1
|
Cadden GM, Schloetel JG, McKenzie G, Boocock MR, Magennis SW, Stark WM. Direct observation of subunit rotation during DNA strand exchange by serine recombinases. Nat Commun 2024; 15:10407. [PMID: 39613732 PMCID: PMC11607074 DOI: 10.1038/s41467-024-54531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Serine recombinases are proposed to catalyse site-specific recombination by a unique mechanism called subunit rotation. Cutting and rejoining DNA occurs within an intermediate synaptic complex comprising a recombinase tetramer bound to two DNA sites. After double-strand cleavage at both sites, one half of the complex rotates 180° relative to the other, before re-ligation of the DNA ends. We used single-molecule FRET (smFRET) methods to provide compelling direct physical evidence for subunit rotation by recombinases Tn3 resolvase and Sin. Synaptic complexes containing fluorescently labelled DNA show FRET fluctuations consistent with the subunit rotation model. FRET changes were associated with the rotation steps, on a timescale of 0.4-1.1s - 1 , as well as opening and closing of the gap between the scissile phosphates during cleavage and ligation. Multiple rounds of recombination were observed within the ~25 s observation period, including frequent consecutive rotation events in the cleaved-DNA state without evidence of intermediate ligation.
Collapse
Affiliation(s)
- Gillian M Cadden
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK
| | - Jan-Gero Schloetel
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Grant McKenzie
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Martin R Boocock
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK.
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
| |
Collapse
|
2
|
Chandrasekhar S, Swope TP, Fadaei F, Hollis DR, Bricker R, Houser D, Portman JJ, Schmidt TL. Bending DNA increases its helical repeat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.579968. [PMID: 38405957 PMCID: PMC10888926 DOI: 10.1101/2024.02.14.579968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In all biological systems, DNA is under high mechanical stress from bending and twisting. For example, DNA is tightly bent in nucleosome complexes, virus capsids, bacterial chromosomes, or complexes with transcription factors that regulate gene expression. A structurally and mechanically accurate model of DNA is therefore necessary to understand some of the most fundamental molecular mechanisms in biology including DNA packaging, replication, transcription and gene regulation. An iconic feature of DNA is its double helical nature with an average repeath 0 of ~10.45 base pairs per turn, which is commonly believed to be independent of curvature. We developed a ligation assay on nicked DNA circles of variable curvature that reveals a strong unwinding of DNA to over 11 bp/turn for radii around 3-4 nm. Our work constitutes a major modification of the standard mechanical model of DNA and requires reassessing the molecular mechanisms and energetics of all processes involving tightly bent DNA.
Collapse
Affiliation(s)
| | - Thomas P. Swope
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Fatemeh Fadaei
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Daniel R. Hollis
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Rachel Bricker
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Draven Houser
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - John J. Portman
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | |
Collapse
|
3
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Tse DH, Becker NA, Young RT, Olson WK, Peters JP, Schwab TL, Clark KJ, Maher LJ. Designed architectural proteins that tune DNA looping in bacteria. Nucleic Acids Res 2021; 49:10382-10396. [PMID: 34478548 PMCID: PMC8501960 DOI: 10.1093/nar/gkab759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.
Collapse
Affiliation(s)
- David H Tse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Robert T Young
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, 1227 West 27th Street, Cedar Falls, IA 50614, USA
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Surprising Twists in Nucleosomal DNA with Implication for Higher-order Folding. J Mol Biol 2021; 433:167121. [PMID: 34192585 DOI: 10.1016/j.jmb.2021.167121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
While nucleosomes are dynamic entities that must undergo structural deformations to perform their functions, the general view from available high-resolution structures is a largely static one. Even though numerous examples of twist defects have been documented, the DNA wrapped around the histone core is generally thought to be overtwisted. Analysis of available high-resolution structures from the Protein Data Bank reveals a heterogeneous distribution of twist along the nucleosomal DNA, with clear patterns that are consistent with the literature, and a significant fraction of structures that are undertwisted. The subtle differences in nucleosomal DNA folding, which extend beyond twist, have implications for nucleosome disassembly and modeled higher-order structures. Simulations of oligonucleosome arrays built with undertwisted models behave very differently from those constructed from overtwisted models, in terms of compaction and inter-nucleosome contacts, introducing configurational changes equivalent to those associated with 2-3 base-pair changes in nucleosome spacing. Differences in the nucleosomal DNA pathway, which underlie the way that DNA enters and exits the nucleosome, give rise to different nucleosome-decorated minicircles and affect the topological mix of configurational states.
Collapse
|
6
|
A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 2021; 54:e5. [PMID: 33722316 DOI: 10.1017/s0033583521000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.
