1
|
Lin-Moshier Y, Marchant JS. The Xenopus oocyte: a single-cell model for studying Ca2+ signaling. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.top066308. [PMID: 23457336 DOI: 10.1101/pdb.top066308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the four decades since the Xenopus oocyte was first demonstrated to have the capacity to translate exogenous mRNAs, this system has been exploited for many different experimental purposes. Typically, the oocyte is used either as a "biological test tube" for heterologous expression of proteins without any particular cell biological insight or, alternatively, it is used for applications where cell biology is paramount, such as investigations of the cellular adaptations that power early development. In this article, we discuss the utility of the Xenopus oocyte for studying Ca(2+) signaling in both these contexts.
Collapse
Affiliation(s)
- Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
2
|
Davidson EH, Jacobs HT, Thomas TL, Hough-Evans BR, Britten RJ. Poly(A) RNA of the egg cytoplasm: structural resemblance to the nuclear RNA of somatic cells. CIBA FOUNDATION SYMPOSIUM 2008; 98:6-24. [PMID: 6196164 DOI: 10.1002/9780470720790.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper concerns the structural characteristics of the poly(A) RNA stored in unfertilized amphibian and echinoderm eggs. Though located in the egg cytoplasm, at least two-thirds of these maternal transcripts display an interspersed sequence organization similar to that of nuclear RNA. In Xenopus laevis interspersed poly(A) RNA molecules are synthesized and deposited in the oocyte cytoplasm throughout the main growth phase of oogenesis. Regions of the sea urchin genome that are represented by interspersed maternal transcripts have been recovered from recombinant clone libraries. In one case the same single-copy sequence is found both in an abundant message-sized 1.6 kilobase (kb) maternal transcript and in a 7.5 kb maternal transcript that structurally resembles a precursor form and is not found in embryonic polysomes. In a second example considered, a 9.5 kb transcript was identified in embryo nuclear RNA that may be identical in structure with an interspersed maternal poly(A) RNA derived from the same transcription unit. Transcription of this sequence appears to be constitutive in somatic cell nuclei, though no homologous cytoplasmic RNAs are found after early cleavage. This may be a widespread form of regulation for transcription units expressed in female germ cells, and represented in the maternal poly(A) RNA pools of unfertilized eggs.
Collapse
|
3
|
Zearfoss NR, Chan AP, Kloc M, Allen LH, Etkin LD. Identification of new Xlsirt family members in the Xenopus laevis oocyte. Mech Dev 2003; 120:503-9. [PMID: 12676327 DOI: 10.1016/s0925-4773(02)00459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xenopus laevis short interspersed repeat transcripts (Xlsirts) are a family of noncoding RNAs defined by the presence of a specific repeated sequence that acts as a vegetal localization element. Previous studies have demonstrated that Xlsirts function as localization elements to localize RNA and also in anchoring mRNA at the vegetal cortex. However, the identity of the Xlsirts containing family members present at the cortex was unknown. We identified 17 new Xlsirt cDNAs from an oocyte cDNA library. In addition to being associated with noncoding sequences, the repeats were also present in cDNAs with open reading frames. Xlsirt RNAs with repeats in the correct orientation were capable of localizing to the vegetal cortex. Our observations demonstrate that a heterogeneous population of Xlsirt RNAs is present at the cortex and that this population contains both noncoding RNAs and RNAs encoding proteins that are likely to play important roles in the subsequent development of the embryo.
Collapse
Affiliation(s)
- N Ruth Zearfoss
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
4
|
Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 2001; 106:3-23. [PMID: 11472831 DOI: 10.1016/s0925-4773(01)00413-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the striking differences in the patterns of transcription and translation in somatic and spermatogenic cells in mammals. In early haploid cells, mRNA translation evidently functions to restrict the synthesis of certain proteins, notably protamines, to transcriptionally inert late haploid cells. However, this does not explain why a substantial proportion of virtually all mRNA species are sequestered in translationally inactive free-messenger ribonucleoprotein particles (free-mRNPs) in meiotic cells, since most mRNAs undergo little or no increase in translational activity in transcriptionally active early haploid cells. In addition, most mRNAs in meiotic cells appear to be overexpressed because they are never fully loaded on polysomes and the levels of the corresponding protein are often much lower than the mRNA and are sometimes undetectable. A large number of genes are expressed at grossly higher levels in meiotic and/or early haploid spermatogenic cells than in somatic cells, yet they too are translated inefficiently. Many genes utilize alternative promoters in somatic and spermatogenic cells. Some of the resulting spermatogenic cell-altered transcripts (SCATs) encode proteins with novel functions, while others contain features in their 5'-UTRs, secondary structure or upstream reading frames, that are predicted to inhibit translation. This review proposes that the transcriptional machinery is modified to provide access to specific DNA sequences during meiosis, which leads to mRNA overexpression and creates a need for translational fine-tuning to prevent deleterious consequences of overproducing proteins.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA..
| |
Collapse
|
5
|
Differential stability of Xenopus c-myc RNA during oogenesis in axolotl Involvement of the 3' untranslated region in vivo. ACTA ACUST UNITED AC 1995; 205:182-191. [PMID: 28306079 DOI: 10.1007/bf00357764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1995] [Accepted: 08/17/1995] [Indexed: 10/26/2022]
Abstract
We have used the axolotl oocyte (Ambystoma mexicanum Shaw) to study the stability of exogenously injected Xenopus RNAs. Three different cellular developmental stages have been analysed: (1) the growing oocyte (stage III-IV of vitellogenesis), (2) the full-grown oocyte at the end of vitellogenesis (stage VI) and (3) the progesterone-matured stage VI oocyte. Three exogenous RNAs have been synthesized in vitro from a c-myc Xenopus cDNA clone. One transcript is 2.3 kb long (full length), the second is 1.5 kb long, with most of the 3' untranslated region (3'UTR) removed, and the third corresponds to the 3'UTR (0.8 kb). After injection or coinjection of these exogenous Xenopus RNAs into axolotl oocytes, the stability of the molecules was studied after 5 min, 6 h and 21 h by extraction of total RNA and Northern blot analysis.Results show a difference in Xenopus RNA stability during axolotl oogenesis. In growing oocytes, the three synthetic transcripts are gradually degraded. The absence of the 3'UTR is not therefore sufficient to stabilize the transcript during early oogenesis. No degradation is observed in full-grown oocytes, suggesting the existence of stabilizing factors at the end of oogenesis. When stage VI oocytes are induced to mature by progesterone, only the 2.3 and 1.5 kb Xenopus RNAs disappear. This suggests a role for germinal vesicle breakdown in this degradation process as well as the existence of a factor present in the nucleus and involved in the specific destabilization of these RNAs after oocyte maturation. This degradation might implicate several destabilizing sequences localized in the coding or in the 3'UTR of the c-myc gene. In contrast, the 0.8 kb transcript (3'UTR) is not degraded during this period and remains very stable. Therefore, degradation appears distinct from one transcript to another and from one region to another within the same molecule. During maturation, the behaviour of the 2.3 and 1.5 kb transcripts is different when coinjected with the 3'UTR, suggesting a role in trans of this untranslated molecule in c-myc stability. Our approach allows us to analyse the role of the coding and 3'UTR regions of the c-myc RNA in the control of mRNA degradation in vivo.
