PRLR expression at the cell surface of monkey kidney or human 293 cells was observed. Immunohistochemistry experiments using an anti-PRLR monoclonal antibody showed an accumulation of the deglycosylated receptor in the Golgi area of transfected monkey kidney cells. Upon PRL stimulation, the aglycosylated PRLR associated with Janus kinase 2 was phosphorylated and was able to activate a beta-casein gene promoter in transfected 293 fibroblast cells. The active form of the PRLR was thus acquired independently of glycosylation. By contrast, no functional activity was detectable in transfected Chinese hamster ovary cells that expressed low levels of PRLR. These studies demonstrate that the glycosylation on the asparagyl residues of the extracellular domain of the PRLR is crucial for its cell surface localization and may affect signal transduction, depending on the cell line.
Collapse
Affiliation(s)
- H Buteau
- INSERM U344: Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Bieth E, Cahoreau C, Cholin S, Molinas C, Rochiccioli P, Devauchelle G, Tauber M. Human growth hormone receptor: cloning and expression of the full-length complementary DNA after site-directed inactivation of a cryptic bacterial promoter. Gene X 1997; 194:97-105. [PMID: 9266678 DOI: 10.1016/s0378-1119(97)00173-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Growth hormone receptor is a cytokine-type receptor which is required for normal somatic growth and for numerous metabolic processes. Its complementary DNA (cDNA) has been isolated in various species leading to intensive studies to elucidate the mechanism of action of the growth hormone. However, serious difficulties have been reported in cloning in Escherichia coli, an intact full-length human cDNA. In this study, the cDNA is shown to contain a cryptic bacterial promoter driving inappropriate expression of a part of human growth hormone (hGH) receptor which is toxic for E. coli growth. Identification of this promoter and its inactivation by changing only one nucleotide led us to obtain stable bacterial clones containing a high copy number of full-length coding sequences. This molecular clone was used in a baculovirus/insect cell system to produce large amounts of glycosylated recombinant receptor. Binding studies with 125I-labelled hGH revealed an affinity constant of 2.8 x 10(9) M(-1), similar to that reported for the native liver receptor. This report described a general method of cloning which could be applied to similar unclonable cDNA fragments.
Collapse
Affiliation(s)
- E Bieth
- Centre de Recherche sur la Croissance, Pavillon Leriche, Centre Hospitalier Universitaire de Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Garnier L, Cahoreau C, Devauchelle G, Cérutti M. The intracellular domain of the rabbit prolactin receptor is able to promote the secretion of a passenger protein via an unusual secretory pathway in lepidopteran cells. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:1101-4. [PMID: 9636283 DOI: 10.1038/nbt1095-1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously shown that the intracellular domain of the rabbit prolactin receptor (rbPRL-R), lacking typical signal sequences, was very efficiently secreted into the culture medium when expressed in the baculovirus-insect cell system. We have sought to take advantage of this characteristic for secreting cytoplasmic or nuclear proteins. We have constructed a series of recombinant viruses expressing a foreign gene product fused to the intracellular domain of rbPRL-R. Two passenger genes were used, one encoding a cytoplasmic protein (cyclin B) and the other a nuclear protein (cyclin A). The intracellular domain of rbPRL-R was able to promote the export of these two chimeric proteins with a very high efficiency. This new system should prove useful for secretion of proteins which do not require the post-translational modifications of the classical secretory pathway to be fully active.
Collapse
Affiliation(s)
- L Garnier
- Laboratoire de Pathologie Comparée, Centre National de la Recherche Scientifique URA 1184, Saint-Christol-les-Alès, France.
| | | | | | | |
Collapse
|
23
|
Abstract
Determination of the structure of integral membrane proteins is a challenging task that is essential to understand how fundamental biological processes (such as photosynthesis, respiration and solute translocation) function at the atomic level. Crystallisation of membrane proteins in 3D has led to the determination of four atomic resolution structures [photosynthetic reaction centres (Allenet al. 1987; Changet al. 1991; Deisenhofer & Michel, 1989; Ermleret al. 1994); porins (Cowanet al. 1992; Schirmeret al. 1995; Weisset al. 1991); prostaglandin H2synthase (Picotet al. 1994); light harvesting complex (McDermottet al. 1995)], and crystals of membrane proteins formed in the plane of the lipid bilayer (2D crystals) have produced two more structures [bacteriorhodopsin (Hendersonet al. 1990); light harvesting complex (Kühlbrandtet al. 1994)].
Collapse
Affiliation(s)
- R Grisshammer
- Centre for Protein Engineering, MRC Centre, Cambridge, UK
| | | |
Collapse
|
24
|
Löw P, Doherty FJ, Fellinger E, Sass M, Mayer RJ, László L. Related organelles of the endosome-lysosome system contain a different repertoire of ubiquitinated proteins in Sf9 insect cells. FEBS Lett 1995; 368:125-31. [PMID: 7615065 DOI: 10.1016/0014-5793(95)00624-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two components of the endosomal/lysosomal compartment of Sf9 cells, multivesicular bodies (MVB) and light vacuoles with membrane complexes (LVMC) have been isolated and probed for ubiquitin protein conjugates with a specific antibody. Immunogold electron microscopy indicates that whereas ubiquitin-protein conjugates are localised to electron dense areas of MVB they are associated with the membranes of LVMC. Five ubiquitinated polypeptides are revealed in MVB by immunoblotting while numerous ubiquitinated species forming a smear following electrophoresis are present in LVMC. We suggest two possible routes for entry of ubiquitin-protein conjugates into these organelles, via the cell surface and via primary lysosomes.
Collapse
Affiliation(s)
- P Löw
- Department of General Zoology, Eötvös University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|