1
|
Kah O. A 45-years journey within the reproductive brain of fish. Gen Comp Endocrinol 2020; 288:113370. [PMID: 31870884 DOI: 10.1016/j.ygcen.2019.113370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
This article summarizes the scientific carrier of Dr. Olivier Kah, currently emeritus research director at the National Center of Scientific Research (CNRS) in France. Olivier Kah partly grew up in Africa where he developed a strong interest for animals. He studied biology in Paris and Bordeaux. He next received his PhD at the University of Bordeaux en 1978 and his Doctor of Science degree in 1983. He joined the CNRS in 1979 until his retirement in 2016. Olivier Kah dedicated his carrier to the study of reproduction, in particular to the roles of brain neuropeptides and neurotransmitters in the control of the reproductive axis in vertebrates, mostly fish. More specifically, Olivier Kah was specialized in the use of morphofunctional techniques that he implemented to the study of the organization of the hypothalamo-pituitary complex. He was also interested in the steroid feedback and studied intensively the expression and regulation of estrogen and glucocorticoid receptors in the rainbow trout and the zebrafish. In the last 10 years, Olivier Kah's team focused on the expression and regulation of aromatase in the brain and established that aromatase expression is restricted to a unique brain cell type, the radial glial cells, which serve as progenitors during the entire life of fish. He is also interested in the impact of endocrine disruptors using the zebrafish as a model and recently his team has developed an exquisitely sensitive in vivo assay to screen estrogenic chemicals on zebrafish embryos.
Collapse
Affiliation(s)
- Olivier Kah
- Research Institute for Environmental and Occupational Health, Université de Rennes 1, 9 Av. Professeur Leon Bernard, Rennes 35 000, France.
| |
Collapse
|
2
|
Shahjahan M, Kitahashi T, Parhar IS. Central pathways integrating metabolism and reproduction in teleosts. Front Endocrinol (Lausanne) 2014; 5:36. [PMID: 24723910 PMCID: PMC3971181 DOI: 10.3389/fendo.2014.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023] Open
Abstract
Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
Collapse
Affiliation(s)
- Md. Shahjahan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia e-mail:
| |
Collapse
|
3
|
Vosges M, Kah O, Hinfray N, Chadili E, Le Page Y, Combarnous Y, Porcher JM, Brion F. 17α-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reprod Toxicol 2011; 33:198-204. [PMID: 21549831 DOI: 10.1016/j.reprotox.2011.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/30/2022]
Abstract
There is growing evidence that neuroendocrine circuits controlling development and reproduction are targeted by EDCs. We have previously demonstrated that low concentrations of 17α-ethinylestradiol (EE2) disrupt the development of forebrain GnRH neurons during zebrafish development. The objectives of the present study were to determine whether the weak estrogenic compound, nonylphenol (NP), could elicit similar effects to EE2 and to what extent the estrogen receptors are involved in mediating these effects. Using immunohistochemistry, we confirmed that EE2 exposure induces an increase in the number of GnRH-ir neurons and we demonstrated that NP is able to produce similar effects in a concentration-dependent manner. The effects of both NP and EE2 were shown to be blocked by the estrogen receptors (ERs) antagonist ICI 182-780, demonstrating the involvement of functional ERs in mediating their effects. Altogether, these results highlight the need to consider neuroendocrine networks as critical endpoints in the field of endocrine disruption.
Collapse
Affiliation(s)
- Mélanie Vosges
- Unité d'évaluation des risques écotoxicologiques, Direction des Risques Chroniques, Institut National de l'Environnement Industriel et des Risques, BP 2. F-60550 Verneuil-en-Halatte, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Neurosecretory neurons of the nucleus preopticus (NPO) express salmon GnRH mRNA and show reproduction phase-related variation in the female Indian major carp, Cirrhinus cirrhosus. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:247-52. [DOI: 10.1016/j.cbpa.2008.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 11/22/2022]
|
5
|
Vetillard A, Ferriere F, Jego P, Bailhache T. Regulation of salmon gonadotrophin-releasing hormone gene expression by sex steroids in rainbow trout brain. J Neuroendocrinol 2006; 18:445-53. [PMID: 16684134 DOI: 10.1111/j.1365-2826.2006.01432.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Salmon gonadotrophin-releasing hormone (sGnRH) is the major form of gonadotrophin-releasing hormone in the brain of Salmonids and is encoded by two different genes: sGnRH1 and sGnRH2. In the present study, we examined the expression patterns of these two genes during development and throughout the reproductive cycle of the female rainbow trout (Oncorhynchus mykiss), and also investigated the feedback action of sex steroids on brain mRNA levels. Both genes are expressed as early as 14 days postfertilisation and show a similar expression pattern during early life stages. In the adult female, sGnRH1 and sGnRH2 mRNAs are both present in neurones located in the ventral forebrain. This gene expression in the brain appears to be low during early vitellogenesis, and increases during oocyte maturation to reach a maximum after ovulation. The expression of sGnRH1 was not modified by in vivo steroid treatments in any experiment; however, testosterone and 5alpha-dihydrotestosterone down-regulate brain sGnRH2 gene in immature and adult ovariectomised females. Oestradiol treatment decreases sGnRH2 mRNA levels in the brain of adult ovariectomised females only. In the triploid fish brain, none of the steroids affect brain sGnRH mRNA levels. Our results suggest that, unlike sGnRH1, the sGnRH2 gene is under a strongly androgenic inhibitory control in the immature and adult female rainbow trout.