Collapse
|
6
|
Abstract
Interspersed RNA makes up two-thirds of cytoplasmic polyadenylated RNA in Xenopus and sea urchin eggs. Although it has no known function, previous work has suggested that at least one family of interspersed RNA, XR, binds Xenopus oocyte proteins, and can influence the rate of translation. We have used two Xenopus repeat families, Ocr and XR, to explore their protein binding abilities. Ocr RNA binds the same pattern of highly abundant oocyte proteins that XR RNA binds, which are believed to be messenger ribonucleoprotein (mRNP) particle proteins. In addition, we show that Ocr RNA binds the Oct-60 protein, a member of the POU-domain family of transcription factors found in Xenopus oocytes. Using a 32 base pair sequence from the XR repeat in a DNA affinity column two proteins were isolated, 66 kDa and 92 kDa, that together form a complex with XR DNA. One of these proteins (92 kDa) also binds XR RNA. We suggest that the role of at least a subset of interspersed RNAs in development may be to bind, and sequester in the cytoplasm, DNA-binding proteins until the end of oogenesis.
Collapse
Affiliation(s)
- K L Guttridge
- Developmental Biology Center, University of California-Irvine, USA
| | | |
Collapse
|
7
|
Liu C, Smith LD. Evidence that XR family interspersed RNA may regulate translation in Xenopus oocytes. Mol Reprod Dev 1995; 40:481-9. [PMID: 7541218 DOI: 10.1002/mrd.1080400412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been shown that about two thirds of Xenopus oocyte or sea urchin egg cytoplasmic poly(A)+ RNA contains interspersed repetitive sequences. The functional significance of this interspersed RNA has remained unknown. Here the function of a subfamily of interspersed RNA (XR family; McGrew and Richter, 1989: Dev Biol 134:267-270) in Xenopus oocytes was studied. We found that the elimination of T7 XR (one of the two complementary strands of the XR repeat) interspersed RNA by complementary oligodeoxynucleotides significantly inhibited protein synthesis. On the other hand, the injection of in vitro synthesized T7 XR RNA stimulated translation. Moreover, the insertion of the T7 XR RNA sequence into globin mRNA repressed the translation of the globin mRNA. In order to explain these results, we analyzed interactions between the XR interspersed RNA and oocyte proteins. We found that the major XR RNA binding proteins were p56 and p60, which could be the known mRNA "masking" proteins that bind mRNA and inhibit translation. Further, a 42 kD protein has been identified that appears to bind T7 XR RNA relatively specifically, although it interacts with mRNA with a lower affinity. Based on all of these data, we have proposed that interspersed RNA may be involved in regulating translation by competing with mRNA to interact with certain proteins that can regulate translation.
Collapse
Affiliation(s)
- C Liu
- Department of Developmental and Cell Biology, University of California, at Irvine, USA
| | | |
Collapse
|
8
|
Abstract
Interspersed RNA is an abundant class of cytoplasmic poly(A)+ RNA which contains repetitive elements within mostly heterogeneous single copy sequences. In spite of its quantitative importance in oocytes or eggs (two-thirds of the total poly(A)+ RNA), very little is known about its synthesis, its interaction with other molecules, and its functional significance. Here, we analysed a prevalent family of interspersed RNA (XR family) during Xenopus oogenesis. We found that XR interspersed RNA, unlike extracted interspersed RNA, did not form RNA duplexes in vivo. In small oocytes (stage III), XR RNA interacted with proteins forming rapidly sedimenting ribonucleoprotein particles (RNPs) with a median sedimentation constant of 80S. However, towards the end of oogenesis (stage VI), these XR RNPs changed into smaller particles with a median sedimentation constant of 40S. By analysing the proteins associated with XR RNA sequence, we have identified a 42 kilodalton protein in small oocytes, which was replaced by a 45 kilodalton protein at stage V of oogenesis.
Collapse
Affiliation(s)
- C Liu
- Department of Developmental and Cell Biology, University of California at Irvine, USA
| | | |
Collapse
|
9
|
Liu C, Smith LD. Differential accumulation of mRNA and interspersed RNA during Xenopus oogenesis and embryogenesis. ZYGOTE 1994; 2:307-16. [PMID: 8665161 DOI: 10.1017/s0967199400002136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xenopus oocyte cytoplasmic poly(A)+ RNA has been shown to include two major complex classes: mRNA and interspersed RNA. The former is defined by its translatability, while the latter consists of non-translatable repeat-containing transcripts with unknown functions. In this study we compared the accumulation patterns of total mRNA and a subfamily of interspersed RNA, the XR family (McGrew & Richter, 1989, Dev. Biol. 134, 267-70). The results showed that the XR interspersed RNA level continued to increase throughout oogenesis, while the total mRNA level reached a peak at late stage II and then decreased as much as 40% between stage II and stage VI of oogenesis. In addition we have found that, like mRNA, only about half of the non-translatable XR interspersed RNA underwent deadenylation at oocyte maturation. This result suggested that about half of the interspersed RNA, like certain mRNAs, also contains the U-rich element to protect it from the automatic deadenylation, implying the poly(A) tail of interspersed RNA may play a role during early development.
Collapse
Affiliation(s)
- C Liu
- Department of Developmental and Cell Biology, University of California at Irvine, USA
| | | |
Collapse
|
10
|
Isolation and developmental expression of an oogenesis-specific Xenopus cDNA clone. Dev Genes Evol 1992; 201:113-119. [PMID: 28305900 DOI: 10.1007/bf00420422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1991] [Accepted: 10/17/1991] [Indexed: 10/26/2022]
Abstract
We have characterized a cDNA clone designated XSYO, complementary to a transcript that is highly expressed during Xenopus oogenesis. XSYO is expressed as a maternal mRNA in oocytes and early embryos at a level up to 3 × 108 copies per mature oocyte. This level is 100-fold higher than the concentration of an average maternal RNA in the oocyte and close to the value found for the stockpiled maternal histone mRNA. This level remains constant thoughout the first rapid cleavage stages until the midblastula transition (MBT). After this stage, the XSYO RNA is degraded within 2 h and, after the blastula stage, a very weak expression was detected. This gene is not expressed in Xenopus proliferative somatic cultured cells, suggesting that it is not a simple housekeeping gene. The presence of a potential metal-binding domain in the XSYO sequence suggests that this gene might code for a protein involved in nucleic acid binding or gene regulation specific to oogenesis or early development.
Collapse
|
11
|
|
12
|
Murray MT, Krohne G, Franke WW. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos. J Cell Biol 1991; 112:1-11. [PMID: 1670777 PMCID: PMC2288798 DOI: 10.1083/jcb.112.1.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occur in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.