Collapse
|
7
|
Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021; 26:1050. [PMID: 33671359 PMCID: PMC7922115 DOI: 10.3390/molecules26041050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis. Because in bulk assays, several millions of biomolecules are subjected to analysis, the results of the biological analysis only reveal the average behavior of a large number of biomolecules. Therefore, revealing the elementary biological processes of a protein acting on DNA (e.g., the binding of protein to DNA, DNA synthesis, the pause of DNA synthesis, and the release of protein from DNA) is difficult. Single-molecule imaging allows the analysis of the dynamic behaviors of individual biomolecules that are hidden during bulk experiments. Thus, the methods for single-molecule imaging have provided new insights into almost all of the aspects of the elementary processes of DNA replication, repair, and recombination. However, in an aqueous solution, DNA molecules are in a randomly coiled state. Thus, the manipulation of the physical form of the single DNA molecules is important. In this review, we provide an overview of the unique studies on DNA manipulation and single-molecule imaging to analyze the dynamic interaction between DNA and protein.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan;
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
8
|
Temperature-dependence of the bending elastic constant of DNA and extension of the two-state model. Tests and new insights. Biophys Chem 2019; 251:106146. [DOI: 10.1016/j.bpc.2019.106146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
|
9
|
Caraglio M, Skoruppa E, Carlon E. Overtwisting induces polygonal shapes in bent DNA. J Chem Phys 2019; 150:135101. [PMID: 30954045 DOI: 10.1063/1.5084950] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
By combining analytical results and simulations of various coarse-grained models, we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross interaction term discussed in the recent DNA literature, induces minimal energy shapes with a periodic alternation of parts with high and low curvature resembling rounded polygons. We briefly discuss the possible experimental relevance of these findings. We finally show that the twist and bending energies of minicircles are governed by renormalized stiffness constants, rather than the bare ones. This has important consequences for the analysis of experiments involving circular DNA meant to determine DNA elastic constants.
Collapse
Affiliation(s)
- Michele Caraglio
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Skoruppa
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Probing hyper-negatively supercoiled mini-circles with nucleases and DNA binding proteins. PLoS One 2018; 13:e0202138. [PMID: 30114256 PMCID: PMC6095550 DOI: 10.1371/journal.pone.0202138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
It is well accepted that the introduction of negative supercoils locally unwinds the DNA double helix, influencing thus the activity of proteins. Despite the use of recent methods of molecular dynamics simulations to model the DNA supercoiling-induced DNA deformation, the precise extent and location of unpaired bases induced by the negative supercoiling have never been investigated at the nucleotide level. Our goals in this study were to use radiolabeled double-stranded DNA mini-circles (dsMCs) to locate the unpaired bases on dsMCs whose topology ranged from relaxed to hyper-negatively supercoiled states, and to characterize the binding of proteins involved in the DNA metabolism. Our results show that the Nuclease SI is nearly ten times more active on hyper-negatively supercoiled than relaxed DNA. The structural changes responsible for this stimulation of activity were mapped for the first time with a base pair resolution and shown to be subtle and distributed along the entire sequence. As divalent cations modify the DNA topology, our binding studies were conducted with or without magnesium. Without magnesium, the dsMCs topoisomers mostly differ by their twist. Under these conditions, the Escherichia coli topoisomerase I weakly binds relaxed dsMCs and exhibits a stronger binding on negatively and hyper-negatively supercoiled dsMCs than relaxed dsMCs, with no significant difference in the binding activity among the supercoiled topoisomers. For the human replication protein A (hRPA), the more negatively supercoiled is the DNA, the better the binding, illustrating the twist-dependent binding activity for this protein. The presence of magnesium permits the dsMCs to writhe upon introduction of negative supercoiling and greatly modifies the binding properties of the hRPA and Escherichia coli SSB on dsMCs, indicating a magnesium-dependent DNA binding behavior. Finally, our experiments that probe the topology of the DNA in the hRPA-dsMC complexes show that naked and hRPA-bound dsMCs have the same topology.