Collapse
Affiliation(s)
- A Vetillard
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
6
|
Amano M, Okubo K, Yamanome T, Yamada H, Aida K, Yamamori K. Changes in brain GnRH mRNA and pituitary GnRH peptide during testicular maturation in barfin flounder. Comp Biochem Physiol B Biochem Mol Biol 2005; 138:435-43. [PMID: 15325345 DOI: 10.1016/j.cbpc.2004.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 04/18/2004] [Accepted: 05/31/2004] [Indexed: 10/26/2022]
Abstract
The pleuronectid barfin flounder (Verasper moseri) expresses three forms of gonadotropin-releasing hormone (GnRH) in the brain. To clarify the physiological roles of the respective forms during testicular maturation, changes in brain GnRH mRNA levels and pituitary GnRH peptide levels were examined by real-time quantitative PCR and time-resolved fluoroimmunoassay, respectively. Fish hatched in April 2000. The gonadosomatic index remained low until October 2001 and then rapidly increased in January 2002. Fish continued to grow from hatching through testicular maturation. Fish spermiated in March 2002. The amount of seabream GnRH (sbGnRH) mRNA per brain significantly increased in January 2002 and remained at high levels in March 2002. The amounts of salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II) mRNA per brain did not show significant changes during the experimental periods. Pituitary sbGnRH peptide content significantly increased in March 2002. Pituitary sGnRH peptide and cGnRH-II peptide contents were extremely low compared to sbGnRH peptide levels and showed no significant changes during the experiment. These results indicate that sbGnRH is involved in the testicular maturation of barfin flounder.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Gaikwad A, Biju KC, Muthal PL, Saha S, Subhedar N. Role of neuropeptide Y in the regulation of gonadotropin releasing hormone system in the forebrain of Clarias batrachus (Linn.): Immunocytochemistry and high performance liquid chromatography-electrospray ionization-mass spectrometric analysis. Neuroscience 2005; 133:267-79. [PMID: 15893649 DOI: 10.1016/j.neuroscience.2004.12.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 12/12/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Although the importance of neuropeptide Y (NPY) in the regulation of gonadotropin releasing hormone (GnRH) and reproduction has been highlighted in recent years, the neuroanatomical substrate within which these substances might interact has not been fully elucidated. Present work was undertaken with a view to define the anatomical-physiological correlates underlying the role exercised by NPY in the regulation of GnRH in the forebrain of the teleost Clarias batrachus. Application of double immunocytochemistry revealed close associations as well as colocalizations of the two peptides in the olfactory receptor neurons (ORNs), olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tract, fibers in the area ventralis telencephali/pars supracommissuralis and cells as well as fibers in the pituitary. NPY containing axons were found to terminate in the vicinity of GnRH cells in the pituitary with light as well as electron microscopy. Double immunoelectron microscopy demonstrated gold particles for NPY and GnRH colocalized on the membrane and in dense core of the secretory granules in the cells distributed in all components of the pituitary gland. To assess the physiological implication of these observations, NPY was injected via the intracranial route and the response of GnRH immunoreactive system was evaluated by relative quantitative morphometry as well as high performance liquid chromatography (HPLC) analysis. Two hours following NPY (20 ng/g body weight) administration, a dramatic increase was observed in the GnRH immunoreactivity in the ORNs, in the fibers of the olfactory bulb (163%) and medial olfactory tract (351%). High performance liquid chromatography-electrospray ionization-mass spectrometric analysis confirmed the immunocytochemical data. Significant rise in the salmon GnRH (sGnRH)-like peptide content was observed in the olfactory organ (194.23%), olfactory bulb (146.64%), telencephalon+preoptic area (214.10%) and the pituitary (136.72%) of the NPY-treated fish. However, GnRH in the hypothalamus was below detection limit in the control as well as NPY-treated fish. Present results suggest the involvement of NPY in the up-regulation of sGnRH containing system at different level of neuraxis extending from the olfactory epithelium to the pituitary in the forebrain of C. batrachus.
Collapse
Affiliation(s)
- A Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
8
|
Lee YH, Du JL, Shih YS, Jeng SR, Sun LT, Chang CF. In vivo and in vitro sex steroids stimulate seabream gonadotropin-releasing hormone content and release in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol 2004; 139:12-9. [PMID: 15474531 DOI: 10.1016/j.ygcen.2004.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/15/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
The objective of the present study was to investigate the regulation of seabream gonadotropin-releasing hormone (sbGnRH) release using in vivo and in vitro approaches in the protandrous black porgy, Acanthopagrus schlegeli. Estradiol-17beta (E2), testosterone (T), and 11-ketotestosterone (11-KT) were found to significantly stimulate the increase of sbGnRH levels in pituitary of black porgy after 5-96 h of injection. An in vitro culture system using dispersed brain neurons was also developed to investigate the effects of various steroids on sbGnRH release. Different doses (10(-6) - 10(-12) M) of E2, T, 11-KT, and cortisol were applied during 6 h experiment. KCl stimulated sbGnRH release at a dose- and time-dependent manner. The concentration of sbGnRH increased 2-fold in the highest dose of KCl treatment compared to the control. Treatments with E2, T, 11-KT and cortisol significantly stimulated the release of sbGnRH from the cultured brain neurons. The concentration of sbGnRH in medium was increased by 2-, 1.9-, 2.1-, and 4.9-fold when treated with E2, T, 11-KT, and cortisol, respectively, as compared to the respective control. Cholesterol did not have any stimulatory effects in the release of sbGnRH. The results showed that sex steroids and cortisol had direct effect on brain neuronal cells stimulating the release of sbGnRH.