Collapse
Affiliation(s)
- M T Murray
- Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
13
|
Sigel E. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 1990; 117:201-21. [PMID: 2231695 DOI: 10.1007/bf01868451] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E Sigel
- Pharmakologisches Institut, Universität Bern, Switzerland
| |
Collapse
|
14
|
Di Carlo M, Montana G, Bonura A. Analysis of the sequence and expression during sea urchin development of two members of a multigenic family, coding for butanol-extractable proteins. Mol Reprod Dev 1990; 25:28-36. [PMID: 1697474 DOI: 10.1002/mrd.1080250106] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two cDNA clones related to Paracentrotus lividus butanol-extracted proteins, presumably belonging to cell surface proteins, were isolated by a lambda gt11 expression library of ovary poly A+ RNA. These clones, called bep1 and bep4, of 1,110 and 1,071 bp, respectively, belong to a multigene family. By sequencing analysis, a special structural organization in the coding region is detected. A single copy region is inserted between two regions different from each other but similar in the two clones, which constitute two perfectly preserved domains in the genome and are not always present together in the various members of this gene family. The bep1 and bep4 clones derive from two single genes that are polymorphic in the sea urchin genome. Expression of these clones was studied by Northern blot analysis. Both bep1 and bep4 are transcribed during oogenesis into mRNAs of 1.4 kb, which are stored in eggs and utilized during early embryogenesis. None of these RNAs is, in fact, detectable after the gastrula stage. Moreover, the transcripts of three other members of the family are present in eggs and at the 32 cell stage, but they are also synthesized in the early developmental stages.
Collapse
Affiliation(s)
- M Di Carlo
- Istituto di Biologia dello Sviluppo C.N.R., Palermo, Italy
| | | | | |
Collapse
|
15
|
McGrew LL, Richter JD. Xenopus oocyte poly(A) RNAs that hybridize to a cloned interspersed repeat sequence are not translatable. Dev Biol 1989; 134:267-70. [PMID: 2471661 DOI: 10.1016/0012-1606(89)90097-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cDNA clone encoding an interspersed repeat RNA from Xenopus oocytes was isolated. Each strand of the cDNA clone hybridized to several different oocyte transcripts of diverse size. Many of these transcripts were present in poly(A) RNA at least up to the neurula stage. DNA sequence analysis and hybrid selection and in vitro translation show that molecules of this repeat family are not translatable.
Collapse
Affiliation(s)
- L L McGrew
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
16
|
Abstract
Large T antigen, the regulatory protein encoded by simian virus 40, has DNA helicase activity and unwinds double-stranded DNA at the expense of ATP. T antigen also functions as an RNA helicase separating duplex regions in partially double-stranded RNA substrates. Surprisingly, T antigen RNA helicase activity requires UTP, CTP, or GTP as a cofactor, whereas ATP is an inefficient energy source for the RNA unwinding reaction. Accordingly, T antigen has both an intrinsic non-ATP NTPase activity that is stimulated by single-stranded RNA and an ATPase activity stimulated by single-stranded DNA. Thus, it appears that the bound nucleotide determines whether T antigen acts as an RNA helicase or as a DNA helicase.
Collapse
Affiliation(s)
- M Scheffner
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol Cell Biol 1988. [PMID: 2460743 DOI: 10.1128/mcb.8.10.4433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously characterized B1-Alu gene expression by microinjected Xenopus laevis oocytes. The transcription, endonucleolytic processing and its kinetics, nuclear transport kinetics, and subsequent cellular compartmentalization have been described previously (Adeniyi-Jones and Zasloff, Nature 317:81-84, 1985). Briefly, a B1-Alu gene is transcribed by RNA polymerase III to a 210-nucleotide (210nt) primary transcript which is processed to yield 135nt and 75nt RNAs. After processing, the 135nt RNA enters the cytoplasmic compartment, where it remains stable, while the 75nt RNA is degraded. In this report we characterize this pathway further and show that the RNAs involved are complexed with specific X. laevis proteins. The primary transcript was associated with an X. laevis protein of 63 kilodaltons (p63) as well as La, a protein known to be associated with RNA polymerase III transcripts. After processing, the cytoplasmic 135nt RNA remained associated only with the X. laevis p63 in the form of a small ribonucleoprotein. Human autoimmune antibodies were purified by affinity chromatography to X. laevis p63 and used to immunoprecipitate human ribonucleoprotein containing a 63-kilodalton polypeptide and small RNAs. These data suggest that Alu-analogous ribonucleoproteins and their metabolic pathways are conserved across species and provide insight as to their possible functions.
Collapse
|
18
|
Maraia R, Zasloff M, Plotz P, Adeniyi-Jones S. Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol Cell Biol 1988; 8:4433-40. [PMID: 2460743 PMCID: PMC365517 DOI: 10.1128/mcb.8.10.4433-4440.1988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously characterized B1-Alu gene expression by microinjected Xenopus laevis oocytes. The transcription, endonucleolytic processing and its kinetics, nuclear transport kinetics, and subsequent cellular compartmentalization have been described previously (Adeniyi-Jones and Zasloff, Nature 317:81-84, 1985). Briefly, a B1-Alu gene is transcribed by RNA polymerase III to a 210-nucleotide (210nt) primary transcript which is processed to yield 135nt and 75nt RNAs. After processing, the 135nt RNA enters the cytoplasmic compartment, where it remains stable, while the 75nt RNA is degraded. In this report we characterize this pathway further and show that the RNAs involved are complexed with specific X. laevis proteins. The primary transcript was associated with an X. laevis protein of 63 kilodaltons (p63) as well as La, a protein known to be associated with RNA polymerase III transcripts. After processing, the cytoplasmic 135nt RNA remained associated only with the X. laevis p63 in the form of a small ribonucleoprotein. Human autoimmune antibodies were purified by affinity chromatography to X. laevis p63 and used to immunoprecipitate human ribonucleoprotein containing a 63-kilodalton polypeptide and small RNAs. These data suggest that Alu-analogous ribonucleoproteins and their metabolic pathways are conserved across species and provide insight as to their possible functions.
Collapse
Affiliation(s)
- R Maraia
- Human Genetics Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
19
|
Palmero I, Renart J, Sastre L. Isolation of cDNA clones coding for mitochondrial 16S ribosomal RNA from the crustacean Artemia. Gene 1988; 68:239-48. [PMID: 3220256 DOI: 10.1016/0378-1119(88)90026-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
cDNA clones coding for Artemia mitochondrial 16S ribosomal RNA (rRNA) have been isolated. The clones cover from nucleotide 650 of the RNA molecule to its 3' end. The comparison of Artemia sequence with both vertebrate and invertebrate mitochondrial 16S rRNA sequences has shown the existence of regions of high similarity between them. A model for the secondary structure of the 3' half of Artemia mitochondrial 16S rRNA is proposed. The size of the rRNA molecule has been estimated at 1.35 kb. Despite the similarity of the Artemia gene to insect rRNA in size, sequence and secondary structure, the G + C content of the Artemia gene (42%) is closer to that of mammals than to the insect genes. The number of mitochondria in Artemia has been estimated at 1500 per diploid genome in the cyst and 4000 in the nauplius. In contrast, the amount of mt 16S rRNA is constant at all stages of Artemia development.
