1
|
Mennigen JA, Magnan J, Touma K, Best C, Culbert BM, Bernier NJ, Gilmour KM. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol Cell Endocrinol 2022; 554:111709. [PMID: 35787462 DOI: 10.1016/j.mce.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) develop social hierarchies when competing for resources in a constrained environment. Among the physiological consequences of social status are changes in organismal energy metabolism, which generally favour anabolic pathways in dominant fish and catabolic pathways in subordinate fish. The somatotropic axis is an important regulator of metabolism and growth that could be involved in mediating metabolic changes in response to social status in juvenile rainbow trout. Here we used juvenile trout housed either in dyads or individually (sham controls) to determine whether social status changes indices of somatotropic axis function. Although pituitary growth hormone expression (gh1 and gh2) did not differ among groups, circulating growth hormone (GH) increased ∼12-fold in subordinate fish compared to sham and dominant fish. Social status caused consistent differential expression of GH receptor paralogues in liver and muscle, two principal target tissues of GH. Compared to dominant and/or sham fish, ghra paralogue expression (ghra1 and ghra2) was lower, while ghrb1 expression was higher in subordinate fish. Across tissues, ghra paralogue expression was generally positively correlated with expression of insulin growth factors (igf1, igf2), while ghrb1 expression was positively correlated with transcript abundance of hormone sensitive lipase (hsl1). Because igf and hsl expression are subject to context-dependent GH control in rainbow trout, these results suggest that increased circulating GH in conjunction with differential expression of ghr paralogues may translate into prioritization of downstream catabolic lipolytic pathways in subordinate rainbow trout. These findings support a social context-dependent role for GH signalling in mediating metabolic changes in juvenile rainbow trout.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Julianne Magnan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenan Touma
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
2
|
Gopal RN, Kumar D, Singh VK, Pati AK, Lal B. Sexual dimorphism in ultradian and 24h rhythms in plasma levels of growth hormone in Indian walking catfish, Clarias batrachus. Chronobiol Int 2021; 38:858-870. [PMID: 33820463 DOI: 10.1080/07420528.2021.1896533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Growth hormone (GH), a key regulator of somatic and reproductive growth in vertebrates, has been extensively studied, although primarily in female fish. Despite numerous reports about sex- and species-specific growth patterns in fish, to our knowledge, there is no report about the 24 h rhythm of plasma GH in male fish. Thus, we aimed to investigate temporal variations in plasma GH levels and the existence of any rhythms therein during the reproductively active months of March to August in the male walking catfish, Clarias batrachus. We also aimed to compare the secretory temporal patterns of GH in male-female specimens of C. batrachus to decipher sexual dimorphism in GH secretions in fish. After 14 days of acclimation to the natural environment, male catfish (N = 240 in total) were sorted and randomly divided into eight groups for study at ZT0 (sunrise ~06:00 h), 3, 6, 9, 12, 15, 18, and 21. During each month, physical parameters like duration of photoperiod and water temperature were measured. Male catfish (n = 40/month) in all eight groups were sampled (n = 5/group) at each time point under the natural time-of-year 24 h light-dark (LD) cycle. Male catfish were anesthetized and blood was collected through a caudal puncture, centrifuged, and plasma isolated. Plasma GH was measured using a competitive homologous enzyme-linked immunosorbent assay. Further, testes were removed, weighed, and the gonadosomatic index (GSI) was calculated. A significant effect of time and season (p ˂ 0.05, two-way ANOVA) on plasma GH level was detected. Cosinor analyses verified the existence of statistically significant (p ˂ 0.05) ultradian (12 h) and 24 h rhythms of plasma GH in male C. batrachus, with the higher values of Mesor (time series mean) and amplitude (one-half peak-to-trough difference) of the periodicities from March to July. Mapping of the acrophases (peak times) showed two ultradian and one 24 h acrophase of GH during the early photophase and early scotophase from March to August. Distinct sexual-dimorphism in plasma GH Mesors and acrophases was noticed between male and female catfish. GSI values of male catfish indicate males mature a little earlier than females in terms of size and reproductive activity. The findings that plasma GH show 24 h and seasonal fluctuations in a sex-specific manner collectively demonstrate the importance of considering the effect of biological 24 h and seasonal time and sex on the GH level in regulating the physiology of somatic growth and reproduction in catfish.
Collapse
Affiliation(s)
- Raj Naresh Gopal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhanananajay Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | | | - Atanu Kumar Pati
- School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Establishment of time-resolved fluoroimmunoassays for detection of growth hormone and insulin-like growth factor I in rainbow trout plasma. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110751. [PMID: 32629088 DOI: 10.1016/j.cbpa.2020.110751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022]
Abstract
The GH/IGF-I axis influences many aspects of salmonid life history and is involved in a variety of physiological processes that are related to somatic growth (e.g., reproduction, smoltification, and the response to fasting and stress). As such, fisheries studies utilize GH/IGF-I axis components as indicators of growth and metabolic status. This study established time-resolved fluoroimmunoassays (TR-FIAs) for rainbow trout plasma GH and IGF-I using commercially available reagents. For the GH TR-FIA, the ED80 and ED20 were 0.6 and 28.1 ng/mL, the minimum detection limit was 0.2 ng/mL, and the intra- and inter-assay coefficients of variation (%CV) were 4.1% and 13.4%, respectively. Ethanol remaining from acid-ethanol cryoprecipitation (AEC) of plasma samples to remove IGF binding proteins reduced binding and increased variability in the IGF-I TR-FIA. Drying down and reconstituting extracted samples restored binding and reduced variability. The extraction efficiency of IGF-I standards through AEC, drying down, and reconstitution did not vary over the working range of the assay. For the IGF-I TR-FIA, the ED80 and ED20 were 0.2 and 6.5 ng/mL, the minimum detection limit was 0.03 ng/mL, and the intra- and inter-assay %CV were 3.0% and 6.5%, respectively. Biological validation was provided by GH injection and fasting studies in rainbow trout. Intraperitoneal injection with bovine GH increased plasma IGF-I levels. Four weeks of fasting decreased body weight, increased plasma GH levels, and decreased plasma IGF-I levels. The GH and IGF-I TR-FIAs established herein provide a cost-comparable, non-radioisotopic method for quantifying salmonid plasma GH and IGF-I using commercially available reagents.
Collapse
|
4
|
Kiilerich P, Servili A, Péron S, Valotaire C, Goardon L, Leguen I, Prunet P. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen Comp Endocrinol 2018; 258:184-193. [PMID: 28837788 DOI: 10.1016/j.ygcen.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/13/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol.
Collapse
Affiliation(s)
- Pia Kiilerich
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| | - Arianna Servili
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR 6539, BP 70, Plouzané 29280, France
| | - Sandrine Péron
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Claudiane Valotaire
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Lionel Goardon
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - Isabelle Leguen
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Patrick Prunet
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| |
Collapse
|
5
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
6
|
de Mello F, Streit DP, Sabin N, Gabillard JC. Dynamic expression of tgf-β2, tgf-β3 and inhibin βA during muscle growth resumption and satellite cell differentiation in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 210:23-9. [PMID: 25449661 DOI: 10.1016/j.ygcen.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 02/07/2023]
Abstract
Members of the TGF-β superfamily are involved in numerous cell functions; however, except for myostatin, their roles in the regulation of muscle growth in fish are completely unknown. We measured tgf-β1, tgf-β2, tgf-β3, inhibin βA (inh) and follistatin (fst) gene expression during muscle growth recovery following a fasting period. We observed that tgf-β1a and tgf-β2 expression were quickly down-regulated after refeeding and that tgf-β3 reached its highest level of expression 7days post-refeeding, mirroring myogenin expression. Inh βA1 mRNA levels decreased sharply after refeeding, in contrast to fst b2 expression, which peaked at day 2. No significant modification of expression was observed for tgf-β1a, tgf-β1b, tgf-β1c and tgf-β6 during refeeding. In vitro, tgf-β2 and inh βA1 expression decreased during the differentiation of satellite cells, whereas tgf-β3 expression increased following the same pattern as myogenin. Surprisingly, fst b1 and fst b2 expression decreased during differentiation, whereas no variation was observed in fst a1 and fst a2 expression levels. In vitro analyses also indicated that IGF1 treatment up-regulated tgf-β3, inh βA1 and myogenin expression, and that MSTN treatment increased fst b1 and fst b2 expression. In conclusion, we showed that the expression of tgf-β2, tgf-β3 and inh βA1 is dynamically regulated during muscle growth resumption and satellite cell differentiation, strongly suggesting that these genes have a role in the regulation of muscle growth.