Collapse
Affiliation(s)
- Yan-Horn Lee
- National Museum of Marine Biology and Aquarium, Pintung 944, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
9
|
Yamada H, Amano M, Okuzawa K, Chiba H, Iwata M. Maturational changes in brain contents of salmon GnRH in rainbow trout as measured by a newly developed time-resolved fluoroimmunoassay. Gen Comp Endocrinol 2002; 126:136-43. [PMID: 12030769 DOI: 10.1006/gcen.2002.7791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A newly developed time-resolved fluoroimmunoassay (TR-FIA) for salmon gonadotropin-releasing hormone (sGnRH) was applied to investigate changes in sGnRH content in discrete brain areas at three different gonadal stages in the rainbow trout, Oncorhynchus mykiss. The sensitivity (6.8 pg/well), specificity, intraassay coefficients of variation (<7.4%), and interassay coefficients of variation (<10.3%) of the assay system were almost the same as those for the radioimmunoassay. Displacement curves of serially diluted brain extracts of nine teleost fish (freshwater fish and seawater fish) including rainbow trout paralleled that of the sGnRH standard, indicating that the sGnRH TR-FIA is widely applicable to the measurement of the brain sGnRH contents of various fishes. The sGnRH content in female hypothalamus decreased during final gonad maturation, whereas the sGnRH levels in pituitary were highest at the time of spermiating in males or ovulating in females, decreasing significantly thereafter. In contrast, there were no changes in the sGnRH contents of olfactory bulbs, telencephalon, optic tectum + thalamus, and cerebellum + medulla oblongata during final maturation, except for olfactory bulbs of males. Changes in sGnRH contents in the hypothalamus and the pituitary indicate that sGnRH is involved in final maturation (ovulation or spermiation) in the rainbow trout.
Collapse
Affiliation(s)
- Hideaki Yamada
- School of Fisheries Sciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan
| | | | | | | | | |
Collapse
|
10
|
Rodríguez-Gómez FJ, Rendón MC, Sarasquete C, Muñoz-Cueto JA. Distribution of gonadotropin-releasing hormone immunoreactive systems in the brain of the Senegalese sole, Solea senegalensis. THE HISTOCHEMICAL JOURNAL 1999; 31:695-703. [PMID: 10646833 DOI: 10.1023/a:1003917913297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present paper reports the immunohistochemical distribution of the gonadotropin-releasing hormone (GnRH) structures in the brain of the Senegalese sole, Solea senegalensis. In this study, we have used two antibodies against the salmon GnRH and chicken GnRH-II forms and the streptavidin-biotin-peroxidase complex method. Immunoreactive cell bodies are observed at the junction between the olfactory bulbs and the telencephalon (terminal nerve ganglion cells), in the ventral telencephalon, in the preoptic parvocellular nucleus, and in the synencephalic nucleus of the medial longitudinal fasciculus. GnRH-immunoreactive fibres were found extensively throughout the brain, located in the telencephalon, preoptic area, hypothalamus, hypophysis, optic tectum, midbrain and rhombencephalon. The antisera used in this study against the two GnRH forms exhibited cross-reactivity on the same cell masses and did not allow cell populations expressing different GnRH forms to be discriminated clearly. However, anti-salmon GnRH immunostained the GnRH cells and fibres of the forebrain much more intensely, whereas the anti-chicken GnRH antiserum shows a higher immunoreactivity on synencephalic cells of the medial longitudinal fasciculus.
Collapse
Affiliation(s)
- F J Rodríguez-Gómez
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Marine Sciences, University of Cádiz, Spain
| | | | | | | |
Collapse
|
11
|
Davies B, Bromage N, Swanson P. The brain-pituitary-gonadal axis of female rainbow trout Oncorhynchus mykiss: effects of photoperiod manipulation1. Gen Comp Endocrinol 1999; 115:155-66. [PMID: 10375474 DOI: 10.1006/gcen.1999.7301] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two groups of post-spawned female rainbow trout were exposed to two different photoperiods, an ambient photoperiod (56 degrees N) and a combination of long and short photoperiods (a constant 18L:6D from February 1 until May 10, then a constant 6L:18D), which acted to advance maturation and spawning. The stimulatory long-short photoperiod advanced spawning by 3-4 months and correspondingly advanced peaks in serum levels of 17beta-estradiol, testosterone, calcium (an index of vitellogenin), and GTH II. Earlier events in gonadal recrudescence appeared to be less affected by the photoperiod. The initiation of exogenous vitellogenesis coincided with high levels of both pituitary salmon gonadotropin-releasing hormone (sGnRH) content and serum follicle-stimulating hormone (FSH, GTH I) levels. High levels of serum FSH were associated with rapid gonadal growth in the fish exposed to the stimulatory long-short photoperiod. In contrast, the fish exposed to the ambient photoperiod showed gonadal steroid production, formation of vitellogenin, and secondary oocyte growth without any detectable increase in serum FSH levels. The possible roles and interactions of sGnRH, gonadotropins, and steroids with respect to normal and artificially stimulated ovarian maturation are discussed.