Collapse
Affiliation(s)
- I Palmero
- Instituto de Investigaciones Biomédicas del CSIC, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
20
|
Abstract
Ultraviolet irradiation was used to covalently crosslink poly(A) RNA and associated proteins in Xenopus oocytes and reticulocytes. Each cell type contained similar as well as unique crosslinked proteins. The somatic cells contained a single 78-kDa 3' poly(A) tract binding protein while oocyte poly(A), however, was bound by this protein and at least three additional proteins. Based on the mass of poly(A) RNA, oocytes in their earliest stages of growth contained crosslinked proteins that were generally more prevalent than in fully grown oocytes. An investigation of possible messenger RNA-specific proteins was undertaken by a series of RNA injection experiments. Two radiolabeled SP6-derived mRNAs were injected into oocytes; the first, globin mRNA, assembled into polysomes, while the second, a maternal mRNA termed G10, entered a nontranslating ribonucleoprotein compartment. Following the induction of oocyte maturation, additional globin mRNA was recruited onto polysomes while G10 mRNA remained a nontranslating mRNP. The proteins that can be crosslinked to these injected mRNAs were detected by 32P nucleotide transfer. Each mRNA associated with shared as well as unique proteins, some of which were detected only in mature oocytes. The possible function of these proteins is discussed.
Collapse
Affiliation(s)
- R E Swiderski
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
21
|
Kumar S, Degnan BM, Lavin MF. Cloning of a major repeat DNA sequence from Pyura stolonifera. DNA (MARY ANN LIEBERT, INC.) 1988; 7:433-9. [PMID: 3267238 DOI: 10.1089/dna.1.1988.7.433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have cloned a 147-bp Hind III fragment from a marine ascidian Pyura stolonifera. This sequence is arranged in tandem in arrays up to 20 kb in size and represents more than 5% of the total genomic DNA. The basic 147-bp unit was isolated from Hind III-digested genomic DNA and cloned into M13. Sequence analysis of seven clones revealed that the sequence is AT rich (75%) and can be separated from main band DNA by equilibrium density gradient centrifugation in the presence of the ligand dye Hoechst 33258. The sequence is highly conserved and is changed only by single base substitution mutations in the different clones. Use of this sequence as a probe demonstrated varying degrees of hybridization with DNA isolated from a wide range of other ascidians. Northern blot analysis revealed the presence of RNA hybridizing to the repeat in unfertilized eggs but transcription of this sequence was not evident in the adult organism.
Collapse
|
22
|
Calzone FJ, Lee JJ, Le N, Britten RJ, Davidson EH. A long, nontranslatable poly(A) RNA stored in the egg of the sea urchin Strongylocentrotus purpuratus. Genes Dev 1988; 2:305-18. [PMID: 2454211 DOI: 10.1101/gad.2.3.305] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nontranslatable transcripts containing interspersed repetitive sequence elements constitute a major fraction of the poly(A) RNA stored in the cytoplasm of both the sea urchin egg and the amphibian oocyte. We report the first complete sequence of a representative interspersed maternal RNA transcript, called ISp1. The transcript is about 3.7 kb in length [including poly(A) tail]; and the 5' half consists of a cluster of repetitive sequences, whereas the 3' half is single copy. Other repetitive sequences occur in the 5' and 3' regions flanking the transcription unit. In several cloned alleles, the flanking repetitive and single-copy sequences differ, indicating a high degree of insertional and deletional rearrangement around, as well as within, the transcription unit. No significant open reading frames exist in any region of the ISp1 transcript, nor is it spliced to give rise to translatable mRNA in egg or embryo. A 620-nucleotide repetitive sequence element at the 5' end of the ISp1 transcript is also represented in a large number of other long interspersed maternal poly(A) RNAs. In addition, this sequence appears in a prevalent set of small polyadenylated RNAs about 600-nucleotides in length, which disappear almost completely by the gastrula stage of development. The structural features of the ISp1 RNA uncovered in this work exclude several hypotheses of interspersed maternal poly(A) RNA origin and function.
Collapse
Affiliation(s)
- F J Calzone
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|
23
|
Nucleo-Cytoplasmic Transport of mRNA: Its Relationship to RNA Metabolism, Subcellular Structures and Other Nucleocytoplasmic Exchanges. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1988. [DOI: 10.1007/978-3-642-73599-8_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Etkin LD. Regulation of the mid-blastula transition in amphibians. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1988; 5:209-25. [PMID: 3077975 DOI: 10.1007/978-1-4615-6817-9_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cleavage cycles during early amphibian development are synchronous, rapid, and biphasic. There is no transcription and no growth of the embryo, and the nuclear cycle is independent of the cytoplasmic cleavage cycle. All components necessary for development through the blastula stage are provided by maternal stores. At the twelfth cleavage division, a major transition occurs that involves initiation of transcription, an elongation of the cell cycle, an increase in cell movement, and asynchrony of cell division. It is probable that the major controlling factor in the regulation of all the aforementioned events is the cell cycle. During early cleavage stages, the cell cycle is both rapid (30-35 min) and synchronous. There is evidence that the cycling time may be controlled by the presence of several mitotic factors, such as MPF, CSF (cytostatic factor), and a titratable component that binds to nuclear membranes. The rapid rate of DNA synthesis may inhibit the formation of transcription complexes, resulting in the absence of detectable transcription before the MBT. Cellular movement may also be inhibited in the rapidly dividing cell. As the cell cycle elongates (possibly due to the functional loss or sequestration of one or more of the mitotic control factors), the G1 and G2 phases are incorporated into the cell cycle. Under conditions of slower rates of DNA replication and the presence of the G1 and G2 phases, the transcriptional machinery becomes functional. It is apparent that at the MBT, not all classes of transcripts are activated simultaneously in every cell, nor is their expression regulated by a common mechanism. Incorporation of the G1 and G2 phases in the cell cycle may also permit the synthesis and assembly of microtubules and cytoskeletal components necessary for the initiation of the cell movements characteristic of this stage of development. The role of the cell cycle in controlling events at the MBT is supported by evidence from studies in which perturbation of the cell cycle that results in its elongation or arrest produces subsequent initiation of events that occur normally at the MBT. The MBT therefore appears to be a window in the developmental time frame, during which a number of molecular and morphogenetic events occur independently of one another, but all are necessary for subsequent morphogenesis and cellular differentiation. It is a transition from the strict reliance on the maternal program to a dependence on the new transcription from the embryonic genetic program. It is probable that the major regulatory mechanism involved in the occurrence of this constellation of cellular events is the change in the cell cycle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L D Etkin
- Department of Molecular Genetics, University of Texas Cancer Systems Center, M.D. Anderson Hospital and Tumor Institute, Houston 77030
| |
Collapse
|
25
|
Wormington WM. Expression of ribosomal protein genes during Xenopus development. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1988; 5:227-40. [PMID: 3077976 DOI: 10.1007/978-1-4615-6817-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Xenopus ribosomal protein genes provide an excellent system to elucidate the complex regulation encompassing 60 functionally related proteins present in equimolar amounts in ribosomal subunits. Oogenesis and embryogenesis provide unique opportunities to investigate ribosome biosynthesis in situations wherein gene activation of individual components is uncoupled from assembly of the ribosomal subunits. This chapter has focused on the basic parameters that control ribosomal protein gene expression during development. Translational control is clearly a major level for coordinating the regulation of these genes during development, as is posttranslational stability of the ribosomal proteins and RNA splicing of the L1 gene. In addition to these levels of control under active investigation, a number of intriguing problems remain to be addressed in any detail. For example, the mechanisms that balance ribosomal protein production with subunit assembly in oocytes remain to be determined. Resolution of these events must also define the processes by which ribosomal proteins, upon synthesis in the cytoplasm, are first translocated to the nucleus and subsequently to the nucleolus for subunit assembly. Functional approaches in which these genes are assayed for accurate developmental control in microinjected oocytes and fertilized eggs will undoubtedly provide information on the synthesis of this eukaryotic organelle and the signals responsible for altering these processes at different developmental stages.