Collapse
Affiliation(s)
- Fernanda de Mello
- Federal University of Rio Grande do Sul, Faculty of Agricultural Sciences, Research Group AQUAM, Aquaculture Sector, Department of Animal Science, Avenue Bento Gonçalves 7712, Agronomia, Porto Alegre 91540-000, RS, Brazil
| | - Danilo Pedro Streit
- Federal University of Rio Grande do Sul, Faculty of Agricultural Sciences, Research Group AQUAM, Aquaculture Sector, Department of Animal Science, Avenue Bento Gonçalves 7712, Agronomia, Porto Alegre 91540-000, RS, Brazil
| | - Nathalie Sabin
- INRA, UR1037 Laboratory of Fish Physiology and Genomic, Growth and Flesh Quality Group, campus de Beaulieu, 35000 Rennes, France
| | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomic, Growth and Flesh Quality Group, campus de Beaulieu, 35000 Rennes, France.
| |
Collapse
|
7
|
Seiliez I, Sabin N, Gabillard JC. FoxO1 is not a key transcription factor in the regulation of myostatin (mstn-1a and mstn-1b) gene expression in trout myotubes. Am J Physiol Regul Integr Comp Physiol 2011; 301:R97-104. [PMID: 21490365 DOI: 10.1152/ajpregu.00828.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, much evidence has demonstrated the important role of myostatin (MSTN) in regulating muscle mass and identified the transcription factor forkhead box O (FoxO) 1 as a key regulator of its gene expression during atrophy. However, in trout, food deprivation leads to muscle atrophy without an increase of the expression of mstn genes in the muscle. We therefore studied the relationship between FoxO1 activity and the expression of both mstn genes (mstn1a and mstn1b) in primary culture of trout myotubes. To this aim, two complementary studies were undertaken. In the former, FoxO1 protein activity was modified with insulin-like growth factor-I (IGF-I) treatment, and the consequences on the expression of both mstn genes were monitored. In the second experiment, the expression of both studied genes was modified with growth hormone (GH) treatment, and the activation of FoxO1 protein was investigated. We found that IGF-I induced the phosphorylation of FoxO1 and FoxO4. Moreover, under IGF-I stimulation, FoxO1 was no longer localized in the nucleus, indicating that this growth factor inhibited FoxO1 activity. However, IGF-I treatment had no effect on mstn1a and mstn1b expression, suggesting that FoxO1 would not regulate the expression of mstn genes in trout myotubes. Furthermore, the treatment of myotubes with GH decreased the expression of both mstn genes but has no effect on the phosphorylation of FoxO1, FoxO3, and FoxO4 nor on the nuclear translocation of FoxO1. Altogether, our results showed that mstn1a and mstn1b expressions were not associated with FoxO activity, indicating that FoxO1 is likely not a key regulator of mstn genes in trout myotubes.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique, UMR 1067 Nutrition Aquaculture et Génomique, Pôle d’hydrobiologie, St-Pée-sur-Nivelle, France
| | | | | |
Collapse
|
8
|
Gahete MD, Cordoba-Chacón J, Duran-Prado M, Malagón MM, Martinez-Fuentes AJ, Gracia-Navarro F, Luque RM, Castaño JP. Somatostatin and its receptors from fish to mammals. Ann N Y Acad Sci 2010; 1200:43-52. [PMID: 20633132 DOI: 10.1111/j.1749-6632.2010.05511.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Somatostatin (SST) and its receptors (sst) make up a molecular family with unique functional complexity and versatility. Widespread distribution and frequent coexpression of sst subtypes underlies the multiplicity of (patho)physiological processes controlled by SST (central nervous system functions, endocrine and exocrine secretion, cell proliferation). This complexity is clearly reflected in the intricate evolutionary development of this molecular family. Recent studies postulate the existence of an ancestral somatostatin/urotensin II (SST/UII) gene, which originated two ancestral, SST and UII, genes by local duplication. Subsequently, segment duplication would have originated two diverging SST genes in both fish (SS1/SS2) and tetrapods [(SST/cortistatin(CST))]. SST/CST actions are mediated by a family of GPCRs (sst1-5) encoded by five different genes. sst1-4 sequences are highly conserved compared with sst5, suggesting unique evolutionary and functional relevance for the latter. Indeed, we recently identified novel truncated but functional sst5 variants in several species, which may help to explain part of the complexity of the SST/CST/sst family. Comparative and phylogenetic analysis of this molecular family would enhance our understanding of its paradigmatic evolutionary complexity and functional versatility.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Benedet S, Andersson E, Mittelholzer C, Taranger GL, Björnsson BT. Pituitary and plasma growth hormone dynamics during sexual maturation of female Atlantic salmon. Gen Comp Endocrinol 2010; 167:77-85. [PMID: 20171221 DOI: 10.1016/j.ygcen.2010.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone in fish regulates many important physiological processes including growth, metabolism and potentially reproduction. In salmonid fish, GH secretion is episodic with irregularly spaced GH peaks. Plasma GH reflects secretion episodes as well as the clearance rate of the hormone, and plasma levels may thus not always reflect the level of activation of the GH axis. This study measured the production dynamics of GH over a 17-month period in sexually maturing female Atlantic salmon which included final maturation and spawning. For the first time, the level of pituitary GH mRNA, pituitary GH protein and plasma GH protein were analyzed concurrently in the same individuals. mRNA and protein were extracted in parallel from the same samples with subsequent real time quantitative PCR to measure mRNA transcripts and radioimmunoassay to measure pituitary and plasma GH protein. Further, the effects of photoperiod manipulation on these parameters were studied. The results show no correlation between mRNA and protein levels except at some time points, and indicate that it is inappropriate to correlate pooled temporal data and averages in time series unless the relationship among the variables is stable over time. The results indicate complex and shifting relationships between pituitary GH mRNA expression, pituitary GH content and plasma GH levels, which could result from changes in clearance rather than secretion rate at different times and its episodic secretion. The study also suggests that there is a functionally important activation of the GH system during spring leading up to maturation and spawning.