Collapse
|
11
|
Zoli M. End-to-end distance and contour length distribution functions of DNA helices. J Chem Phys 2018; 148:214902. [DOI: 10.1063/1.5021639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
12
|
Zoli M. Twist-stretch profiles of DNA chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225101. [PMID: 28394255 DOI: 10.1088/1361-648x/aa6c50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule's free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
13
|
Schurr JM. Possible Origin of the Increased Torsion Elastic Constant of Small Circular DNAs: Bending-Induced Axial Tension. J Phys Chem B 2017; 121:5709-5717. [DOI: 10.1021/acs.jpcb.7b01869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Michael Schurr
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Takahashi S, Motooka S, Kawasaki S, Kurita H, Mizuno T, Matsuura SI, Hanaoka F, Mizuno A, Oshige M, Katsura S. Direct single-molecule observations of DNA unwinding by SV40 large tumor antigen under a negative DNA supercoil state. J Biomol Struct Dyn 2017; 36:32-44. [PMID: 27928933 DOI: 10.1080/07391102.2016.1269689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Superhelices, which are induced by the twisting and coiling of double-helical DNA in chromosomes, are thought to affect transcription, replication, and other DNA metabolic processes. In this study, we report the effects of negative supercoiling on the unwinding activity of simian virus 40 large tumor antigen (SV40 TAg) at a single-molecular level. The supercoiling density of linear DNA templates was controlled using magnetic tweezers and monitored using a fluorescent microscope in a flow cell. SV40 TAg-mediated DNA unwinding under relaxed and negative supercoil states was analyzed by the direct observation of both single- and double-stranded regions of single DNA molecules. Increased negative superhelicity stimulated SV40 TAg-mediated DNA unwinding more strongly than a relaxed state; furthermore, negative superhelicity was associated with an increased probability of SV40 TAg-mediated DNA unwinding. These results suggest that negative superhelicity helps to regulate the initiation of DNA replication.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan.,f Japan Society for the Promotion of Science
| | - Shinya Motooka
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Shohei Kawasaki
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Hirofumi Kurita
- b Department of Environmental and Life Sciences, Graduate School of Engineering , Toyohashi University of Technology , Toyohashi , Japan
| | - Takeshi Mizuno
- c Cellular Dynamics Laboratory , RIKEN, Wako , Saitama , Japan
| | - Shun-Ichi Matsuura
- d Research Institute for Chemical Process Technology , National Institute of Advanced Industrial Science and Technology (AIST) , Sendai , Japan
| | - Fumio Hanaoka
- e Faculty of Science, Institute for Biomolecular Science , Gakushuin University , Tokyo , Japan
| | - Akira Mizuno
- b Department of Environmental and Life Sciences, Graduate School of Engineering , Toyohashi University of Technology , Toyohashi , Japan
| | - Masahiko Oshige
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Shinji Katsura
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| |
Collapse
|
15
|
Vologodskii A. Disentangling DNA molecules. Phys Life Rev 2016; 18:118-134. [PMID: 27173054 DOI: 10.1016/j.plrev.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/12/2023]
Abstract
The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.
Collapse
|
16
|
Alexandrov LB, Bishop AR, Rasmussen KØ, Alexandrov BS. The role of structural parameters in DNA cyclization. BMC Bioinformatics 2016; 17:68. [PMID: 26846597 PMCID: PMC4743258 DOI: 10.1186/s12859-016-0897-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this study, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization. RESULTS We calculate the cyclization rates of 86 DNA sequences with previously measured J factors and lengths between 57 and 325 bp as well as of 20,000 randomly generated DNA sequences with lengths between 350 and 4000 bp. Our comparison with experimental data is complemented with analysis of simulated data. CONCLUSIONS Our data demonstrate that all sets of parameters yield very similar results for longer DNA fragments, regardless of the nucleotide sequence, which are in agreement with experimental measurements. However, for DNA fragments shorter than 100 bp, all sets of parameters performed poorly yielding results with several orders of magnitude difference from the experimental measurements. Our data show that DNA cyclization rates calculated using conformational parameters based on nucleosome packaging data are most similar to the experimental measurements. Overall, our study provides a comprehensive large-scale assessment of the role of structural parameters in calculating DNA cyclization rates.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA. .,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Alan R Bishop
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Kim Ø Rasmussen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Boian S Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
17
|
Abstract
We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- School of Computational Sciences, Korea Institute for Advanced Study , Seoul, Korea 02455
| |
Collapse
|
18
|
Matsumoto A, Tobias I, Olson WK. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 1. Comparison of Computed Motions with the Predicted Behavior of an Ideal Elastic Rod. J Chem Theory Comput 2015; 1:117-29. [PMID: 26641123 DOI: 10.1021/ct049950r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have extended a newly developed approach to study the low-frequency normal modes of mesoscopic fragments of linear DNA in order to investigate the dynamics of closed circular molecules of comparable size, i.e., a few hundred base pairs. We have added restraint energy terms and a global minimization step to treat the more complicated, spatially constrained duplex in terms of the intrinsic conformation and flexibility of the constituent base-pair "step" parameters. Initial application of the methodology to the normal modes of an ideal closed circular DNA molecule [Formula: see text] which is naturally straight in its relaxed open linear state, inextensible, and capable of isotropic bending and independent twisting at the base-pair level [Formula: see text] matches theoretical predictions of elastic rod dynamics. The energy-optimized closed circular states and the types of low frequency motions follow expected behavior, with (1) uniform twist density and uniform energy density in the minimum energy state; (2) a near-zero frequency torsional mode with "free" rotation about the global helical axis; (3) higher-order torsional modes accompanied by global rocking motions and pure in-plane and out-of-plane bending motions in the torsionally relaxed circle; and (4) mixed modes of bending when the chain is supercoiled (over- or undertwisted). Furthermore, the computed changes in normal-mode frequencies with imposed supercoiling or with variation of chain length are virtually identical to theoretically predicted values.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854-8087, and Quantum Bioinformatics Group, Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, 8-1 Umemidai, Kizu, Kyoto 619-0215, Japan