Collapse
Affiliation(s)
- B Davies
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | | | | |
Collapse
|
12
|
Amano M, Urano A, Aida K. Distribution and function of gonadotropin-releasing hormone (GnRH) in the teleost brain. Zoolog Sci 1997; 14:1-11. [PMID: 9200976 DOI: 10.2108/zsj.14.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Amano
- Nikko Branch, National Research Institute of Aquaculture, Tochigi, Japan
| | | | | |
Collapse
|
13
|
Navas JM, Anglade I, Bailhache T, Pakdel F, Breton B, Jégo P, Kah O. Do gonadotrophin-releasing hormone neurons express estrogen receptors in the rainbow trout? A double immunohistochemical study. J Comp Neurol 1995; 363:461-74. [PMID: 8847411 DOI: 10.1002/cne.903630309] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A double immunocytochemical procedure, with two different chromogens, was used to compare the respective distributions of estrogen receptor-immunoreactive cells and gonadotrophin-releasing hormone-immunoreactive neurons on the same sections of the brains of adult male and female rainbow trout (Oncorhynchus mykiss). Estrogen receptor-immunoreactive cells were observed in the ventral and lateral telencephalon, the preoptic region, the mediobasal hypothalamus, and the ventromedial thalamic nucleus. Gonadotrophin-releasing hormone-immunoreactive perikarya were detected in the olfactory bulbs, the ventral telencephalon, the preoptic area, and the mediobasal hypothalamus. Double-staining studies showed that, although some estrogen receptor-positive cells were in close proximity to gonadotrophin-releasing hormone-immunoreactive perikarya, careful examination of 550 gonadotrophin-releasing hormone-positive cells from five adult females and two adult males failed to demonstrate any evidence that gonadotrophin-releasing hormone neurons coexpress estrogen receptor in the brain of the rainbow trout. The present study provides, for the first time in teleosts, morphological evidence that gonadotrophin-releasing hormone neurons do not represent major direct targets for estradiol, suggesting that the positive feedback effects of estradiol onto the gonadotrophin-releasing hormone system are likely to be conveyed via other cell populations.
Collapse
Affiliation(s)
- J M Navas
- Laboratoire de Neurocytochimie Fonctionnelle, URA, Talence, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Andersson E, Bogerd J, Borg B, Sharp PJ, Sherwood NM, Goos HJT. Characterization and localization of gonadotropin-releasing hormone in the brain and pituitary of the three-spined stickleback, Gasterosteus aculeatus. Cell Tissue Res 1995. [DOI: 10.1007/bf00318162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Bailhache T, Arazam A, Klungland H, Aleström P, Breton B, Jego P. Localization of salmon gonadotropin-releasing hormone mRNA and peptide in the brain of Atlantic salmon and rainbow trout. J Comp Neurol 1994; 347:444-54. [PMID: 7822493 DOI: 10.1002/cne.903470310] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The decapeptide gonadotropin-releasing hormone (GnRH) is a key hormone for the central regulation of reproduction. The distribution of salmon GnRH (sGnRH), which is the major form in salmonids, has been studied in different fish species by immunocytochemistry. Discrepancies in data concerning the distribution of sGnRH perikarya led us to investigate this problem in two species, the Atlantic salmon and the rainbow trout, with in situ hybridizaiton of sGnRH messenger, a highly specific molecular tool. By Northern blot analysis, the rainbow trout sGnRH messenger appears to be about 500 bases in length, which is close to those isolated from Atlantic salmon or masu salmon and characterized previously. In situ hybridization with riboprobes generated with Atlantic salmon sGnRH cDNA demonstrated that sGnRH perikarya are restricted to the ventral part of olfactory bulbs, telencephalon, and preoptic area. They are distributed on a nearly continuous line extending from the olfactory bulbs to the preoptic area in both salmonid species studied. Despite the presence of GnRH-like immunoreactivity in the preoptic magnocellular nucleus (NPOm) and in the tegmentum of the midbrain (MT), the sGnRH mRNA is not present in these two structures. Stained cells in NPOm could be target cells for GnRH and immunoreactive neurons in MT are likely to be chicken GnRH-II containing cells. Our study not only gives a precise distribution of the sGnRH system in two salmonids, Atlantic salmon and rainbow trout, but also clarifies the ambiguous data published up to now in rainbow trout.
Collapse
Affiliation(s)
- T Bailhache
- Laboratoire de Physiologie des Régulations, Université de Rennes 1, France
| | | | | | | | | | | |
Collapse
|
16
|
Bolduc TG, Sower SA. Changes in brain gonadotropin-releasing hormone, plasma estradiol 17-beta, and progesterone during the final reproductive cycle of the female sea lamprey, Petromyzon marinus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 264:55-63. [PMID: 1447557 DOI: 10.1002/jez.1402640109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Changes in ovarian morphology, brain gonadotropin-releasing hormone (GnRH), plasma estradiol, and progesterone were examined during the 1988 and 1989 spawning migrations of the adult female sea lamprey, Petromyzon marinus. There were significant increases through time in brain GnRH (1989) and plasma estradiol (1988 and 1989), with progesterone levels fluctuating (1988 and 1989) during the freshwater phase of the spawning migrations. In 1989, brain GnRH and plasma estradiol levels gradually increased through time until just prior to spawning when levels decreased. During 1988, there were no significant changes in GnRH, which may reflect lower temperatures in that year. These data provide new information on brain GnRH during the final maturational processes in the female sea lamprey.