Collapse
Affiliation(s)
- W M Wormington
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| |
Collapse
|
26
|
Kleene KC, Flynn J. Translation of mouse testis poly(A)+ mRNAs for testis-specific protein, protamine 1, and the precursor for protamine 2. Dev Biol 1987; 123:125-35. [PMID: 2442049 DOI: 10.1016/0012-1606(87)90434-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since previous studies have suggested that the mammalian protamine mRNAs are translated poorly in cell-free systems, we directly measured the efficiency of translation of mouse protamine 1 mRNA. We found that mouse testis poly(A)+ mRNA stimulates the synthesis in the wheat germ and reticulocyte cell-free systems of three prominant translation products which can be resolved by electrophoresis through acid urea polyacrylamide gels containing 8 M urea. These translation products have been identified as testis-specific protein, protamine 1, and the precursor to protamine 2 by several criteria, including labeling with amino acids, [35S]cysteine, and [3H]leucine, which are known to be specific to some of these proteins from the nucleotide sequences of recombinant DNAs. Surprisingly, the mobility of the testis-specific protein translation product is slightly reduced and the mobility of both protamine translation products is drastically reduced unless the extracts of cell-free translations are coelectrophoresed with the appropriate carrier. The fraction of [35S]cysteine- labeled protamine 1 translation product was compared with the fraction of testis poly(A)+ mRNA as protamine 1 mRNA which we measured in dot blots with the use of an SP6 RNA polymerase transcript for protamine 1. The results demonstrate that protamine 1 mRNA is translated only slightly less efficiently than the average testis poly(A)+ mRNA.
Collapse
|
27
|
Audet RG, Goodchild J, Richter JD. Eukaryotic initiation factor 4A stimulates translation in microinjected Xenopus oocytes. Dev Biol 1987; 121:58-68. [PMID: 3569666 DOI: 10.1016/0012-1606(87)90138-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The injection of heterologous mRNA into fully grown Xenopus oocytes results not only in the synthesis of the heterologous protein but also in a reciprocal decrease in the synthesis of endogenous proteins. This indicates that injected and endogenous mRNAs compete for some component which is rate-limiting for translation in oocytes. We have attempted to identify this rate-limiting translational component. We find that heterologous and homologous polysomes compete with endogenous mRNAs as effectively as naked mRNA, indicating that polysomes do not contain detectable levels of the rate-limiting factor. In addition, we have used micrococcal nuclease digestion and a mRNA-specific oligonucleotide to destroy the mRNA component of polysomes. The remaining polysome factors, when injected into oocytes, failed to stimulate translation. When several eukaryotic translation initiation factors were injected into oocytes, initiation factor 4A consistently increased general oocyte protein synthesis by about twofold. It is possible that the availability of eIF-4A in oocytes is a key factor in limiting the overall rate of protein synthesis.
Collapse
|
28
|
Nash MA, Kozak SE, Angerer LM, Angerer RC, Schatten H, Schatten G, Marzluff WF. Sea urchin maternal and embryonic U1 RNAs are spatially segregated in early embryos. J Cell Biol 1987; 104:1133-42. [PMID: 3553205 PMCID: PMC2114458 DOI: 10.1083/jcb.104.5.1133] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have used in situ hybridization and cell fractionation methods to follow the distribution of U1 RNA and immunofluorescence microscopy to follow the distribution of snRNP proteins in oocytes, eggs, and embryos of several sea urchin species. U1 RNA and U1-specific snRNP antigens are concentrated in germinal vesicles of oocytes. Both appear to relocate after oocyte maturation because they are found primarily, if not exclusively, in the cytoplasm of mature unfertilized eggs. This cytoplasmic residence is maintained during early cleavage and U1 RNA is first detectable in nuclei of micromeres at the 16-cell stage. Between morula and gastrula stages the steady-state concentrations of both RNA and antigens gradually increase in nuclei and decrease in cytoplasm. Surprisingly, analysis of the distribution of newly synthesized U1 RNA shows that it does not equilibrate with the maternal pool. Instead new transcripts are confined to nuclei, while cytoplasmic U1 RNAs are of maternal origin. This lack of equilibration and the conversion of maternal U1 RNAs from nuclear species in oocytes to cytoplasmic in embryos suggests that these RNPs (or RNAs) are structurally altered when released to the cytoplasm at oocyte maturation.
Collapse
|
29
|
Cardinali B, Campioni N, Pierandrei-Amaldi P. Ribosomal protein, histone and calmodulin mRNAs are differently regulated at the translational level during oogenesis of Xenopus laevis. Exp Cell Res 1987; 169:432-41. [PMID: 3556426 DOI: 10.1016/0014-4827(87)90203-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The localization of r-protein mRNA in subcellular compartments has been analysed. It was observed that the mRNA for a representative r-protein (L1) is diffuse in the cytoplasm, as shown by in situ hybridization experiments and that the distribution of rp-mRNA between polysomes and light mRNPs changes during oogenesis. In early oogenesis this mRNA is found mostly in subpolysomal fractions, whereas at the beginning of vitellogenesis (stage II) it becomes associated with polysomes where it remains in a constant amount at later stages. Histone and calmodulin mRNA, on the contrary, are mostly associated with non-polysomal fast-sedimenting particles throughout oogenesis. This suggests that the partition of different classes of mRNA between polysomes, light mRNP and heavy particles depends on their nature and might be determined by different requirements for these mRNAs during oogenesis.