| | - Irwin Tobias
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854-8087, and Quantum Bioinformatics Group, Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, 8-1 Umemidai, Kizu, Kyoto 619-0215, Japan
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854-8087, and Quantum Bioinformatics Group, Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, 8-1 Umemidai, Kizu, Kyoto 619-0215, Japan
| |
Collapse
|
19
|
Schurr JM. A Possible Cooperative Structural Transition of DNA in the 0.25–2.0 pN Range. J Phys Chem B 2015; 119:6389-400. [DOI: 10.1021/acs.jpcb.5b03174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Michael Schurr
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Amouyal M. From adjacent activation in Escherichia coli and DNA cyclization to eukaryotic enhancers: the elements of a puzzle. Front Genet 2014; 5:371. [PMID: 25404937 PMCID: PMC4217526 DOI: 10.3389/fgene.2014.00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/04/2014] [Indexed: 11/13/2022] Open
Abstract
Deoxyribonucleic acid cyclization, Escherichia coli lac repressor binding to two spaced lac operators and repression enhancement can be successfully used for a better understanding of the conditions required for interaction between eukaryotic enhancers and the machinery of transcription initiation. Chronologically, the DNA looping model has first accounted for the properties initially defining enhancers, i.e., independence of action with distance or orientation with respect to the start of transcription. It has also predicted enhancer activity or its disruption at short distance (site orientation, alignment between promoter and enhancer sites), with high-order complexes of protein, or with transcription factor concentrations close or different from the wild-type situation. In another step, histones have been introduced into the model to further adapt it to eukaryotes. They in fact favor DNA cyclization in vitro. The resulting DNA compaction might explain the difference counted in base pairs in the distance of action between eukaryotic transcription enhancers and prokaryotic repression enhancers. The lac looping system provides a potential tool for analysis of this discrepancy and of chromatin state directly in situ. Furthermore, as predicted by the model, the contribution of operators O2 and O3 to repression of the lac operon clearly depends on the lac repressor level in the cell and is prevented in strains overproducing lac repressor. By extension, gene regulation especially that linked to cell fate, should also depend on transcription factor levels, providing a potential tool for cellular therapy. In parallel, a new function of the O1–O3 loop completes the picture of lac repression. The O1–O3 loop would at the same time ensure high efficiency of repression, inducibility through the low-affinity sites and limitation of the level of repressor through self-repression of the lac repressor. Last, the DNA looping model can be successfully adapted to the enhancer auxiliary elements known as insulators.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à Distance, Centre National de la Recherche Scientifique Paris, France
| |
Collapse
|
21
|
Perez PJ, Clauvelin N, Grosner MA, Colasanti AV, Olson WK. What controls DNA looping? Int J Mol Sci 2014; 15:15090-108. [PMID: 25167135 PMCID: PMC4200792 DOI: 10.3390/ijms150915090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein--the nonspecific nucleoid protein HU--increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.
Collapse
Affiliation(s)
- Pamela J Perez
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Nicolas Clauvelin
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Michael A Grosner
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrew V Colasanti
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Wilma K Olson
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Chou FC, Lipfert J, Das R. Blind predictions of DNA and RNA tweezers experiments with force and torque. PLoS Comput Biol 2014; 10:e1003756. [PMID: 25102226 PMCID: PMC4125081 DOI: 10.1371/journal.pcbi.1003756] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/12/2014] [Indexed: 01/26/2023] Open
Abstract
Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology. DNA and RNA are fundamental molecules in the central dogma of molecular biology. Many biological behaviors of double-stranded DNA and RNA – including transcription/translation by proteins and packaging into compact structures – depend on their ability to flex and twist. Single-molecule tweezers now provide accurate mechanical measurements of DNA and RNA helices under force and torque but have not been used to rigorously falsify and thereby advance computational models. Here we present the first such blind challenge, involving recent dsRNA tweezers data that were kept hidden from modelers and a new HelixMC toolkit that resolves challenges in simulating long double helices from base-pair level models. The predictions gave excellent agreement with bending and stretching measurements of dsRNA but failed to recover twisting properties, pinpointing a critical area of future investigation. HelixMC also predicted that poly(A)/poly(T) and Z-DNA–biologically important variants whose elastic responses have not been studied with tweezers–will have distinct mechanical properties. These results open a route to iteratively falsifying and refining computational models of long nucleic acid helices, as is necessary for attaining a predictive understanding of their biological behaviors.