Collapse
Affiliation(s)
- Susana Benedet
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE 40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
10
|
Gahete MD, Durán-Prado M, Luque RM, Martínez-Fuentes AJ, Quintero A, Gutiérrez-Pascual E, Córdoba-Chacón J, Malagón MM, Gracia-Navarro F, Castaño JP. Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann N Y Acad Sci 2009; 1163:137-53. [PMID: 19456335 DOI: 10.1111/j.1749-6632.2008.03660.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of postnatal growth is the main, but not the only, role for growth hormone (GH) as this hormone also contributes to regulating metabolism, reproduction, immunity, development, and osmoregulation in different species. Likely owing to this variety of group-specific functions, GH production is differentially regulated across vertebrates, with an apparent evolutionary trend to simplification, especially in the number of stimulatory factors governing substantially GH release. Thus, teleosts exhibit a multifactorial regulation of GH secretion, with a number of factors, from the newly discovered fish GH-releasing hormone (GHRH) to pituitary adenylate cyclase-activating peptide (PACAP) but also gonadotropin-releasing hormone, dopamine, corticotropin-releasing hormone, and somatostatin(s) directly controlling somatotropes. In amphibians and reptiles, GH secretion is primarily stimulated by the major hypothalamic peptides GHRH and PACAP and inhibited by somatostatin(s), while other factors (ghrelin, thyrotropin-releasing hormone) also influence GH release. Finally, in birds and mammals, primary control of GH secretion is exerted by a dual interplay between GHRH and somatostatin. In addition, somatotrope function is modulated by additional hypothalamic and peripheral factors (e.g., ghrelin, leptin, insulin-like growth factor-I), which together enable a balanced integration of feedback signals related to processes in which GH plays a relevant regulatory role, such as metabolic and energy status, reproductive, and immune function. Interestingly, in contrast to the high number of stimulatory factors impinging upon somatotropes, somatostatin(s) stand(s) as the main primary inhibitory regulator(s) for this cell type.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Singh AK, Lal B, Pati AK. Variability in the characteristics of ultradian and circadian rhythms in plasma levels of growth hormone in the Indian walking catfish,Clarias batrachus. BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010701875054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Cao YB, Chen XQ, Wang S, Chen XC, Wang YX, Chang JP, Du JZ. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: expression in different water environments. Gen Comp Endocrinol 2009; 161:400-6. [PMID: 19233187 DOI: 10.1016/j.ygcen.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/10/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Here, we report the cloning and characterization of growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-II from naked carp (Gymnocypris przewalskii), a native teleost fish of Lake Qinghai in the Qinghai-Tibet Plateau of China. The GH of naked carp encodes for a predicted amino acid sequence showing identities of 63%, 63%, 91% and 94% with cherry salmon, rainbow trout, zebrafish and grass carp, respectively. Compared to common carp and goldfish, evolutionary analysis showed that genome duplication has had less influence on the relaxation of purifying selection in the evolution of naked carp GH. Sequence analysis of naked carp IGF-I (ncIGF-I) and ncIGF-II showed a high degree of homology with known fish IGF-I and IGF-II. To investigate effects of salinity and ionic composition of the aquatic environment on the GH-IGF axis in naked carp, male fish held in river water were assigned randomly to 4 groups: RW (river-water), RW+Na (NaCl in RW), RW+Mg (MgCl(2) in RW) and LW (lake-water) groups. The concentrations of Na(+) in RW+Na and Mg(2+) in RW+Mg were equal to the concentrations of these ions in lake-water. After 2 days of exposure, the plasma IGF-I levels in the RW+Na and LW groups were significantly higher than the control group (RW), and the plasma GH levels of the LW group were also significantly higher than the RW group. The somatostatin (SS) levels in the hypothalamus significantly increased in the RW+Na group. After 5 days of exposure, these hormone levels did not differ significantly among groups. These results indicate that while the plasma GH and IGF-I levels are osmosensitive, the absence of a change in GH secretion in RW+Na might be partly due to a transiently increased release of hypothalamic SS induced by the stress of neutral-saline water. This is the first report of a salinity-induced increase of GH-IGF-I circulating levels in Cypriniformes.
Collapse
Affiliation(s)
- Yi-Bin Cao
- Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Enzyme-linked immunosorbent assay of changes in serum levels of growth hormone (cGH) in common carps (Cyprinus carpio). ACTA ACUST UNITED AC 2008; 51:157-63. [DOI: 10.1007/s11427-008-0022-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
14
|
Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol 2007; 151:1-26. [PMID: 17286975 DOI: 10.1016/j.ygcen.2006.12.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/12/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. Accordingly, the regulatory network for GH is complex and includes many endocrine and environmental factors. In fish, the neuroendocrine control of GH is multifactorial with multiple inhibitors and stimulators of pituitary GH secretion. In fish, GH release is under a tonic negative control exerted mainly by somatostatin. Sex steroid hormones and nutritional status influence the level of brain expression and effectiveness of some of these GH neuroendocrine regulatory factors, suggesting that their relative importance differs under different physiological conditions. At the pituitary level, some, if not all, somatotropes can respond to multiple regulators. Therefore, ligand- and function-specificity, as well as the integrative responses to multiple signals must be achieved at the level of signal transduction mechanisms. Results from investigations on a limited number of stimulatory and inhibitory GH-release regulators indicate that activation of different but convergent intracellular pathways and the utilization of specific intracellular Ca(2+) stores are some of the strategies utilized. However, more work remains to be done in order to better understand the integrative mechanisms of signal transduction at the somatotrope level and the relevance of various GH regulators in different physiological circumstances.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9
| | | | | |
Collapse
|
15
|
Rousseau K, Dufour S. Comparative aspects of GH and metabolic regulation in lower vertebrates. Neuroendocrinology 2007; 86:165-74. [PMID: 17377370 DOI: 10.1159/000101029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/19/2022]
Abstract
In all vertebrates, the regulations of growth and energy balance are complex phenomena which involve elaborate interactions between the brain and peripheral signals. Most vertebrates adopt and maintain a life style after birth, but lower vertebrates may have complex life histories involving metamorphoses, migrations and long periods of fasting. In order to achieve the complex developmental programs associated with these changes, coordinated regulation of all aspects of energy metabolism is required. Somatotropic axis (somatostatin (SRIH) growth hormone (GH) and insulin-like growth factor 1 (IGF1), is known to be involved in the regulation of growth and energy balance. Interestingly, recent studies showed that additional factors such as pituitary adenylate cyclase-activated polypeptide (PACAP), corticotropin-releasing hormone (CRH), ghrelin and leptin could also have major roles in the control of growth and metabolism in lower vertebrates (fish, amphibians and reptiles). This mini-review will survey the function of GH and metabolic regulation in lower vertebrates.
Collapse
Affiliation(s)
- Karine Rousseau
- MNHN, Département des Milieux et Peuplements Aquatiques, USM 0401, UMR 5178 CNRS, Paris, France.
| | | |
Collapse
|
16
|
Wilkinson RJ, Porter M, Woolcott H, Longland R, Carragher JF. Effects of aquaculture related stressors and nutritional restriction on circulating growth factors (GH, IGF-I and IGF-II) in Atlantic salmon and rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2006; 145:214-24. [PMID: 16861022 DOI: 10.1016/j.cbpa.2006.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 11/18/2022]
Abstract
The effects of aquaculture related stressors on circulating levels of GH, IGF-I and for the first time, IGF-II in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) were investigated. Specifically, circulating growth factor levels were measured in four different experiments. Two 24 h confinement stressor procedures, (one with Atlantic salmon, the other with rainbow trout); following a hypo-osmotic stressor (freshwater bath) in salt water acclimated, adult, Atlantic salmon; and during a 22 day starvation and re-feeding protocol with juvenile Atlantic salmon. Handling and confinement resulted in significant decreases in circulating levels of all three growth factors in Atlantic salmon, and IGF-I and IGF-II (but not GH) in rainbow trout. A 2-3 h freshwater bath to remove gill parasites on a commercial Atlantic salmon aquaculture operation caused a significant decrease in circulating GH and IGF-I concentrations, but no significant change in IGF-II concentration, 2 days post bathing. Starvation for a period of 15 days in Atlantic salmon resulted in a significant increase in circulating GH levels and a significant decrease in circulating IGF-I and IGF-II. Re-feeding of starved fish for 7 days resulted in a significant decrease in GH to the concentration measured in continually fed fish, however re-feeding did not change plasma levels of IGF-I and IGF-II relative to continually starved fish. The results presented here confirm previously observed handling and confinement stressor induced effects on GH and IGF-I and, for the first time, on IGF-II in salmonids. Furthermore this study confirms the nutritional regulation of GH, IGF-I and IGF-II in juvenile Atlantic salmon.