Collapse
Affiliation(s)
- T G Bolduc
- Department of Zoology, University of New Hampshire, Durham, New Hampshire 03824
| | | |
Collapse
|
17
|
Lewis KA, Swanson P, Sower SA. Changes in brain gonadotropin-releasing hormone, pituitary and plasma gonadotropins, and plasma thyroxine during smoltification in chinook salmon (Oncorhynchus tschawytscha). Gen Comp Endocrinol 1992; 87:461-70. [PMID: 1426949 DOI: 10.1016/0016-6480(92)90054-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Concentrations of brain salmon gonadotropin-releasing hormone (sGnRH), plasma gonadotropin I (GTH I), and pituitary GTH I and GTH II were determined in yearling chinook salmon (Oncorhynchus tschawytscha) during the parr-smolt transformation in two successive seasons. There were significant elevations in brain sGnRH content from February to March in 1988, and from February to April in 1989. Increases in brain sGnRH content coincided with elevations in plasma thyroxine levels that occurred from February to March, 1988 and 1989. Plasma GTH levels were relatively constant (1-2 ng/ml) throughout the period of sampling. However, during 1988, plasma concentrations of GTH I decreased significantly between late March and early April. During 1989, plasma GTH I levels appeared to reach a peak (2 ng/ml) in mid-February, but otherwise remained near 1 ng/ml. Previous studies have shown that GTH II was not detectable in plasma at this stage. During 1989, pituitary GTH I concentrations were 50- to 70-fold higher than that of GTH II, and increased, though not significantly, from February through April. Although GTH II was detected in the pituitary by RIA, it is likely that the measurable levels are due to GTH I cross-reaction in the GTH II RIA. Histological examination of the gonads indicated that throughout smoltification the oocytes remained in the perinucleolar stage of oogenesis and the testes were in the spermatogonial stage of spermatogenesis. Although no observable changes in gametogenesis occurred, the changes in brain sGnRH content, plasma GTH I levels, and pituitary GTH content suggest that some changes in the hypothalamic-pituitary axis may occur during smoltification.
Collapse
Affiliation(s)
- K A Lewis
- Department of Zoology, University of New Hampshire, Durham 03824
| | | | | |
Collapse
|
18
|
Coe IR, Grier HJ, Sherwood NM. Gonadotropin-releasing hormone in the mollyPoecilia latipinna: Molecular form, quantity, and location. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/jez.1402610408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Distribution of salmon gonadotrophin releasing-hormone in the brain and pituitary of the sea bass (Dicentrarchus labrax). Cell Tissue Res 1991. [DOI: 10.1007/bf00678719] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Chieffi G, Pierantoni R, Fasano S. Immunoreactive GnRH in hypothalamic and extrahypothalamic areas. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 127:1-55. [PMID: 1652571 DOI: 10.1016/s0074-7696(08)60691-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Chieffi
- Dipartimento di Fisiologia Umana, Filippo Bottazzi Università di Napoli, Italy
| | | | | |
Collapse
|
21
|
Fahien CM, Sower SA. Relationship between brain gonadotropin-releasing hormone and final reproductive period of the adult male sea lamprey, Petromyzon marinus. Gen Comp Endocrinol 1990; 80:427-37. [PMID: 2289684 DOI: 10.1016/0016-6480(90)90192-o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) concentrations were measured in brains of adult male sea lamprey, Petromyzon marinus, during their final reproductive period. The lampreys were collected during their upstream migration in coastal New Hampshire rivers and sampled at the trap (referred to as Group A) or they were transferred to an artificial spawning channel (referred to as Group B). Plasma estradiol and progesterone were also measured, and histological examination of the gonadal stages was done as well. The concentrations of brain GnRH and plasma estradiol fluctuated significantly through time. There was a rise in brain concentrations of GnRH coincident with an increase in temperature just prior to spawning. In addition, there was a significant progressive correlation between increasing plasma estradiol and temperature in lampreys from Group B during the period studied. These studies provide evidence for progressive seasonal relationships between changes in brain GnRH and gametogenic and steroidogenic activity of the gonads in adult male sea lampreys during their final reproductive period.