Collapse
Affiliation(s)
- Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics and Center for Nanoscience (CeNS), University of Munich, Munich, Germany
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
- Biophysics Program, Stanford University, Stanford, California, United States of America
- Department of Physics, Stanford University, Stanford, California, United States of America
- * E-mail: .
| |
Collapse
|
23
|
Nam GM, Arya G. Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes. Nucleic Acids Res 2014; 42:9691-9. [PMID: 25100871 PMCID: PMC4150795 DOI: 10.1093/nar/gku694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Torsionally stressed DNA plays a critical role in genome organization and regulation. While the effects of torsional stresses on naked DNA have been well studied, little is known about how these stresses propagate within chromatin and affect its organization. Here we investigate the torsional behavior of nucleosome arrays by means of Brownian dynamics simulations of a coarse-grained model of chromatin. Our simulations reveal a strong dependence of the torsional response on the rotational phase angle Ψ0 between adjacent nucleosomes. Extreme values of Ψ0 lead to asymmetric, bell-shaped extension-rotation profiles with sharp maxima shifted toward positive or negative rotations, depending on the sign of Ψ0, and to fast, irregular propagation of DNA twist. In contrast, moderate Ψ0 yield more symmetric profiles with broad maxima and slow, uniform propagation of twist. The observed behavior is shown to arise from an interplay between nucleosomal transitions into states with crossed and open linker DNAs and global supercoiling of arrays into left- and right-handed coils, where Ψ0 serves to modulate the energy landscape of nucleosomal states. Our results also explain the torsional resilience of chromatin, reconcile differences between experimentally measured extension-rotation profiles, and suggest a role of torsional stresses in regulating chromatin assembly and organization.
Collapse
Affiliation(s)
- Gi-Moon Nam
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| |
Collapse
|
24
|
Fernández X, Díaz-Ingelmo O, Martínez-García B, Roca J. Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 2014; 33:1492-501. [PMID: 24859967 DOI: 10.15252/embj.201488091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.
Collapse
Affiliation(s)
- Xavier Fernández
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ofelia Díaz-Ingelmo
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Belén Martínez-García
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joaquim Roca
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
25
|
Schmatko T, Muller P, Maaloum M. Surface charge effects on the 2D conformation of supercoiled DNA. SOFT MATTER 2014; 10:2520-2529. [PMID: 24647451 DOI: 10.1039/c3sm53071j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar trends: at low surface charge density or low bulk salt concentration, the internal electrostatic repulsion forces plasmids to adopt completely opened structures, while at high surface charge density or higher bulk salt concentration, usual supercoiled plectonemes are observed. We experimentally demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions. At low to medium screening, the electrostatic repulsion at plasmid crossings is predominant, leading to a number of crossovers decreasing linearly with the characteristic screening length. We compare our data with an analytical 2D-equilibrated model developed recently for the system and extract the DNA effective charge density when strands are adsorbed at the surface.
Collapse
Affiliation(s)
- Tatiana Schmatko
- Institut Charles Sadron, CNRS UPR 22 et Université de Strasbourg, 23 rue du loess, BP 84047 67034 Strasbourg Cedex2, France.
| | | | | |
Collapse
|
26
|
Clauvelin N, Olson WK, Tobias I. Effect of the boundary conditions and influence of the rotational inertia on the vibrational modes of an elastic ring. JOURNAL OF ELASTICITY 2014; 115:193-224. [PMID: 24795495 PMCID: PMC4006106 DOI: 10.1007/s10659-013-9453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present the small-amplitude vibrations of a circular elastic ring with periodic and clamped boundary conditions. We model the rod as an inextensible, isotropic, naturally straight Kirchhoff elastic rod and obtain the vibrational modes of the ring analytically for periodic boundary conditions and numerically for clamped boundary conditions. Of particular interest are the dependence of the vibrational modes on the torsional stress in the ring and the influence of the rotational inertia of the rod on the mode frequencies and amplitudes. In rescaling the Kirchhoff equations, we introduce a parameter inversely proportional to the aspect ratio of the rod. This parameter makes it possible to capture the influence of the rotational inertia of the rod. We find that the rotational inertia has a minor influence on the vibrational modes with the exception of a specific category of modes corresponding to high-frequency twisting deformations in the ring. Moreover, some of the vibrational modes over or undertwist the elastic rod depending on the imposed torsional stress in the ring.
Collapse
Affiliation(s)
- Nicolas Clauvelin
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, USA,
| | - Wilma K Olson
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, USA
| | - Irwin Tobias
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, USA,
| |
Collapse
|
27
|
Abstract
This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.
Collapse
Affiliation(s)
- Steven S Andrews
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3237-3244. [PMID: 24100159 DOI: 10.1016/j.bbamcr.2013.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 01/04/2023]
Abstract
At higher order levels chromatin is organized into loops. This looping, which plays an important role in transcription regulation and other processes, remains poorly understood. We investigated the kinetics of DNA loop migration during single cell gel electrophoresis (the comet assay). The migration of a part of the loops was shown to be reversible after switching off electrophoresis and to be sensitive to intercalation-induced changes in supercoiling. Another group of the loops migrates rapidly, the rate being insensitive to the supercoiling level. The largest part of the loops cannot migrate at all, presumably because of their large size. The loop ends can be detached in the presence of high concentrations of intercalators or protein denaturants, thus increasing the fraction of DNA that cannot migrate in the gel. The distribution of the loop length up to 100kilobases appears to be consistent with the fractal globule organization.