Collapse
Affiliation(s)
- Ryan J Wilkinson
- School of Biological Sciences, Flinders University of South Australia, G.P.O. Box 2100, Adelaide, S.A. 5001, Australia.
| | | | | | | | | |
Collapse
|
17
|
Small BC. Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B Biochem Mol Biol 2005; 142:217-23. [PMID: 16126422 DOI: 10.1016/j.cbpb.2005.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
This experiment was conducted to characterize the effect of fasting versus satiety feeding on plasma concentrations of GH, IGF-I, and cortisol over a nychthemeron. Channel catfish fingerlings were acclimated for two weeks under a 12L:12D photoperiod, then fed or fasted for 21 d. On day 21, blood samples were collected every 2 h for 24 h. Weight of fed fish increased an average of 66.2% and fasted fish lost 21.7% of body weight on average. Average nychthemeral concentrations of plasma GH were not significantly different between fed (24.7 ng/mL) and fasted (26.8 ng/mL) fish, but average nychthemeral IGF-I concentrations were higher in fed (23.4 ng/mL) versus fasted (17.8 ng/mL) fish. An increase in plasma IGF-I concentrations was observed in fasted fish 2 h after a peak in plasma GH, but not in fed fish. Average nychthemeral plasma cortisol concentrations were higher in fed (14.5 ng/mL) versus fasted (11.0 ng/mL) fish after 21 d. Significant fluctuations and a postprandial increase in plasma cortisol were observed in fed fish and there was an overall increase in plasma cortisol of both fasted and fed fish during the scotophase. The present experiment indicates little or no effect of 21-d fasting on plasma GH levels but demonstrates fasting-induced suppression of plasma IGF-I and cortisol levels in channel catfish.
Collapse
Affiliation(s)
- Brian C Small
- USDA/ARS Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, P.O. Box 38, Stoneville, MS 38776, USA.
| |
Collapse
|
18
|
de Celis SVR, Gómez-Requeni P, Pérez-Sánchez J. Production and characterization of recombinantly derived peptides and antibodies for accurate determinations of somatolactin, growth hormone and insulin-like growth factor-I in European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2004; 139:266-77. [PMID: 15560873 DOI: 10.1016/j.ygcen.2004.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/23/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
A specific radioimmunoassay (RIA) for European sea bass (Dicentrarchus labrax) growth hormone (GH) was developed and validated. For this purpose, a stable source of GH was produced by means of recombinant DNA technology in a bacteria system. The identity of the purified protein (ion exchange chromatography) was demonstrated by Western blot and a specific GH antiserum was raised in rabbit. In Western blot and RIA system, this antiserum recognized specifically native and recombinant GH, and it did not cross-react with fish prolactin (PRL) and somatolactin (SL). In a similar way, a specific polyclonal antiserum against the now available recombinant European sea bass SL was raised and used in the RIA system to a sensitivity of 0.3 ng/ml (90% of binding of tracer). Further, European sea bass insulin-like growth factor-I (IGF-I) was cloned and sequenced, and its high degree of identity with IGF-I peptides of barramundi, tuna, and sparid fish allowed the use of a commercial IGF-I RIA based on barramundi IGF-I antiserum. These assay tools assisted for the first time accurate determinations of SL and GH-IGF-I axis activity in a fish species of the Moronidae family. Data values were compared to those found with gilthead sea bream (Sparus aurata), which is currently used as a Mediterranean fish model for growth endocrinology studies. As a characteristic feature, the average concentration year round of circulating GH in growing mature males of European sea bass was higher than in gilthead sea bream. By contrast, the average concentration of circulating SL was lower. Concerning to circulating concentration of IGF-I, the measured plasma values for a given growth rate were also lower in European sea bass. These findings are discussed on the basis of a different energy status that might allowed a reduced but more continuous growth in European sea bass.
Collapse
Affiliation(s)
- S Vega-Rubín de Celis
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
19
|
Gabillard JC, Rescan PY, Fauconneau B, Weil C, Le Bail PY. Effect of temperature on gene expression of the Gh/Igf system during embryonic development in rainbow trout (Oncorhynchus mykiss). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:134-42. [PMID: 12884275 DOI: 10.1002/jez.a.10280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In fish, the GH/IGF system installs very early during development suggesting that this system could promote embryonic growth and development. In contrast to mammals, the embryonic growth rate of poikilotherms depends considerably on the incubation temperature. Therefore, the aim of this study was to determine if variations of embryo growth in response to temperature could be associated with modifications in the gene expression of the GH/IGF system. In this study, using whole mount in situ hybridisation, we demonstrated that embryo incubation temperature (4, 8, and 12 degrees C) did not change the timing of GH-1 and GH-2 mRNA expression in somatotroph cells (stage 24). Similarly, at hatching (stage 30), we did not observe an obvious difference in GH protein and GH-1 and GH-2 transcript amounts in relation to the incubation temperature. Furthermore, from stage 22 to 25, the highest temperature led to a specific up-regulation of IGF-2 (2-fold between 4 and 12 degrees C), and both IGF-RIa and IGFRIb mRNA (1.5-fold between 4 and 12 degrees C), while no difference was observed for IGF-1 mRNA. Conversely, at hatching, the highest temperature specifically down-regulated IGF-2 (3-fold between 4 and 12 degrees C) and both IGF receptor mRNAs (2 fold between 4 and 12 degrees C) present in the head, while no difference was observed in the trunk. Our results demonstrated that different incubation temperatures during trout embryonic development did not change the stage of somatotroph cell appearance. Before hatching, IGF-2 and both IGF receptors, but not IGF-1 mRNA, were specifically up-regulated by high temperatures and could be related to the enhancement of embryonic growth rate.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- Equipe Croissance et Qualité de la chair des poissons, Station de Recherche Commune en Ichtyophysiologie, Biodiversité et Environnement SCRIBE-INRA Campus Beaulieu, 35042 Rennes cedex France
| | | | | | | | | |
Collapse
|
20
|
Gabillard JC, Weil C, Rescan PY, Navarro I, Gutiérrez J, Le Bail PY. Environmental temperature increases plasma GH levels independently of nutritional status in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2003; 133:17-26. [PMID: 12899843 DOI: 10.1016/s0016-6480(03)00156-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Like many poecilotherms, salmonids exhibit seasonal variations of growth rate in relation with seasonal temperatures and plasma GH level. However, temperature alters other parameters like food intake, which may directly modify the level of plasma GH. In order to determine whether temperature regulates plasma GH levels independently of nutritional status, fish were reared at 8, 12, or 16 degrees C and either fed ad libitum (fish with different food intake) to determine the global effect of temperature, or with the same ration (1.2%/body weight) to observe the temperature effect in fish with the same growth rate. Plasma insulin level was inversely proportional to the temperature (8, 12, and 16 degrees C) in fish fed ad libitum (12.1+/-0.3 ng/ml, 10.9+/-0.3 ng/ml, 9.5+/-0.4 ng/ml; P<0.001) and in restricted fish (14.0+/-0.3 ng/ml, 11.3+/-0.3 ng/ml, 10.0+/-0.2 ng/ml; P<0.0001), probably due to a prolonged nutrient absorption, and delayed recovery of basal insulin level at low temperature. Conversely, temperature did not affect plasma T3 level of fish fed ad libitum (2.5+/-0.2 ng/ml, 2.4+/-0.1 ng/ml, 2.5+/-0.1 ng/ml at 8, 12, and 16 degrees C) while fish fed with the same ration present less T3 at 16 degrees C than at 8 degrees C (1.83+/-0.1 ng/ml versus 1.2+/-0.1 ng/ml; P<0.001) throughout the experiment; these observations indicate that different plasma T3 levels reflect the different nutritional status of the fish. The levels of GH1 and GH2 mRNA, and GH1/GH2 ratio were not different for whatever the temperature or the nutritional status. Pituitary GH content, of fish fed ad libitum did not exhibit obvious differences at 8, 12, or 16 degrees C (254+/-9 ng/g bw, 237+/-18 ng/g bw, 236+/-18 ng/g bw), while fish fed with the same ration have higher pituitary GH contents at 16 degrees C than at 8 degrees C (401+/-30 ng/g bw versus 285+/-25 ng/g bw; P<0.0001). Interestingly, high temperature strongly increases plasma GH levels (2.5+/-0.3 ng/ml at 8 degrees C versus 4.8+/-0.6 ng/ml at 16 degrees C; P<0.0001) to the same extent in both experiments, since at a given temperature average plasma GH was similar between fish fed ad libitum or a restricted diet. Our results, demonstrate that temperature regulates plasma GH levels specifically but not pituitary GH content, nor the levels of GH1 and GH2 mRNA. In addition no differential regulation of both GH genes was evidenced whatever the temperature.