Collapse
|
30
|
Jamrich M, Sargent TD, Dawid IB. Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis. Genes Dev 1987; 1:124-32. [PMID: 2445625 DOI: 10.1101/gad.1.2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analysis of the spatial pattern of expression of embryo-specific epidermal cytokeratin genes in Xenopus laevis shows earliest activity in the animal pole cells of stage-9 blastulae. These genes are transcribed predominantly in the epithelial or outer ectoderm, to a lesser extent in the sensorial or inner ectoderm, and at low levels if at all in other regions of the embryo. In the early gastrula the entire ectoderm, including preneural and preepidermal regions, expresses cytokeratin mRNAs; accumulation of these mRNAs in preneural cells is terminated after contact is made with involuting chordamesoderm. On the basis of this and earlier work (Sargent et al. 1986) we suggest that the pattern of expression of cytokeratin genes in frog embryogenesis is based on prelocalized components modulated by the inductive influence of involuting chordamesoderm. The cytokeratin proteins are deposited in the form of filamentous networks in both layers of the epidermis. In the epithelial layer, a much denser mesh of filaments is facing the outside of the embryo. This polarity is established at the onset of the polymerization of these filaments. Thus, intraembryonic and intracellular localization of keratin gene expression and protein deposition is established at the onset of activation of these genes.
Collapse
Affiliation(s)
- M Jamrich
- Laboratory of Molecular Genetics, NICHD, Bethesda, Maryland 20892
| | | | | |
Collapse
|
31
|
Abstract
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The functions of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.
Collapse
|
32
|
Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 1987; 48:599-605. [PMID: 2434240 DOI: 10.1016/0092-8674(87)90238-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous experiments have shown that mRNA translation in frog oocytes can be inhibited by the injection of a complementary antisense RNA. Here we explore the use of antisense RNAs to study the functions of localized maternal mRNAs during postfertilization development. While developmental abnormalities were observed in injected fertilized eggs, these abnormalities could not be attributed to the antisense RNA since they were induced at a similar frequency in control embryos. Biochemical tests show that the injected antisense RNA does not form stable hybrids in vivo with its complementary endogenous mRNA. In addition, a novel activity that unwinds RNA:RNA duplexes was found. This activity exists at high levels in eggs and early embryos and is absent or very much diminished in oocytes and late blastula embryos. These results suggest that antisense RNAs may be of limited use in studying the functions of maternal RNAs in Xenopus.
Collapse
|
33
|
Meyerhof W, Korge E, Kn�chel W. Characterization of repetitive DNA transcripts isolated from a Xenopus laevis gastrula-stage cDNA clone bank. ACTA ACUST UNITED AC 1987; 196:22-29. [DOI: 10.1007/bf00376019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1986] [Accepted: 07/04/1986] [Indexed: 11/30/2022]
|
34
|
Cantatore P, Saccone C. Organization, structure, and evolution of mammalian mitochondrial genes. INTERNATIONAL REVIEW OF CYTOLOGY 1987; 108:149-208. [PMID: 3312065 DOI: 10.1016/s0074-7696(08)61438-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Cantatore
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | |
Collapse
|
35
|
Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1987; 22:317-87. [PMID: 2449311 DOI: 10.3109/10409238709086960] [Citation(s) in RCA: 514] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, in addition to the "traditional" research on meiotic reinitiation and fertilization mechanisms, the oocytes of the African frog Xenopus laevis have been exploited for the study of numerous aspects of ion channel function and regulation, such as the properties of several endogenous voltage-dependent channels and the involvement of second messengers in mediation of neurotransmitter-evoked membrane responses. In addition, injection of these cells with exogenous messenger RNA results in production and functional expression of foreign membranal proteins, including various voltage- and neurotransmitter-operated ion channels originating from brain, heart, and other excitable tissues. This method provides unique opportunities for the study of the structure, function, and regulation of these channels. A multidisciplinary approach is required, involving molecular biology, electrophysiology, biochemistry, pharmacology, and cytology.
Collapse
Affiliation(s)
- N Dascal
- Department of Biology, California Institute of Technology, Pasadena
| |
Collapse
|
36
|
Abstract
Satellite 2 is an abundant, 330-bp tandemly repeated sequence in the genome of the newt, Notophthalmus viridescens. This sequence is distributed throughout the genome on each of the 11 chromosomes. Both strands of satellite 2 are transcribed on the lampbrush chromosomes during oogenesis, probably as a result of readthrough from upstream structural gene promoters. In addition to these heterogeneous nuclear transcripts, satellite 2 is homologous to stable, strand-specific cytoplasmic transcripts in a variety of different tissues. The majority of these transcripts correspond in size to the entire satellite 2 repeat unit, or to whole multiples of the repeat. The transcripts present in the ovary have been sequenced by primer extension and were found to be more homogeneous than eight independently cloned satellite 2 DNA repeats. We propose that the stable cytoplasmic transcripts are encoded by a small subset of genomic satellite 2 sequences.
Collapse
|
37
|
A cDNA clone for a polyadenylated RNA-binding protein of Xenopus laevis oocytes hybridizes to four developmentally regulated mRNAs. Mol Cell Biol 1986. [PMID: 3915533 DOI: 10.1128/mcb.5.10.2697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus laevis oocytes contain a unique group of proteins which decrease during oogenesis, bind poly(A) RNA, and possibly play a role in the regulation of translation. A monoclonal antibody generated against one of these proteins was used to screen an expression vector cDNA library. A cDNA clone was isolated and confirmed to code for the binding protein by in vitro translation of hybrid-selected RNA followed by immunoprecipitation. This cDNA, when used in RNA gel blots, hybridized to four transcripts of 2.0, 1.7 (two transcripts of similar size), and 1.2 kilobases. All of the transcripts decreased in amount during oogenesis and were not evident in somatic cells. In addition, the fraction of the transcripts associated with polysomes decreased during oogenesis. Digestion of the cDNA insert with PstI generated two fragments of 220 and 480 base pairs which, when used as probes in an RNA gel blot, hybridized to unique as well as common transcripts. Genomic Southern blots suggested the presence of a single gene, indicating that these transcripts arose by alternative processing.
Collapse
|
38
|
Stable accumulation of a rat truncated repeat transcript in Xenopus oocytes. Proc Natl Acad Sci U S A 1986; 83:3106-10. [PMID: 2422646 PMCID: PMC323461 DOI: 10.1073/pnas.83.10.3106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To define potential mechanisms of expression of middle-repetitive DNA, Xenopus oocytes were employed to examine the rat type 2 and truncated repeat (TR) elements contained in an intron and in the 3'-flanking region of the rat growth hormone gene. These repeats contain significant sequence and structural homology to tRNA genes and, thus, may represent tRNA pseudogenes. Transcripts from the type 2 elements do not accumulate in the cytosol and are found predominantly in the nucleus, whereas those from TR DNA are expressed in the cytosol of neural and pituitary tissues. In HeLa cell extracts, the rat growth hormone type 2 sequences initiate RNA polymerase III transcription resulting in multiple transcripts of 175-970 nucleotides; some of these also contain TR sequences that are present only as downstream structures since the rat growth hormone-TR DNA lacks promoter activity. In Xenopus oocytes the same template also results in multiple transcripts, but with time a single, homogeneous 73-base RNA preferentially accumulates. This RNA probably arises from larger repetitive DNA transcripts as assessed by the kinetics of its formation, its 5' terminus, and the injection of transcripts generated in HeLa cell-free extracts into the oocytes. Sequence analysis of the 73-base RNA suggests that it is a TR transcripts derived from the TR region with tRNA homology. Stable type 2 transcripts were not detected. Thus, type 2 elements are transcribed in the oocytes, but RNAs from them are degraded whereas discrete TR DNA transcripts can be derived from larger RNA molecules and can accumulate in the cytosol due to their preferential stability. These findings indicate that posttranscriptional control mechanisms can operate to direct differential expression of closely related repetitive DNAs and suggest that structures similar to tRNA contained within the TR sequences may allow them to accumulate preferentially in the cytoplasm.