Collapse
Affiliation(s)
- Katerina Afanasieva
- Department of General and Molecular Genetics, Taras Shevchenko National University, 64/13, Volodymyrska Street, 01601 Kiev, Ukraine
| | - Marianna Chopei
- Department of General and Molecular Genetics, Taras Shevchenko National University, 64/13, Volodymyrska Street, 01601 Kiev, Ukraine
| | - Marianna Zazhytska
- Department of General and Molecular Genetics, Taras Shevchenko National University, 64/13, Volodymyrska Street, 01601 Kiev, Ukraine
| | - Maria Vikhreva
- Department of General and Molecular Genetics, Taras Shevchenko National University, 64/13, Volodymyrska Street, 01601 Kiev, Ukraine
| | - Andrei Sivolob
- Department of General and Molecular Genetics, Taras Shevchenko National University, 64/13, Volodymyrska Street, 01601 Kiev, Ukraine.
| |
Collapse
|
29
|
Abstract
The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.
Collapse
|
30
|
Gowetski DB, Kodis EJ, Kahn JD. Rationally designed coiled-coil DNA looping peptides control DNA topology. Nucleic Acids Res 2013; 41:8253-65. [PMID: 23825092 PMCID: PMC3783159 DOI: 10.1093/nar/gkt553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein–DNA nanostructures.
Collapse
Affiliation(s)
- Daniel B Gowetski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | |
Collapse
|
31
|
Abstract
During the past decade, the issue of strong bending of the double helix has attracted a lot of attention. Here, we overview the major experimental and theoretical developments in the field sorting out reliably established facts from speculations and unsubstantiated claims. Theoretical analysis shows that sharp bends or kinks have to facilitate strong bending of the double helix. It remains to be determined what is the critical curvature of DNA that prompts the appearance of the kinks. Different experimental and computational approaches to the problem are analyzed. We conclude that there is no reliable evidence that any anomalous behavior of the double helix happens when DNA fragments in the range of 100 bp are circularized without torsional stress. The anomaly starts at the fragment length of about 70 bp when sharp bends or kinks emerge in essentially every molecule. Experimental data and theoretical analysis suggest that kinks may represent openings of isolated base pairs, which had been experimentally detected in linear DNA molecules. The calculation suggests that although the probability of these openings in unstressed DNA is close to 10−5, it increases sharply in small DNA circles reaching 1 open bp per circle of 70 bp.
Collapse
|
32
|
Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations. Proc Natl Acad Sci U S A 2013; 110:E1444-51. [PMID: 23576725 DOI: 10.1073/pnas.1218830110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA-protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.
Collapse
|
33
|
Abstract
Small DNA circles can occur in Nature, for example as protein-constrained loops, and can be synthesized by a number of methods. Such small circles provide tractable systems for the study of the structure, thermodynamics and molecular dynamics of closed-circular DNA. In the present article, we review the occurrence and synthesis of small DNA circles, and examine their utility in studying the properties of DNA and DNA–protein interactions. In particular, we highlight the analysis of small circles using atomistic simulations.
Collapse
|
34
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
35
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
36
|
Schvartzman JB, Martínez-Robles ML, Hernández P, Krimer DB. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis. Methods Mol Biol 2013; 1054:121-132. [PMID: 23913288 DOI: 10.1007/978-1-62703-565-1_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Catanese DJ, Fogg JM, Schrock DE, Gilbert BE, Zechiedrich L. Supercoiled Minivector DNA resists shear forces associated with gene therapy delivery. Gene Ther 2012; 19:94-100. [PMID: 21633394 PMCID: PMC3252587 DOI: 10.1038/gt.2011.77] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
Supercoiled DNAs varying from 281 to 5302 bp were subjected to shear forces generated by aerosolization or sonication. DNA shearing strongly correlated with length. Typical sized plasmids (≥ 3000 bp) degraded rapidly. DNAs 2000-3000 bp persisted ~10 min. Even in the absence of condensing agents, supercoiled DNA <1200 bp survived nebulization, and increased forces of sonication were necessary to shear it. Circular vectors were considerably more resistant to shearing than linear vectors of the same length. DNA supercoiling afforded additional protection. These results show the potential of shear-resistant Minivector DNAs to overcome one of the major challenges associated with gene therapy delivery.
Collapse
Affiliation(s)
- D J Catanese
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - J M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - D E Schrock
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- University of Texas MD Anderson Cancer Center School of Health Sciences, Houston, TX, USA
| | - B E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - L Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
- University of Texas MD Anderson Cancer Center School of Health Sciences, Houston, TX, USA
| |
Collapse
|
38
|
Vologodskii A. Unlinking of supercoiled DNA catenanes by type IIA topoisomerases. Biophys J 2011; 101:1403-11. [PMID: 21943421 DOI: 10.1016/j.bpj.2011.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 11/29/2022] Open
Abstract
It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (-) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (-) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (-) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (-) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking.