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- Equipe Croissance et Qualité de la Chair des Poissons, Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement SCRIBE-INRA, Campus Beaulieu 35042, Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Gabillard JC, Duval H, Cauty C, Rescan PY, Weil C, Le Bail PY. Differential expression of the two GH genes during embryonic development of rainbow trout Oncorhynchus mykiss in relation with the IGFs system. Mol Reprod Dev 2003; 64:32-40. [PMID: 12420297 DOI: 10.1002/mrd.10222] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Growth hormone (GH)/insulin-like growth factor (IGF) system promotes embryonic growth in higher vertebrates. Such a system exists in salmonids, but exhibits an additional level of complexity resulting from a recent whole genome tetraploidisation. Thus, two nonallelic GH genes are present in the trout genome. Although the two GH genes are similar, the possibility remains that the two genes have evolved separately, acquiring a distinct expression pattern. In this study, using whole mounted in situ hybridisation, we observed a one stage delay between the appearance of GH-2 (Stage 22) and GH-1 (Stage 23) soon after pituitary formation (Stage 21). In addition, by double in situ hybridisation, we clearly evidenced two types of somatotroph, one expressing only GH-2 and the other type both GH-1 and GH-2 at Stage 24. Consequently, at this stage more cells expressed GH-2 than GH-1 as confirmed by quantitative RT-PCR. However at hatching, as in adult, the difference between the expression of the two GH genes was no longer observed. In addition, our immunohistochemical studies did not show any delay between the expression of the mRNA and its translation as a protein at Stage 24. A comparison of the expression pattern of the IGF system components (IGF-1, IGF-2, and the receptor type I) determined by real time RT-PCR, have shown an IGF-1 mRNA increase concomitantly to the appearance of GH expression. On the whole, our results demonstrate a differential regulation of GH-1 and GH-2 genes in rainbow trout embryo. The relationship observed between the expression of different component of the GH/IGF system seems to indicate that this system could be functional early on during embryonic development.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement SCRIBE-INRA Campus, Beaulieu 35042, Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Duval H, Rousseau K, Eliès G, Le Bail PY, Dufour S, Boeuf G, Boujard D. Cloning, characterization, and comparative activity of turbot IGF-I and IGF-II. Gen Comp Endocrinol 2002; 126:269-78. [PMID: 12093114 DOI: 10.1016/s0016-6480(02)00002-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IGF peptides belong to a complex system that is known to play a major role in the control of growth and development in mammals. Even if studies performed in nonmammalian species tend to demonstrate an important function of these molecules, use of heterologous ligands, especially in fish, partly limit our knowledge of the physiological role(s) of IGFs. We report in this study the cloning, production, and characterization in an evolved fish, the turbot Psetta maxima, of mature IGF-I and IGF-II. The deduced 68-amino-acid IGF-I and 70-amino-acid IGF-II show 75% and 74% sequence identity with their mammalian counterparts, respectively, confirming the high sequence homology observed in other species. The development of a simple and efficient system for the production and purification of both IGF-I and IGF-II in Escherichia coli was used to investigate the in vitro regulation of GH release in the turbot. Our results demonstrated for the first time in a Euteleost species that both peptides specifically inhibited GH release. Both hormones were equally potent in inhibiting GH release from dispersed pituitary cells, with maximal inhibitory effects of 92% and 91% at 1 nM doses after 12 days of culture, respectively. The biologically active recombinant turbot IGFs that we obtained will allow us to further investigate potential and perhaps the specific role(s) of these hormones in turbot as, in contrast with mammals, growth in fish is potentially continued during "adult" life.
Collapse
Affiliation(s)
- H Duval
- UMR 6026 CNRS, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Rennes Cedex 35042, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Lin X, Otto CJ, Cardenas R, Peter RE. Somatostatin family of peptides and its receptors in fish. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-100] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatostatin (SRIF or SS) is a phylogenetically ancient, multigene family of peptides. SRIF-14 is conserved with identical primary structure in species of all classes of vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species and could extend to tetrapods. Three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro2]SRIF-14, is also present in sturgeon and African lungfish, and is closely associated with amphibian [Pro2,Met13]SRIF-14 gene and mammalian cortistatin gene. The post-translational processing of SRIF precursors could result in multiple forms of mature SRIF peptides, with differential abundance and tissue- or cell type-specific patterns. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type 1 and type 2 SRIF receptors have been identified from goldfish and a type 3 SRIF receptor has been identified from an electric fish. Fish SRIF receptors display considerable homology with mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. Although additional types of receptors remain to be determined, identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF action in fish.Key words: somatostatin, somatostatin receptor, growth hormone, fish.
Collapse
|
24
|
Agústsson T, Ebbesson LO, Björnsson BT. Dopaminergic innervation of the rainbow trout pituitary and stimulatory effect of dopamine on growth hormone secretion in vitro. Comp Biochem Physiol A Mol Integr Physiol 2000; 127:355-64. [PMID: 11118945 DOI: 10.1016/s1095-6433(00)00265-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To elucidate which factors regulate growth hormone (GH) secretion in rainbow trout, dopaminergic innervation of the rainbow trout pituitary along with the action of dopamine in vitro, were studied. Brains with attached pituitaries were double-labeled for putative dopaminergic neuronal fibers and somatotropes, using fluorescence immunohistochemistry. A direct dopaminergic innervation to the proximal pars distalis (PPD) with dopaminergic fibers terminating adjacent to somatotropes was demonstrated. Growth hormone secretion from whole pituitaries was measured in perifusate using a homologous GH-RIA. Dopamine (DA; 10(-7)-2x10(-6) g ml(-1)) increased basal GH secretion, with the GH secretion normalizing again after the DA exposure was halted. When pituitaries were pre-treated with somatostatin-14 (SRIF-14; 10(-12)-10(-9) g ml(-1)), before being exposed to different doses of DA, there was an inhibition of GH secretion which was not reversed after treatment of SRIF-14 was halted, unless DA was added. It is concluded that dopamine can function as a GH secretagogue in the rainbow trout pituitary gland.
Collapse
Affiliation(s)
- T Agústsson
- Department of Zoology, Fish Endocrinology Laboratory, Göteborg University, Box 463, S 405 30, Göteborg, Sweden.
| | | | | |
Collapse
|
25
|
Weil C, Carré F, Blaise O, Breton B, Le Bail PY. Differential effect of insulin-like growth factor I on in vitro gonadotropin (I and II) and growth hormone secretions in rainbow trout (Oncorhynchus mykiss) at different stages of the reproductive cycle. Endocrinology 1999; 140:2054-62. [PMID: 10218954 DOI: 10.1210/endo.140.5.6747] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The short-term effect of insulin-like growth factor I (IGF-I) on GTH I (FSH-like), GTH II (LH-like), and GH production by cultured rainbow trout pituitary cells was studied in immature fish of both sexes, at early gametogenesis and in spermiating and periovulatory animals. IGF-I had no effect on basal GTH I and GTH II release, whereas it always inhibited basal GH, showing decreasing intensity with the gonad maturation. In absence of IGF-I, GTH I and GTH II cells were always responsive to GnRH, whereas no response was observed for GH cells whatever the sexual stage. The action of IGF-I on the sensitivity to GnRH differs between GTH and GH cells. The former requires a coincubation with IGF-I (10(-6) M)/GnRH to show an increase in sensitivity, independent of the sexual stage. To be responsive to GnRH, the GH cells require longer exposure to IGF-I, the efficiency of which decreases with gonad maturation. The action of IGF-I (10(-6) M) on GTH cell sensitivity to GnRH does not seem to be related to a mitogenic effect or to an improvement in cell survival. It seems to be IGF-I specific, not passing via the insulin receptor. Certain hypotheses on the putative role of IGF-I and GnRH as a link between growth and puberty are suggested.