Collapse
|
39
|
Changes in RNA titers and polyadenylation during oogenesis and oocyte maturation in Xenopus laevis. Dev Biol 1985; 112:451-7. [PMID: 2416617 DOI: 10.1016/0012-1606(85)90417-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The titers of over 90 sequences isolated by cDNA cloning of oocyte poly(A)+RNA were examined during oogenesis in Xenopus laevis. The relative titers of most sequences in unfertilized eggs are established in pre-lamp brush oocytes and persist throughout oogenesis. We have identified several sequences whose titers decrease significantly during the growth phase of oogenesis as well as a few sequences whose titers increase slightly during this period. Among 21 sequences analyzed by RNA gel blots, all remained unchanged in titer during oocyte maturation. A significant fraction of early oocyte RNA does not bind to oligo(dT)cellulose, but by the end of oogenesis transcripts for many RNA species examined are detected exclusively in the poly(A)+RNA fraction. During oocyte maturation a slight size shift or a broadening of the hybridizing band can be seen for many sequences, indicative of poly(A) elongation or degradation.
Collapse
|
40
|
Abstract
The expression of ribosomal protein and rRNA genes during Xenopus oogenesis results in the synthesis of sufficient ribosomes to support development of the swimming tadpole. cDNA clones for ribosomal proteins L13, L15, L23, and S22 have been isolated and used as probes to examine ribosomal protein gene transcripts during oogenesis and embryogenesis. Our results show that ribosomal protein mRNAs attain maximal steady-state levels in stage II oocytes concomitant with the onset of vitellogenesis. Approximately 50% of ribosomal protein mRNAs are associated with polysomes throughout oogenesis, resulting in a constant rate of ribosomal protein synthesis in stage III through stage VI oocytes. In contrast, the polysomal to nonpolysomal distribution of bulk poly(A)+ RNA increases during oogenesis, resulting in a five- to eightfold stimulation in the rate of overall protein synthesis. Following fertilization, maternal ribosomal protein mRNAs are degraded. Accumulation of de novo ribosomal protein transcripts is first detectable during gastrulation, but ribosomal protein mRNAs do not enter polysomes until stage 30 tailbud embryos. We find no discernible structural or functional differences between ribosomal protein transcripts in the polysomal and the nonpolysomal fractions for the observed stages of oocytes and embryos. These results are consistent with a model in which control of ribosomal protein synthesis is regulated at the translational level during Xenopus development.
Collapse
|
41
|
Lorenz LJ, Richter JD. A cDNA clone for a polyadenylated RNA-binding protein of Xenopus laevis oocytes hybridizes to four developmentally regulated mRNAs. Mol Cell Biol 1985; 5:2697-704. [PMID: 3915533 PMCID: PMC367007 DOI: 10.1128/mcb.5.10.2697-2704.1985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Xenopus laevis oocytes contain a unique group of proteins which decrease during oogenesis, bind poly(A) RNA, and possibly play a role in the regulation of translation. A monoclonal antibody generated against one of these proteins was used to screen an expression vector cDNA library. A cDNA clone was isolated and confirmed to code for the binding protein by in vitro translation of hybrid-selected RNA followed by immunoprecipitation. This cDNA, when used in RNA gel blots, hybridized to four transcripts of 2.0, 1.7 (two transcripts of similar size), and 1.2 kilobases. All of the transcripts decreased in amount during oogenesis and were not evident in somatic cells. In addition, the fraction of the transcripts associated with polysomes decreased during oogenesis. Digestion of the cDNA insert with PstI generated two fragments of 220 and 480 base pairs which, when used as probes in an RNA gel blot, hybridized to unique as well as common transcripts. Genomic Southern blots suggested the presence of a single gene, indicating that these transcripts arose by alternative processing.
Collapse
|
42
|
Abstract
Protein synthesis rates in Xenopus laevis oocytes from stage 1 through stage 6 were measured. In addition, the translational efficiencies, total RNA contents, and percentages of ribosomes in polysomes in growing oocytes at several stages were determined. Stage 1 oocytes synthesize protein at a mean rate of 0.18 ng hr-1 while stage 6 oocytes make protein at a rate of 22.8 ng hr-1. Polysomes from growing and full-grown oocytes sedimented in a sucrose gradient with a peak value of 300 S, corresponding to a weight-average packing density of 10 ribosomes per mRNA. Ribosome transit times of endogenous mRNAs were essentially unchanged at all stages examined. While the oocyte's total ribosomal RNA content was observed to increase about 115-fold during oogenesis, the percentage of ribosomes in polysomes remained constant at approximately 2%. Taken together, the data suggest that the 127-fold increase in protein synthesis which occurs during Xenopus oogenesis involves the progressive recruitment onto polysomes of mRNA from the maternal stockpile.
Collapse
|
43
|
Dearsly AL, Johnson RM, Barrett P, Sommerville J. Identification of a 60-kDa phosphoprotein that binds stored messenger RNA of Xenopus oocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 150:95-103. [PMID: 2410268 DOI: 10.1111/j.1432-1033.1985.tb08993.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rapidly labelled, polyadenylated RNA is contained in three distinct fractions isolated from homogenized amphibian oocytes: (a) in ribonucleoprotein particles that are associated with a fibrillar matrix, the complexes sedimenting at greater than 1500S; (b) in ribonucleoprotein particles that sediment at 20-120S and have the characteristics of stored (maternal) messenger ribonucleoprotein (mRNP) and (c) in polyribosomes that sediment at 120-360S. We have compared the RNA and protein components of the first two of these RNP fractions. The polyadenylated RNA extracted from the two RNP fractions differs in that the RNA from fibril-associated RNP contains a much higher content of repeat sequences than does the RNA from mRNP. In other words, the RNA from fibril-associated RNP is largely unprocessed and may constitute a premessenger state, which for convenience is referred to as premessenger RNP (pre-mRNP). RNA-binding experiments demonstrate that the polypeptide most tightly bound in pre-mRNP is a 54-kDa component (p54), whereas the polypeptide most tightly bound in mRNP is a 60-kDa component (p60). Antibodies raised against p60 are used to show that this polypeptide is a common major component of pre-mRNP and mRNP and that it is also located in oocyte nuclei. However the state of p60 is modified between the premessenger and stored message levels: the polypeptide in mRNP is heavily phosphorylated whereas the equivalent polypeptide in pre-mRNP is completely unphosphorylated. The relative roles of the presence of repeat sequences and phosphorylation of mRNA-associated protein in blocking translation are discussed.