Collapse
|
39
|
Lionberger TA, Demurtas D, Witz G, Dorier J, Lillian T, Meyhöfer E, Stasiak A. Cooperative kinking at distant sites in mechanically stressed DNA. Nucleic Acids Res 2011; 39:9820-32. [PMID: 21917856 PMCID: PMC3239204 DOI: 10.1093/nar/gkr666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In cells, DNA is routinely subjected to significant levels of bending and twisting. In some cases, such as under physiological levels of supercoiling, DNA can be so highly strained, that it transitions into non-canonical structural conformations that are capable of relieving mechanical stress within the template. DNA minicircles offer a robust model system to study stress-induced DNA structures. Using DNA minicircles on the order of 100 bp in size, we have been able to control the bending and torsional stresses within a looped DNA construct. Through a combination of cryo-EM image reconstructions, Bal31 sensitivity assays and Brownian dynamics simulations, we have been able to analyze the effects of biologically relevant underwinding-induced kinks in DNA on the overall shape of DNA minicircles. Our results indicate that strongly underwound DNA minicircles, which mimic the physical behavior of small regulatory DNA loops, minimize their free energy by undergoing sequential, cooperative kinking at two sites that are located about 180° apart along the periphery of the minicircle. This novel form of structural cooperativity in DNA demonstrates that bending strain can localize hyperflexible kinks within the DNA template, which in turn reduces the energetic cost to tightly loop DNA.
Collapse
Affiliation(s)
- Troy A Lionberger
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Medalion S, Kessler DA, Rabin Y. Effect of spontaneous twist on DNA minicircles. Biophys J 2010; 99:2987-94. [PMID: 21044596 PMCID: PMC2966040 DOI: 10.1016/j.bpj.2010.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/18/2022] Open
Abstract
Monte Carlo simulations are used to study the effect of spontaneous (intrinsic) twist on the conformation of topologically equilibrated minicircles of dsDNA. The twist, writhe, and radius of gyration distributions and their moments are calculated for different spontaneous twist angles and DNA lengths. The average writhe and twist deviate in an oscillatory fashion (with the period of the double helix) from their spontaneous values, as one spans the range between two neighboring integer values of intrinsic twist. Such deviations vanish in the limit of long DNA plasmids.
Collapse
Affiliation(s)
- Shlomi Medalion
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | |
Collapse
|
42
|
Geggier S, Kotlyar A, Vologodskii A. Temperature dependence of DNA persistence length. Nucleic Acids Res 2010; 39:1419-26. [PMID: 20952402 PMCID: PMC3045604 DOI: 10.1093/nar/gkq932] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We have determined the temperature dependence of DNA persistence length, a, using two different methods. The first approach was based on measuring the j-factors of short DNA fragments at various temperatures. Fitting the measured j-factors by the theoretical equation allowed us to obtain the values of a for temperatures between 5°C and 42°C. The second approach was based on measuring the equilibrium distribution of the linking number between the strands of circular DNA at different temperatures. The major contribution into the distribution variance comes from the fluctuations of DNA writhe in the nicked circular molecules which are specified by the value of a. The computation-based analysis of the measured variances was used to obtain the values of a for temperatures up to 60°C. We found a good agreement between the results obtained by these two methods. Our data show that DNA persistence length strongly depends on temperature and accounting for this dependence is important in quantitative comparison between experimental results obtained at different temperatures.
Collapse
Affiliation(s)
- Stephanie Geggier
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
43
|
Chirikjian GS. Group theory and biomolecular conformation: I. Mathematical and computational models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:323103. [PMID: 20827378 PMCID: PMC2935091 DOI: 10.1088/0953-8984/22/32/323103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes.
Collapse
|
44
|
Lim S, Kim Y, Swigon D. Dynamics of an electrostatically charged elastic rod in fluid. Proc Math Phys Eng Sci 2010. [DOI: 10.1098/rspa.2010.0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate the effects of electrostatic and steric repulsion on the dynamics of a pre-twisted charged elastic rod immersed in a viscous incompressible fluid. Equations of motion of the rod include the fluid–structure interaction, rod elasticity and a combination of two interactions that prevent self-contact, namely the electrostatic interaction and hard-core repulsion. The governing equations are solved using the generalized immersed-boundary method. We find that after perturbation, a pre-twisted minicircle collapses into a compact supercoiled configuration. The collapse proceeds along a complex trajectory that may pass near several unstable equilibrium configurations, before it settles in a locally stable equilibrium. The dwell time near an unstable equilibrium can be up to several microseconds. Both the final configuration and the transition path are sensitive to the initial excess link, ionic strength of the solvent and the initial perturbation.