Collapse
Affiliation(s)
- C M Fahien
- Department of Zoology, University of New Hampshire, Durham 03824
| | | |
Collapse
|
22
|
Okuzawa K, Amano M, Kobayashi M, Aida K, Hanyu I, Hasegawa Y, Miyamoto K. Differences in salmon GnRH and chicken GnRH-II contents in discrete brain areas of male and female rainbow trout according to age and stage of maturity. Gen Comp Endocrinol 1990; 80:116-26. [PMID: 2272473 DOI: 10.1016/0016-6480(90)90155-f] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed sensitive and specific radioimmunoassays (RIA) for salmon gonadotropin-releasing hormone (sGnRH) and chicken GnRH-II (cGnRH-II). Synthetic sGnRH and cGnRH-II(2-10) were conjugated to bovine serum albumin and injected into rabbits to raise specific antisera. The antiserum against sGnRH showed cross-reactivities of 1.58 and 0.08% for cGnRH-II and lamprey GnRH, respectively. The antiserum against cGnRH-II showed cross-reactivities of 0.05 and 0.01% for sGnRH and lamprey GnRH, respectively. Both antisera were observed not to cross-react with mammalian GnRH and cGnRH-I or other peptide hormones. Synthetic sGnRH and cGnRH-II were iodinated using the chloramine-T method. The iodinated GnRH was purified by HPLC using a reverse-phase C18 column. The RIA system was developed as a double antibody method. Brain extracts of rainbow trout showed displacement curves which were parallel to the sGnRH and cGnRH-II standards in each RIA. HPLC analysis followed by RIA has revealed that rainbow trout brain contains two types of GnRH: sGnRH and cGnRH-II. Total sGnRH content in the brain was about three-fold higher than that of cGnRH-II. In the olfactory bulbs, telencephalon, optic tectum-thalamus, hypothalamus, and pituitary, sGnRH content (per region) was higher than cGnRH-II content, whereas cerebellum and medulla oblongata contained much more cGnRH-II than sGnRH. sGnRH content in the optic tectum-thalamus and pituitary was the highest in 1-year-old immature fish and 3-year-old mature fish, respectively. Medulla oblongata showed the highest cGnRH-II content in all groups. sGnRH concentrations (per milligram of protein) were high in the pituitary and intermediate in the olfactory bulbs, hypothalamus, and telencephalon. In all groups, the cGnRH-II concentration was high in the medulla oblongata, whereas the concentration in the olfactory bulbs and pituitary gland was below the detectable limit in most individuals.
Collapse
Affiliation(s)
- K Okuzawa
- Department of Fisheries, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Weil C, Marcuzzi O. Cultured pituitary cell GtH response to GnRH at different stages of rainbow trout oogenesis and influence of steroid hormones. Gen Comp Endocrinol 1990; 79:483-91. [PMID: 2272470 DOI: 10.1016/0016-6480(90)90079-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In rainbow trout, a variable in vivo pituitary sensitivity to GnRH has been previously observed, depending on the stage of oogenesis. The purpose of the present work was to study, in vitro, the role of oestradiol (E2) and 17 alpha-hydroxy,20 beta-dihydroprogesterone (17 alpha 20 beta P), respectively, involved in vitellogenesis and in oocyte maturation, upon this variability. The study was performed using primary cultures of whole pituitary cells from animals at different stages of oogenesis and subjected to increasing doses of salmon GnRH (sGnRH) after a 3-day pretreatment with control medium or medium supplemented with the steroid at levels corresponding to those circulating at the time of particular events of the sexual cycle (maturation and vitellogenesis). In control cultures, pituitary GtH responsiveness to sGnRH was maximal at ovulation, since at this time the gonadotrophs were able to respond to 10(-9) M sGnRH, whereas during vitellogenesis and preovulatory stages, the minimal effective dose of sGnRH ranged between 10(-6) and -8 M. We have demonstrated that 17 alpha 20 beta P has a positive or negative effect by acting directly on pituitary cell responsiveness to sGnRH, depending on the stages at which it is applied; its effect is positive during early vitellogenic and preovulatory stages whereas it is negative at the time of ovulation. E2 also increased pituitary responsiveness to sGnRH when applied during early vitellogenesis at low doses, corresponding to circulating levels at the time of ovulation; higher levels of E2, corresponding to circulating levels found during the last stages of vitellogenesis, did not modify pituitary responsiveness but increased cell GtH content.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Weil
- Laboratoire de Physiologie des Poissons, INRA, Rennes, France
| | | |
Collapse
|
24
|
Breton B, Mikolajczyk T, Weill C, Danger JM, Vaudry H. Studies on the mode of action of neuropeptide Y (NPY) on maturational gonadotropin (GtH) secretion from perifused rainbow trout pituitary glands. FISH PHYSIOLOGY AND BIOCHEMISTRY 1990; 8:339-346. [PMID: 24220923 DOI: 10.1007/bf00003429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The action of neuropeptide Y (NPY) and gonadotropin releasing hormone (s-GnRH) have been compared on the release of gonadotropin (GtH) by perifused rainbow trout pituitary glands sampled from freshly ovulated female rainbow trout. We have already demonstrated that NPY stimulated the secretion of GtH in vitro.The pituitary responses to s-GnRH and NPY were similar either after repeated 10 min infusions or a one hour prolonged application. In both cases, after the first application, the pituitary did not responded to subsequent secretagogues stimulations, and appeared to be desensitized. The stimulatory action of s-GnRH was partly inhibited (60%) by LH-RH antagonist (DpGlu(1), DPhe(2), DTrp(3-6)) LH-RH, which completely inhibited the response to NPY in perifused pituitary glands sampled from freshly ovulated females, but did not modify the response of pituitaries taken from vitellogenic animals in which NPY induced a transient inhibition of the GtH secretion. These results may indicate that the mode of action of NPY would differ between vitellogenic and matured animals. NPY also stimulated the GtH secretion from perifused pituitary dispersed cells prepared from pituitaries taken from freshly ovulated rainbow trout, indicating that NPY may act directly on the pituitary gonadotropic cells to stimulate GtH secretion.