Collapse
Affiliation(s)
- C Weil
- Institut National de la Recherche Agronomique/Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement, Equipe Croissance et Qualité de la Chair des Poissons, France.
| | | | | | | | | |
Collapse
|
26
|
Gomez JM, Weil C, Ollitrault M, Le Bail PY, Breton B, Le Gac F. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1999; 113:413-28. [PMID: 10068502 DOI: 10.1006/gcen.1998.7222] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to evaluate potential interactions between somatotropic and gonadotropic axes in rainbow trout (Oncorhynchus mykiss), changes in pituitary content of the specific messenger RNA of growth hormone (GH) and gonadotropin (GTH) alpha- and beta-subunits were studied during gametogenesis with respect to pituitary and plasma hormone concentrations. Quantitative analyses of mRNA and hormones were performed by dot blot hybridization and homologous RIA on individual fish according to stage of spermatogenesis and oogenesis. All transcripts were detectable in 9-month-old immature fish. GH, GTH IIbeta, and GTH alpha increased moderately throughout most of gametogenesis and then more dramatically at spermiation and during the periovulatory period. GTH Ibeta mRNA increased first from stage I to V in males and more abruptly at spermiation, while in females GTH Ibeta transcripts increased first during early vitellogenesis and again around ovulation. Pituitary GH absolute content (microgram/pituitary, not normalized with body weight) increased slowly during gametogenesis and more abruptly in males during spermiation. In the pituitary of previtellogenic females and immature males, GTH I beta peptide contents were 80- to 500-fold higher than GTH II beta peptide contents. GTH I contents rose regularly during the initial phases of vitellogenesis and spermatogenesis and then more abruptly in the final stages of gonadal maturation, while GTH II contents show a dramatic elevation during final oocyte growth and maturation, in postovulated females, and during spermiogenesis and spermiation in males. Blood plasma GTH II concentrations were undetectable in most gonadal stages, but were elevated during spermiogenesis and spermiation and during oocyte maturation and postovulation. In contrast, plasma GTH I was already high ( approximately 2 ng/ml) in fish with immature gonads, significantly increased at the beginning of spermatogonial proliferation, and then increased again between stages III and VI to reach maximal levels ( approximately 9 ng/ml) toward the end of sperm cell differentiation, but decreased at spermiation. In females, plasma GTH I rose strongly for the first time up to early exogenous vitellogenesis, decreased during most exogenous vitellogenesis, and increased again around ovulation. Our data revealed that patterns of relative abundance of GTH Ibeta mRNA and pituitary and plasma GTH I were similar, but not the GTH II patterns, suggesting differential regulation between these two hormones at the transcriptional and posttranscriptional levels. Pituitary and plasma GH changes could not be related to sexual maturation, and only a weak relationship was observed between GH and gonadotropin patterns, demonstrating that no simple connection exists between somatotropic and gonadotropic axes at the pituitary level during gametogenesis.
Collapse
Affiliation(s)
- J M Gomez
- Campus de Beaulieu, INRA, Rennes Cedex, 35042, France
| | | | | | | | | | | |
Collapse
|
27
|
Wong AO, Ng S, Lee EK, Leung RC, Ho WK. Somatostatin inhibits (d-Arg6, Pro9-NEt) salmon gonadotropin-releasing hormone- and dopamine D1-stimulated growth hormone release from perifused pituitary cells of chinese grass carp, ctenopharyngodon idellus. Gen Comp Endocrinol 1998; 110:29-45. [PMID: 9514844 DOI: 10.1006/gcen.1997.7045] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a heterologous radioimmunoassay (RIA) for grass carp GH has been validated and used to monitor the kinetics of GH release from perifused grass carp pituitary cells. To establish the anatomical specificity of GH antiserum used in this RIA, immunohistochemical staining was performed in grass carp pituitary sections. Somatotrophs recognized by this GH antiserum were located mainly in the proximal pars distalis without overlapping with gonadotrophs located in the same area or with lactotrophs located in the rostral pars distalis. The immunoreactivity of somatotrophs was abolished by preabsorbing GH antiserum with purified grass carp GH, suggesting that the possibility of a cross-reactivity of antiserum with other grass carp pituitary hormones is unlikely. Using 125I-labeled carp GH as the RIA tracer, parallelism was observed among the displacement curves of grass carp GH standard, grass carp serum, and culture medium conditioned by grass carp pituitary cells, suggesting that this RIA can be used to quantitate grass carp GH levels in biological samples. Using an in vitro column perifusion system, a superactive gonadotropin-releasing hormone (GnRH) analog (d-Arg6, Pro9-NEt)-sGnRH(sGnRHa, 0.3-30 nM), dopamine (DA, 0.1-10 muM), and the nonselective DA agonist apomorphine (0.1-10 muM) stimulated GH release from grass carp pituitary cells in a dose-dependent manner. The GH-releasing effect of DA was mimicked by the D1 agonists SKF38393 (0.1-10 muM) and SKF77434 (0.1-10 muM), but not by the D2 agonist LY171555 (3 muM). In addition, the GH response to DA (1 muM) was blocked by the D1 antagonist SCH23390 (5 muM) but not by the D2 antagonist (+/-) sulpiride (5 muM), suggesting that the GH-releasing action of DA is mediated through receptors resembling mammalian D1 receptors. Somatostatin-14 (SRIF14, 0.01-100 nM), unlike sGnRHa and DA, induced a dose-dependent suppression on basal GH release. At a high dose (100 nM), SRIF14 also abolished the GH responses to sGnRHa (100 nM), DA (10 muM), and the D1 agonist SKF38393 (3 muM). These results, as a whole, provide evidence that GH release in the grass carp is under the direct regulation of GnRH, DA, and SRIF at the pituitary cell level. The present study also suggests that DA D1 receptors are present in grass carp pituitary cells mediating the GH-releasing action of DA.
Collapse
Affiliation(s)
- A O Wong
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | |
Collapse
|
28
|
Gomez JM, Boujard T, Boeuf G, Solari A, Le Bail PY. Individual diurnal plasma profiles of thyroid hormones in rainbow trout (Oncorhynchus mykiss) in relation to cortisol, growth hormone, and growth rate. Gen Comp Endocrinol 1997; 107:74-83. [PMID: 9208307 DOI: 10.1006/gcen.1997.6897] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to characterize the individual diurnal plasma profiles of triiodothyronine (T3) and thyroxine (T4) in rainbow trout (Oncorhynchus mykiss), blood samples from 41 fish were taken every hour during a 24-hr period, through a catheter inserted into the dorsal aorta. The possible influences of day-night alternation, sex, and diet (feed intake, time of meals) on thyroid hormone (TH) profiles were analyzed. The existence of relations between diurnal plasma profiles of T3, T4, T3/T4 ratio, and those of the growth hormone (GH), cortisol (previously described in Gomez et al., J. Exp. Zool. 274, 171-180, 1996), and the growth rate was monitored. Average daily T3 and T4 concentrations were, respectively, 2.6 +/- 0.2 and 5.5 +/- 0.3 ng/ml (n = 41). Our study showed little or no variation in plasma T3 concentrations during one 24-hr period, while those of T4 fluctuated markedly. T4 peaks occurred from a baseline of 4.0 +/- 0.2 ng/ml at a frequency of 2.5 +/- 0.2 peaks/24 hr, with an amplitude of 3.0 +/- 0.4 ng/ml, and a duration of 4.3 +/- 0.4 hr. There was a significant difference between the average circulating T3 level during the day and that at night (2.4 +/- 0.2 vs 2.7 +/- 0.2 ng/ml). No influence of sex or food factors was observed on daily TH concentrations. TH peaks occurred irregularly and asynchronously without apparent influence of day-night alternation, sex, and diet. The growth rate was significantly correlated with the daily T3 concentration (r = 0.77), but not with T4. No significant relationships were found between daily concentrations of T3, T4, GH, and cortisol. The absence of a relationship between TH and GH concentrations suggests that, in salmonids, GH may have no observable short-term action on the conversion of T4 to T3.