Collapse
|
44
|
Abstract
Others have reported that about two-thirds of the polyadenylated RNA of sea urchin or frog eggs contains short interspersed repetitive sequence transcripts, a much larger proportion than that found in mRNA of somatic cells. Thus, it appears that incompletely processed transcripts accumulate in these oocytes. Also, in what may be a related phenomenon, the nuclear concentration of U1 RNA (involved in processing hnRNA) decreases during growth of frog oocytes. To pursue this question in mammals, Northern blots of RNA from mouse oocytes and eggs collected before and after meiotic maturation were probed with genomic clones containing rodent Alu-equivalent sequences. The Alu sequence is the predominant short interspersed repetitive element in the genome and is abundant in hnRNA. When compared on the basis of mRNA content, the oocyte and egg RNA contained less short repetitive sequence transcripts than liver or brain cytoplasmic RNA. Using a U1 RNA-specific probe, the concentration of U1 RNA in mouse oocyte nuclei was found to be quite similar to that in somatic cells, and U1 RNA was stable during meiotic maturation. These results suggest that processing of transcripts in mouse oocytes does not possess the unusual features observed in lower animals.
Collapse
|
45
|
McMahon AP, Flytzanis CN, Hough-Evans BR, Katula KS, Britten RJ, Davidson EH. Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. Dev Biol 1985; 108:420-30. [PMID: 3000854 DOI: 10.1016/0012-1606(85)90045-4] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cloned DNA sequences were introduced into the cytoplasm of unfertilized sea urchin eggs by a simple microinjection technique. Sperm was then added, and development allowed to proceed. If linearized plasmids are injected they form random concatenates, and during the early development of the embryos replicate repeatedly. Eukaryotic sequences are not required for replication of the exogenous DNA. Injected supercoiled DNAs neither ligate nor replicate. Both forms of exogenous DNA persist in the embryo through pluteus stage.
Collapse
|
46
|
Nordstrom JL, Hall SL, Kessler MM. Polyadenylylation of sea urchin histone RNA sequences in transfected COS cells. Proc Natl Acad Sci U S A 1985; 82:1094-8. [PMID: 2858095 PMCID: PMC397200 DOI: 10.1073/pnas.82.4.1094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The region of pSV2neo that encompasses the simian virus 40 early polyadenylylation signal was replaced with a DNA fragment that spans the 3' end of a sea urchin (Psammechinus miliaris) histone H2A gene. This clone, pMK2.H2A(3'), was used to transfect COS cells. RNA analysis revealed that transcripts from pMK2.H2A(3') were polyadenylylated at a site 85 nucleotides downstream from the expected 3' end of mature H2A mRNA. Nucleotide sequencing showed that the site of poly(A) addition was located 10 nucleotides downstream from a cluster of four A-A-U-A-A-A sequences. The lower accumulation of MK2.H2A(3') mRNA, which was 5-10% that of SV2neo mRNA, suggests that the H2A polyadenylylation signal is relatively inefficient. The relationship of the above findings to the 3' end processing of other histone mRNAs is discussed.
Collapse
|
47
|
Reith W, Spohr G. Identification of Xenopus laevis mRNAs with homology to repetitive sequences. Nucleic Acids Res 1985; 12:8899-916. [PMID: 6549063 PMCID: PMC320427 DOI: 10.1093/nar/12.23.8899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hybrid selection translation experiments have been carried out with genomic and cDNA relatives of two repetitive sequence families. On the basis of the in vitro translation products detected, it was found that transcripts complementary to these repeats are linked to several different mature mRNAs in stage 40 embryos of Xenopus laevis. One repeat hybridizes to mRNAs that direct the synthesis of 17 proteins. The second is present on mRNAs coding for 3 proteins. By estimating the abundance of these proteins among the translation products of total embryonic mRNA, it is inferred that all of the repeat bearing mRNAs are rare, less than one in 20,000 mRNA molecules.
Collapse
|
48
|
Dworkin MB, Shrutkowski A, Baumgarten M, Dworkin-Rastl E. The accumulation of prominent tadpole mRNAs occurs at the beginning of neurulation in Xenopus laevis embryos. Dev Biol 1985; 106:289-95. [PMID: 6548717 DOI: 10.1016/0012-1606(84)90227-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cloned cDNA probes have been used to measure the sizes and titers of transcripts in total RNA preparations during early development in Xenopus laevis. Of more than 20 different sequences derived from abundant and moderately abundant RNA which were present in full-grown oocytes and persisted during early development, the transcript sizes of all but 3 of these sequences were invariant. Two transcripts were of a higher molecular weight in oocytes than in embryos, but their titers in oocytes were less than 5% their titers in embryos and thus these larger maternal transcripts do not significantly contribute to embryonic, polysomal mRNA. The oocyte transcripts and the embryonic transcripts of one of these sequences are transcribed from different though cross-hybridizing genes. Cellular titers of a number of RNA sequences have also been studied and show that increases in the cellular titers of several poly(A)+RNA species are the result of de novo transcription and not simply polyadenylation. A number of sequences abundant in tadpole RNA but absent or very rare in eggs have also been examined. All of these sequences first appear in development in substantial titers in the late gastrula or early neurula, 12-15 hr after fertilization. Many other sequences already present in eggs which persist during development show an increase in titer 12-15 hr after fertilization. These data suggest that this late gastrula transcriptional event may be a major transition of gene expression that accompanies the cellular differentiation and morphogenesis that begin at this developmental time.
Collapse
|
49
|
Soreq H. The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1985; 18:199-238. [PMID: 2412759 DOI: 10.3109/10409238509085134] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The basic properties of mRNA-injected Xenopus oocytes as a heterologous system for the production of biologically active proteins will be reviewed. The advantages and limitations involved in the use of this in ovo system will be discussed, as compared with in vitro cell-free translation systems and with in vivo microinjected mammalian cells in culture. The different assay systems that have been utilized for the identification of the biological properties of oocyte-produced proteins will be described. This section will review the determination of properties such as binding of natural ligands, like heme or alpha-bungarotoxin; immunological recognition by antibodies; subcellular compartmentalization and/or secretion; various enzymatic catalytic activities; and induction in ovo of biological activities that affect other living cells in culture, such as those of interferon and of the T-cell receptor. The limitations involved in interpretation of results obtained using mRNA-injected oocytes will be critically reviewed. Special attention will be given to the effect of oocyte proteases and of changes in the endogenous translation rate on quantitative measurements of oocyte-produced proteins. In addition, the validity of the various measurement techniques will be evaluated. The various uses of bioassays of proteins produced in mRNA-injected Xenopus oocytes throughout the last decade will be reviewed. Nuclear and cytoplasmic injections, mRNA and protein turnover measurements and abundance calculations, and the use of in ovo bioassays for molecular cloning experiments will be discussed in this section. Finally, potential future uses of the oocyte system in various fields of research, such as immunology, neurobiology, and cell biology will be suggested.
Collapse
|
50
|
Scheer U, Dabauvalle MC. Functional organization of the amphibian oocyte nucleus. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1985; 1:385-430. [PMID: 2481470 DOI: 10.1007/978-1-4615-6814-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- U Scheer
- Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg
| | | |
Collapse
|