Collapse
Affiliation(s)
- B Breton
- I.N.R.A., Laboratoire de Physiologie des Poissons, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Kah O, Dufour S, Baloche S, Breton B. The GnRH systems in the brain and pituitary of normal and hCG treated European silver eels. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 6:279-284. [PMID: 24221596 DOI: 10.1007/bf01881681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The distribution of immunoreactive GnRH was studied in the brain and pituitary gland of normal and human chorionic gonadotrophin (hCG) injected silver eels. It was found that the general organization of GnRH systems in this species is similar to that reported in other teleosts. Cell bodies were present in the olfactory bulbs, ventral telencephalon, periventricular hypothalamus and dorsal tegmentum. No positive perikarya could be detected in the preoptic region. Only scarce fibers were observed in the proximal neurohypophysis. Treatment with hCG does not modify the distribution of GnRH but it increases the density of positive structures, in particular at the level of the pituitary. The results are discussed in relation with the present status of knowledge of the mechanisms underlying the blockage of sexual maturation in the European eel at the silver stage.
Collapse
Affiliation(s)
- O Kah
- Laboratoire de Physiologie des Interactions Cellulaires, UA CNRS 339, Avenue des Facultés, 33 405, Talence Cedex, France
| | | | | | | |
Collapse
|
26
|
Bennis M, Dubourg P, Gamrani H, Calas A, Kah O. Existence of a GnRH immunoreactive nucleus in the dorsal midbrain tegmentum of the chameleon. Gen Comp Endocrinol 1989; 75:195-203. [PMID: 2680752 DOI: 10.1016/0016-6480(89)90071-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The GnRH system of the chameleon brain was studied at light microscopic and ultrastructural levels by use of an immunohistochemical technique with antibodies directed against salmon gonadotrophin-releasing hormone. Immunoreactive (IR) perikarya were found in the anterior midbrain tegmentum. At this level numerous IR cell bodies were detected around the fasciculus longitudinalis medialis (FLM). The more rostral neurons were observed dorsal to the FLM and progressively tended to be lateral to it along the midline. More caudally, they were found ventral to the FLM. At the electron microscope level, these cells were seen to contain large granular vesicles and to receive numerous synaptic inputs. A prominent pathway was traced from these cell bodies along the medulla oblongata to the spinal cord. A second IR pathway ascended rostrally to the habenular complex. No IR perikarya were located in the anterior brain including the olfactory bulbs.
Collapse
Affiliation(s)
- M Bennis
- Departement de Biologie, Faculté des Sciences, Université cadi ayyad, Marrakech, Morroco
| | | | | | | | | |
Collapse
|
27
|
Breton B, Mikolajczyk T, Danger JM, Gonnet F, Saint-Pierre S, Vaudry H. Neuropeptide Y (NPY) modulatesin vitro gonadotropin in release from rainbow trout pituitary glands. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 7:77-83. [PMID: 24221757 DOI: 10.1007/bf00004692] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work investigated the action of neuropeptide Y (NPY) on thein vitro pituitary release of the maturing gonadotropic hormone (GtH) of the rainbow trout using a perifusion system employing trout balanced salt solution (pH 7.5) at 15°C and a 12.5 ml/h flow rate. In vitellogenic females a 20 minutes NPY application (10(-7) M) induced a 20-30% decrease in GtH secretion. Removal of NPY was followed by a rebound in GTH secretion. On the contrary, in ovulated females, NPY (15 minutes, 10(-7) M) directly stimulated GTH secretion. The greatest stimulation was obtained the day of ovulation where the stimulatory effect of NPY was similar to those induced by s.GnRH in the same conditions, reaching 400% of the basal GTH level. In vitellogenic females treated with 1-4-6 androstadien 3-7 dione, an inhibitor of aromatase activity, the pituitary response to NPY was similar to that obtained in ovulated females. Thus thein vitro action of NPY might depend on thein vivo steroidogenic environment.
Collapse
Affiliation(s)
- B Breton
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
A new perfusion method adapted to rainbow trout (Salmo gairdneri) brain pituitary preparation for simultaneous electrophysiological recording and hormone secretion determination. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0300-9629(89)90552-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Huang YP, Peter RE. Evidence for a gonadotropin-releasing hormone binding protein in goldfish (Carassius auratus) serum. Gen Comp Endocrinol 1988; 69:308-16. [PMID: 2835284 DOI: 10.1016/0016-6480(88)90019-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The binding of salmon gonadotropin-releasing hormone (sGnRH) and its superactive analog, [D-Arg6, Pro9-NEt]-sGnRH, to a macromolecular component in goldfish serum was studied, using 125I-[D-Arg6, Pro9-NEt]-sGnRH and 125I-sGnRH as labeled ligands. Bound was separated from free labeled ligand by gel filtration with Sephadex G-50. The binding of labeled ligand to goldfish serum was dose-dependent. The results indicate a single class of binding site having low affinity and high capacity. The existence of a GnRH binding protein in serum may, in part, contribute to the long-lasting pharmacological action of GnRHs in goldfish.