Collapse
Affiliation(s)
- J M Gomez
- Laboratoire de Physiologie des Poissons, INRA, Rennes, France
| | | | | | | | | |
Collapse
|
29
|
Fukada H, Hiramatsu N, Gen K, Hara A. Development of an ELISA for chum salmon (Oncorhynchus keta) growth hormone. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:387-92. [PMID: 9253176 DOI: 10.1016/s0305-0491(97)00134-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A specific and sensitive enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of low levels of serum growth hormone (GH) in chum salmon (Oncorhynchus keta). The antiserum to GH (a-rsGH) was obtained from a rabbit immunized with recombinant chum salmon GH. The noncompetitive ELISA was performed by a sandwich method using a-rsGH rabbit IgG as the first antibody, its biotinylated Fab' fragment as the second antibody, and the avidin-biotin reaction for signal amplification. This assay could be run in 3 days and routinely detected GH at concentrations as low as 0.5 ng/ml. The development of an ELISA for GH made possible quantification of serum GH levels. In this assay system, parallel dilution curves were obtained using purified chum salmon GH and GH's from several species of the genus Oncorhynchus.
Collapse
Affiliation(s)
- H Fukada
- Department of Biology and Aquaculture, Faculty of Fisheries, Hokkaido University, Japan
| | | | | | | |
Collapse
|
30
|
Blaise O, Le Bail PY, Weil C. Permissive Effect of Insulin-like Growth Factor I (IGF-I) on Gonadotropin Releasing-hormone Action on In Vitro Growth Hormone Release, in Rainbow Trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(96)00119-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Gomez JM, Boujard T, Fostier A, Le Bail PY. Characterization of growth hormone nycthemeral plasma profiles in catheterized rainbow trout (Oncorhynchus mykiss). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1996; 274:171-80. [PMID: 8882495 DOI: 10.1002/(sici)1097-010x(19960215)274:3<171::aid-jez4>3.0.co;2-l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was conducted in order to characterize the nycthemeral plasma profiles of growth hormone (GH) in 41 prepubertal (2+) rainbow trout (Oncorhynchus mykiss). The possible influences of day-night alternation and of the food factor (quantity ingested, timing of the feed) on these plasma profiles were also analysed. Blood samples were taken every hour during a 24-hour period through a catheter inserted in the dorsal aorta. An assay of cortisol levels showed that the fish were in satisfactory physiological condition. The plasma concentrations of GH fluctuated significantly during the course of a nycthemere. The basal level was very low (0.32 +/- 0.01 ng/ml), and was interrupted by peaks that occurred at a rate of 2.1 +/- 0.1 peaks/24 hr, an amplitude of 2.0 +/- 0.3 ng/ml, and a duration of 3.5 +/- 0.2 hr. As a result, mean GH levels over a 24-hr period were low (0.7 +/- 0.1 ng/ml). Peaks occurred irregularly and asynchronously in individual fish and displayed no rhythmicity. Our study shows that there is a sexual difference in GH profiles in rainbow trout. No significant difference was observed between daily and nightly levels of GH (0.6 +/- 0.07 vs. 0.8 +/- 0.1 ng/ml). No influence of the diet on the plasma profiles of GH was observed. Average levels of GH over a 24 hr period are not significantly correlated with the growth rate of the fish. This study shows that circulating levels of GH in rainbow trout are markedly lower than in other vertebrates.
Collapse
Affiliation(s)
- J M Gomez
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
32
|
Smolt Production. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-9309(96)80011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Melamed P, Eliahu N, Ofir M, Levavi-Sivan B, Smal J, Rentier-Delrue F, Yaron Z. The effects of gonadal development and sex steroids on growth hormone secretion in the male tilapia hybrid (Oreochromis niloticus × O. aureus). FISH PHYSIOLOGY AND BIOCHEMISTRY 1995; 14:267-277. [PMID: 24197495 DOI: 10.1007/bf00004065] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/1995] [Indexed: 06/02/2023]
Abstract
Profiles of plasma growth hormone (GH) in male tilapia hybrid (Oreochromis niloticus x O. aureus) were measured and compared at different times of the year. The profiles did not appear to be repetitive, however, differences in their nature were observed at the different seasons; the most erratic profiles were seen in the height of the reproductive season (July), while the peaks were more subdued in the spring and disappeared in the autumn. Peaks in male fish were more prominent than in the females when measured in July. Perifused pituitary fragments from fish with a high GSI responded to salmon gonadotropin-releasing hormone (sGnRH) analog (10 nM-1 μM), while those from fish with a low GSI barely responded to even the highest dose. Exposure of perifused pituitary fragments from sexually-regressed fish to carp growth hormone-releasing hormone (cGHRH; 0.1 μM) or sGnRH (I μM) stimulated GH release only after injection of the fish with methyl testosterone (MT; 3 injections of 0.4 mg kg (1)). The same MT pretreatment did not alter the response to dopamine (DA; 1 or 10 μM). GH pituitary content in MT-treated fish was lower than in control fish, which may be explained by the higher circulating GH levels in these fish, but does not account for the increased response to the releasing hormones. Castration abolished the response of cultured pituitary cells to sGnRH (I fM-100 nM) without altering either their basal rate of secretion or circulating GH levels. Addition of steroids to the culture medium (MT or estradiol at 10 nM for 2 days) enabled a GH response to sGnRH stimulation in cells from sexually regressed fish. Pituitary cells which had not been exposed to steroids failed to respond to sGnRH, although their response to forskolin or TPA was similar to that of steroid-exposed cells. It would appear, therefore, that at least one of the effects of the sex steroids on the response to GnRH is exerted proximally to the formation of cAMP, or PKC, presumably at the level of the receptor. An increase in the number of receptors to the GH-releasing hormones, following steroid exposure, would explain also the changing nature of the GH secretory profile in different stages of the reproductive season.
Collapse
Affiliation(s)
- P Melamed
- Department of Zoology, Tel-Aviv University, Tel Aviv, 69978, Israel,
| | | | | | | | | | | | | |
Collapse
|
34
|
Seddiki H, Maxime V, Boeuf G, Peyraud C. Effects of growth hormone on plasma ionic regulation, respiration and extracellular acid-base status in trout (Oncorhynchus mykiss) transferred to seawater. FISH PHYSIOLOGY AND BIOCHEMISTRY 1995; 14:279-288. [PMID: 24197496 DOI: 10.1007/bf00004066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/1995] [Indexed: 06/02/2023]
Abstract
The effects of trout recombinant growth hormone (rtGH) treatment (0.25 μg g(-1) by intraperitoneal implant) on plasma ionic regulation, extracellular acid-base status and respiration were investigated in freshwater rainbow trout and during a 4-day period after direct transfer into seawater (35 g 1(-1)).In freshwater, rtGH treatment resulted in a significant increase in gill (Na(+), K(+)) ATPase activity and in standard metabolism (MO2). The latter would mainly result from a higher rate of protein synthesis. Direct transfer from freshwater to seawater induced a decrease in arterial blood pH, far more pronounced in controls than in treated fish. This effect could be regarded in both groups mainly as a metabolic acidosis resulting from extracellular ion composition changes (i.e., an increase higher in chloride than in sodium, more marked in controls than in treated fish). As the rise in PaCO2, in spite of an increase in ventilatory activity, is more significant in controls than in treated fish, it can be assumed that rtGH treatment lightened the decrease in the gas diffusing capacity of gills induced by transfer to seawater. The initial increase in MO2 in both controls and treated fish could be the consequence of an increase in energetic cost of ventilation and osmoregulation. Then, in treated fish, the persistent high level of M may indicate a stimulation of intermediary metabolism by rtGH. In addition, the absence in treated fish of an increase in plasma lactate concentration, as observed in controls, would indicate that rtGH attenuated the decrease in O2 affinity of haemoglobin foreseeable from the metabolic acidosis.