Collapse
Affiliation(s)
- Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 839 Old Chem, Cincinnati, OH 45221, USA
| | - Yongsam Kim
- Department of Mathematics, Chung-Ang University, Dongjakgu Heukseokdong, Seoul 156-756, Republic of Korea
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, 511 Thackeray Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
45
|
Brewood GP, Delrow JJ, Schurr JM. Calf-Thymus Topoisomerase I Equilibrates Metastable Secondary Structure Subsequent to Relaxation of Superhelical Stress. Biochemistry 2010; 49:3367-80. [DOI: 10.1021/bi9017126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Greg P. Brewood
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700
| | - Jeffrey J. Delrow
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700
| | - J. Michael Schurr
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195-1700
| |
Collapse
|
46
|
Abstract
DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA topoisomerases and DNA supercoiling, are not so evident. A computer simulation and analysis of linked sister plasmids formed in Escherichia coli cells with suppressed topoisomerase IV suggests an insight into the latter mechanism.
Collapse
|
47
|
Abstract
The natural stiffness of DNA, which contributes to the interactions of the many proteins involved in its biological processing and packaging, also plays an important role in modern nanotechnology. Here we report new Monte-Carlo simulations of deformable DNA molecules of potential utility in understanding the behavior of the long, double-helical polymer in the tight confines of a cell and in the design of novel nanomaterials and molecular devices. We directly determine the fluctuations in end-to-end extension associated with the conventional elastic-rod representation of DNA and with more realistic models that take account of the precise deformability of the constituent base-pair steps. Notably, the variance of end-to-end distance shows a quadratic increase with chain length in short chains of both types. We also consider the contributions to chain extension from the chemical linkages used to attach small molecular probes to DNA. The distribution of computed distances is sensitive to the intrinsic structure and allowed deformations of the tether. Surprisingly, the enhancement in end-to-end variance associated with the presence of the probe depends upon chain length, even when the probe is rigidly connected to DNA. We find that the elastic rod model of DNA in combination with a slightly fluctuating tether accounts satisfactorily for the distributions of end-to-end distances extracted from the small-angle X-ray scattering of gold nanocrystals covalently linked to the ends of short DNAs. There is no need to introduce additional structural fluctuations to reproduce the measured uptake in end-to-end fluctuations with chain length.
Collapse
Affiliation(s)
- Guohui Zheng
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Luke Czapla
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - A. R. Srinivasan
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
48
|
Abstract
DNA catenanes are important objects in biology, foremost as they appear during replication of circular DNA molecules. In this review we analyze how conformational properties of DNA catenanes can be studied by computer simulation. We consider classification of catenanes, their topological invariants and the methods of calculation of these invariants. We briefly analyze the DNA model and the simulation procedure used to sample the equilibrium conformational ensemble of catenanes with a particular topology. We consider how to avoid direct simulation of many DNA molecules when we need to account for the linking-unlinking process. The simulation methods and their comparisons with experiments are illustrated by some examples. We also describe an approach that allows simulating the steady state fraction of DNA catenanes created by type II topoisomerases.
Collapse
Affiliation(s)
- Alexander Vologodskii
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA.
| | | |
Collapse
|
49
|
Chen H, Liu Y, Zhou Z, Hu L, Ou-Yang ZC, Yan J. Temperature dependence of circular DNA topological states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041926. [PMID: 19518275 DOI: 10.1103/physreve.79.041926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/12/2009] [Indexed: 05/27/2023]
Abstract
Circular double-stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing a linear DNA into a circle by ligase. Using Monte Carlo simulation, we predict the temperature dependence of the linking number distribution of small circular DNAs. Our predictions are based on flexible defect excitations that resulted from local melting or unstacking of DNA base pairs. We found that the reduced bending rigidity alone can lead to measurable changes of the variance of linking number distribution of short circular DNAs. If the defect is accompanied by local unwinding, the effect becomes much more prominent. The predictions can be easily investigated in experiments, providing a new method to study the micromechanics of sharply bent DNAs and the thermal stability of specific DNA sequences. Furthermore, the predictions are directly applicable to the studies of binding of DNA-distorting proteins that can locally reduce DNA rigidity, form DNA kinks, or introduce local unwinding.
Collapse
Affiliation(s)
- Hu Chen
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | | | | | | | | | | |
Collapse
|
50
|
Stellwagen NC, Stellwagen E. Effect of the matrix on DNA electrophoretic mobility. J Chromatogr A 2009; 1216:1917-29. [PMID: 19100556 PMCID: PMC2643323 DOI: 10.1016/j.chroma.2008.11.090] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 11/18/2022]
Abstract
DNA electrophoretic mobilities are highly dependent on the nature of the matrix in which the separation takes place. This review describes the effect of the matrix on DNA separations in agarose gels, polyacrylamide gels and solutions containing entangled linear polymers, correlating the electrophoretic mobilities with information obtained from other types of studies. DNA mobilities in various sieving media are determined by the interplay of three factors: the relative size of the DNA molecule with respect to the effective pore size of the matrix, the effect of the electric field on the matrix, and specific interactions of DNA with the matrix during electrophoresis.
Collapse
Affiliation(s)
- Nancy C Stellwagen
- Department of Biochemistry, University of Iowa, 4403 Bowen Science Building, Iowa City, IA 52242, USA.
| | | |
Collapse
|