Collapse
Affiliation(s)
- Y P Huang
- Department of Zoology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
30
|
Yu KL, Nahorniak CS, Peter RE, Corrigan A, Rivier JE, Vale WW. Brain distribution of radioimmunoassayable gonadotropin-releasing hormone in female goldfish: seasonal variation and periovulatory changes. Gen Comp Endocrinol 1987; 67:234-46. [PMID: 3305154 DOI: 10.1016/0016-6480(87)90153-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A radioimmunoassay (RIA) for [Trp7, Leu8]gonadotropin-releasing hormone (sGnRH) was developed to determine the gonadotropin-releasing hormone (GnRH) content in discrete brain areas of female goldfish at different stages of ovarian development. Temporal changes in serum gonadotropin (GtH) and GnRH concentrations in discrete brain areas were measured during spontaneous ovulation. There were no clear parallel changes in brain GnRH with seasonal ovarian development in goldfish. However, under a 10 degrees temperature acclimation regimen, the GnRH content in the hypothalamus and pituitary decreased as the ovary progressed from the regressed to the mature condition; on the other hand. GnRH content in the spinal cord increased in sexually mature fish compared with that in regressed fish. Significant decreases in GnRH concentration were observed in certain brain areas (olfactory bulbs, telencephalon, hypothalamus, and pituitary) of fish undergoing spontaneous ovulation compared with those of nonovulatory fish. The simultaneous changes of GnRH concentration in these brain areas suggested that the GnRH neuronal system may function as an integrated unit for the activation of GtH secretion during ovulation in goldfish.
Collapse
|
31
|
Rosenblum PM, Callard IP. Response of male brown bullhead catfish,Ictalurus nebulosus lesueur, to gonadotropin-releasing hormone and gonadotropin. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/jez.1402430204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Zentel HJ, Jennes L, Reinboth R, Stumpf WE. Ontogeny of gonadotropin releasing hormone and gonadotropin immunoreactivity in brain and pituitary of normal and estrogen-treated guppies, Poecilia reticulata Peters. Cell Tissue Res 1987; 249:227-34. [PMID: 3304644 DOI: 10.1007/bf00215438] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gonadotropin releasing hormone (GnRH) and gonadotropic hormone (GTH) were identified by immunohistochemistry in the brains and pituitaries of neonate, juvenile and adult guppies. GTH was present in some cells of the pars intermedia (pi) and proximal pars distalis (ppd) of all animals. GnRH was found in the perikarya of the nucleus olfactoretinalis. In the pituitaries of juvenile 30-day-old guppies, GnRH-immunoreactive cells existed in a "juvenile pattern", whereas in adult animals GnRH was recognized in only a few cells. GnRH-immunoreactive fibers were seen in the pituitaries of animals that were 30 days or older. In adult guppies, the ventral and lateral ppd (the gonadotropic region) contained a dense network of GnRH-immunoreactive fibers. Pituitary cells staining for either GnRH or GTH were located in different places. After immunohistochemical double staining of adult pituitaries, none of the GnRH-immunoreactive cells were LH-immunoreactive, although both cell types were often found in close proximity. After 20 days or more of ethinylestradiol treatment, less immunoreactive GnRH was detected in the pituitary cells of juvenile guppies, and fewer animals exhibited the "juvenile pattern" of GnRH-immunoreactive pituitary cells, when compared with untreated controls. The results indicate that GnRH-immunoreactive pituitary cells in the guppy are distinct from gonadotropes and that these cells are involved in regulatory processes along the juvenile brain-pituitary-gonad axis.
Collapse
|
33
|
Kah O. Central regulation of reproduction in teleosts. FISH PHYSIOLOGY AND BIOCHEMISTRY 1986; 2:25-34. [PMID: 24233165 DOI: 10.1007/bf02264071] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As in other vertebrates, reproduction in teleosts depends upon interactions taking place along the brain-pituitary-gonads axis. At the central level, these interactions involve at least three types of factors:A gonadotrophin-releasing factor which has recently been isolated from chum salmon brain extracts. This decapeptide, whose structure is (Trp(7)-Leu(8))-LHRH, appears to have a widespread distribution among teleosts, and is less active that LHRH or LHRH analogues in releasing gonadotrophin from the teleost pituitary. Immunohistochemical and quantitative studies have demonstrated that Gn-RH neurons are mainly located in the ventral telencephalon and the preoptic area, while projections are found in the entire brain and the pituitary gland.A gonadotrophin release-inhibiting factor has been demonstrated in the anterior preoptic region of the goldfish and a large set of data suggests that dopamine has GRIF activity in goldfish, and in other teleost species, by direct action on the gonadotrophs. Accordingly, a dopaminergic preoptico-hypophyseal pathway could be demonstrated in the goldfish brain.Sex steroids exert, depending on the dosages, either a negative feedback in sexually mature fish or a positive feedback in immature fish. Such a positive feedback is caused by estrogens and aromatizable androgens. Accordingly, the brain of teleosts contains high levels of aromatase activity in particular in the telencephalon and anterior hypothalamus. The distribution of estrogens concentrating cells within the brain is consistent with possible interactions with Gn-RH or catecholaminergic neurons at the level of certain brain territories.These data are discussed in relation with the functional significance of different brain areas where interactions between these different factors possibly take place, in particular the terminal nerve, the ventral telencephalon, the preoptic area and nucleus lateralis tuberis.
Collapse
Affiliation(s)
- O Kah
- Laboratoire de Physiologie des Interactions Cellulaires, L.A. 339 C.N.R.S., Avenue des Facultés, 33405, Talence Cédex, France
| |
Collapse
|
34
|
Kah O, Breton B, Dulka JG, Núnez-Rodríguez J, Peter RE, Corrigan A, Rivier JE, Vale WW. A reinvestigation of the Gn-RH (gonadotrophin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH. Cell Tissue Res 1986; 244:327-37. [PMID: 3521879 DOI: 10.1007/bf00219208] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide. Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.
Collapse
|