Collapse
Affiliation(s)
- H Seddiki
- Laboratoire de Physiologie Animale, Faculté des Sciences, 6 avenue Le Gorgeu, BP 809, 29285, Brest Cedex, France
| | | | | | | |
Collapse
|
35
|
Bosch D, Smal J, Krebbers E. A trout growth hormone is expressed, correctly folded and partially glycosylated in the leaves but not the seeds of transgenic plants. Transgenic Res 1994. [DOI: 10.1007/bf01973590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Weil C, Sambroni E, Bougoussa M, Dacheux F, Le Bail PY, Loir M. Isolation and culture of somatotrophs from the pituitary of the rainbow trout: Immunological and physiological characterization. In Vitro Cell Dev Biol Anim 1994; 30A:162-7. [DOI: 10.1007/bf02631439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Radioimmunoassay of fish growth hormone, prolactin, and somatolactin. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-444-82033-4.50052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Niu PD, Perez-Sanchez J, Le Bail PY. Development of a protein binding assay for teleost insulin-like growth factor (IGF)-like: relationships between growth hormone (GH) and IGF-like in the blood of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:381-391. [PMID: 24202498 DOI: 10.1007/bf00004588] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using rainbow trout plasma protein (IGF-BP) which specifically binds human insulin-like growth factor (IGF) (Niu and Le Bail 1993), we have developed an assay to measure plasma IGF-like levels in different teleost species. Before the assay and to prevent interference by IGF-BP, IGF-like was extracted from all samples, using SP Sephadex C-25 in acidic conditions. After this treatment, contamination of the IGF fraction by IGF-BP which was estimated by binding assay, was approximately 5%, and was not detectable by western ligand blot.Human IGF-I was used as standard and labelled hormone. Sensitivity of the assay was 0.15-0.40 ng/ml (ED90) and ED50 was 1-3 ng/ml. hIGF-II crossreaction was partial and no significant displacement was observed with Insulin from different species or with other hormones. Inhibition curves were obtained with plasma IGF fractions (but not with tissue extracts) from teleost and mammals and are parallel to the standard curve. These results suggest that the protein binding assay can quantify an IGF-like factor in the plasma of teleost and that the binding sites of IGF are well conserved during vertebrate evolution.Using this IGF binding assay, IGF-like was measured in parallel with growth hormone (GH) in plasma from young rainbow trout killed every 1.5h throughout one day. The daily profiles for both hormones, which appear pulsatile, are similar. A significant correlation was observed between GH levels and IGF-like levels with a 1.5h delay. Analogous observations were obtained in individual catheterized adult rainbow trout. Although plasma GH levels differ greatly between fish, less variability is found with IGF-like. In a third experiment, rainbow trout were starved or submitted to bovine GH treatment for four weeks. Starved fish, in which plasma GH levels increased, had plasma IGF-like level significantly lower than in fed fish. In bGH injected fish, plasma IGF-like level was significantly higher than in non-injected fish. These results suggest that, as in mammals, IGF-like secretion depends on plasma GH level and could be modulated by the nutritional status of fish.
Collapse
Affiliation(s)
- P D Niu
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, 35042, Rennes, France
| | | | | |
Collapse
|
39
|
Niu PD, Le Bail PY. Presence of insulin-like growth factor binding protein (IGF-BP) in rainbow trout (Oncorhynchus mykiss) serum. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/jez.1402650604] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Effect of GH treatment on salmonid growth: Study of the variability of response. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/ce043p0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Inhibition of growth hormone synthesis by somatostatin in cultured pituitary of rainbow trout. J Comp Physiol B 1992. [DOI: 10.1007/bf00296636] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Pérez-Sánchez J, Weil C, Le Bail PY. Effects of human insulin-like growth factor-I on release of growth hormone by rainbow trout (Oncorhynchus mykiss) pituitary cells. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:287-90. [PMID: 1640199 DOI: 10.1002/jez.1402620308] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A recombinant human IGF-I (rhIGF-I) was applied to primary cultures of rainbow trout pituitary cells. In wells containing 3 x 10(4) and 6 x 10(4) cells/well, rhIGF-I inhibited basal GH release both in short (6 h) and long (12 and 24 h) exposures. The decline in GH release was dose-dependent over the range of 0.01 and 100 mM. The combination of rhIGF-I and low concentrations of synthetic somatostatin (SRIF) enhanced the inhibitory effect of rhIGF-I in an additive manner. Any appreciable effect of rhIGF-I on PRL release was not evidenced. To our knowledge, this report demonstrates for the first time the participation of IGFs on the inhibitory component of fish GH regulation.
Collapse
|
43
|
Foucher JL, Le Bail PY, Le Gac F. Influence of hypophysectomy, castration, fasting, and spermiation on SBP concentration in male rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1992; 85:101-10. [PMID: 1563611 DOI: 10.1016/0016-6480(92)90177-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The influence of different experimental and physiological conditions on sex steroid binding protein (SBP) concentrations in the blood (and in hepatic and testicular cytosols) has been studied on male rainbow trout. SBP was measured with a specific binding assay. The aim was to further understanding of regulation of the SBP and in particular to determine the respective influences of reproductive and metabolic status. Twelve days after hypophysectomy, pituitary and steroid hormones were dramatically decreased and SBP concentrations were significantly lowered in blood (-32%) and in hepatic cytosol (-46%) while the binding protein concentration remained constant in testicular cytosol. Castration of maturing animals did not influence SBP concentration in blood and liver cytosol. Toward the end of the reproductive cycle, a dramatic decrease (-80%) of plasma SBP concentration occurred that appears independent of androgen changes that take place during this period, but is concomitant with a rapid increase of plasma growth hormone (GH) levels (and possibly secondary to a natural arrest of food intake). Long-term fasting that increases endogenous GH but decreases plasma IGFs (insulin-like growth factors) concentrations also induces a limited but significant decrease in SBP concentration. Treatment of intact control trout with recombinant bovine GH (1 microgram/g wt, twice a week, for 6 weeks) increased plasma IGF concentrations but did not significantly increase SBP levels. These results suggest that in mature male trout, testicular androgens have little or no influence on SBP regulation. GH levels or liver GH responsiveness and IGF might be involved in SBP regulation. This would, in part, explain the large decrease in SBP around spermiation in trout.
Collapse
Affiliation(s)
- J L Foucher
- Laboratoire de Physiologie des Poissons, INRA, Rennes, France
| | | | | |
Collapse
|
44
|
Foucher JL, Niu PD, Mourot B, Vaillant C, Le Gac F. In vivo and in vitro studies on sex steroid binding protein (SBP) regulation in rainbow trout (Oncorhynchus mykiss): influence of sex steroid hormones and of factors linked to growth and metabolism. J Steroid Biochem Mol Biol 1991; 39:975-86. [PMID: 1751398 DOI: 10.1016/0960-0760(91)90358-c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The respective roles of sex steroids and hormones related to growth and metabolism, on SBP regulation have been studied in rainbow trout. In vivo, oestradiol (E2) supplementation induces a slow but significant increase of plasma SBP concentration. Testosterone or cortisol injections have no effect. In vitro, the steroid binding protein that accumulates in incubation medium of hepatic cell primary cultures has been characterized and found to be similar to blood SBP. Its production is increased by addition of E2 (maximum: +300%). This effect develops slowly over several days of culture and is dose dependent; as little as 1-10 nM E2 is effective. Recombinant rainbow trout GH (rtGH)--0.01 to 1 microgram/ml--also increases SBP accumulation as compared to control cells and seems to maintain SBP production over culture duration. In preliminary experiments, (1) insulin-like growth factor (IGF) and SBP concentrations were found to change inversely after a 4 days stimulation with increasing concentrations of GH; (2) recombinant human IGF1 (250 ng/ml) tended to be inhibitory when SBP production was expressed per mg of total cellular protein, and a micromolar concentration of bovine insulin was clearly inhibitory. Other hormones tested in vitro: triiodothyronine (10-1000 nM), thyroxine (100 nM), 17 alpha, 20 beta-dihydroprogesterone (10-2000 nM), and testosterone (1-1000 nM) did not influence SBP concentration in hepatic cells culture media.
Collapse
Affiliation(s)
- J L Foucher
- Laboratoire de Physiologie des Poissons, I.N.R.A., Rennes, France
| | | | | | | | | |
Collapse
|