1
|
Senatore B, Cafieri A, Di Marino I, Rosati M, Di Nocera PP, Grimaldi G. A variety of RNA polymerases II and III-dependent promoter classes is repressed by factors containing the Krüppel-associated/finger preceding box of zinc finger proteins. Gene X 1999; 234:381-94. [PMID: 10395912 DOI: 10.1016/s0378-1119(99)00182-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KRAB/FPB (Krüppel-associated/finger preceding box) domains are small, portable transcriptional repression motifs, encoded by hundreds of vertebrates C2-H2-type zinc finger genes. We report that KRAB/FPB domains feature an unprecedented, highly promiscuous DNA-binding dependent transcriptional repressing activity. Indeed, template bound chimeric factors containing KRAB/FPB modules actively repress in vivo the transcription of distinct promoter classes that depend on different core elements, recruit distinct basal transcriptional apparatuses and are transcribed either by RNA polymerase II or III. The promoter types repressed in transient assays in a dose- and DNA-binding dependent, but position- and orientation-independent manner, by GAL4-KRAB/FPB fusions include an RNA polymerase II-dependent small nuclear RNA promoter (U1) as well as RNA polymerase III-dependent class 2 (adenovirus VA1), class 3 (human U6) and atypical (human 7SL) promoters. Down-modulation of all of these templates depended on factors containing the A module of the KRAB/FPB domain. Data provide further insights into the properties and mode of action of this widespread repression motif, and support the notion that genes belonging to distinct classes may be repressed in vivo by KRAB/FPB containing zinc finger proteins. The exquisitely DNA-binding dependent transcriptional promiscuity exhibited by KRAB/FPB domains may provide a unique model system for studying the mechanism by which a promoter recruited repression motif can down-modulate a large variety of promoter types.
Collapse
Affiliation(s)
- B Senatore
- International Institute of Genetics and Biophysics, CNR, Via Marconi 10, Naples, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Ma Y, Mathews MB. Structure, function, and evolution of adenovirus-associated RNA: a phylogenetic approach. J Virol 1996; 70:5083-99. [PMID: 8764016 PMCID: PMC190463 DOI: 10.1128/jvi.70.8.5083-5099.1996] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To explore the structure and function of a small regulatory RNA, we examined the virus-associated (VA) RNA species of all 47 known human adenovirus serotypes and of one simian virus, SA7. The VA RNA gene regions of 43 human adenoviruses were amplified and sequenced, and the structures of 10 representative VA RNAs were probed by nuclease sensitivity analysis. Most human viruses have two VA RNA species, VA RNA, and VA RNAII, but nine viruses (19%) have a single VA RNA gene. Sequence alignments classified the RNAs into eight families, corresponding broadly to the known virus groups, and three superfamilies. One superfamily contains the single VA RNAs of groups A and F and the VA RNAI species of group C; the second contains the VA RNAI species of groups B1, D, and E and the unclassified viruses (adenovirus types 42 to 47), as well as the single VA RNAs of group B2; and the third contains all VA RNAII species. Fourteen regions of homology occur throughout the molecule. The longest of these correspond to transcription signals; most of the others participate in RNA secondary structure. The previously identified tetranucleotide pair, GGGU:ACCC, is nearly invariant, diverging slightly (to GGGU:ACCU) only in the two group F viruses and forming a stem in the central domain that is critical for VA RNA structure and function. Secondary structure models which accommodate the nuclease sensitivity data and sequence variations within each family were generated. The major structural features-the terminal stem, apical stem-loop, and central domain-are conserved in all VA RNAs, but differences exist in the apical stem and central domains, especially of the VA RNAII species. Sequence analysis suggests that an ancestral VA RNA gene underwent duplication during the evolution of viruses containing two VA RNA genes. Although the VA RNAII gene seems to have been lost or inactivated by secondary deletion events in some viruses, the high degree of homology among the VA RNAII species implies that this RNA may play an undiscovered role in virus survival. We speculate that the VA RNA genes originated from cellular sequences containing multiple tRNA genes.
Collapse
Affiliation(s)
- Y Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
4
|
Kropotov AV, Tomilin NV. Evidence for a regulatory protein complex on RNA polymerase III promoter of human retroposons of Alu family. Genetica 1996; 98:223-33. [PMID: 9204547 DOI: 10.1007/bf00057587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abundant human retroposons of the Alu family produce few RNA polymerase III (RPIII)-dependent transcripts in vivo. This suggests that either the bulk of the repeats has no proper promoter elements or that transcription of Alu by RPIII is repressed. In this study, we analyzed complexes formed by human nuclear proteins with the Alu B-box and with an adjacent downstream sequence (DB-sequence). Four complexes (C1-C4) were detected and two of them (C2 and C3) were found to be induced by different proteins. C3 formation was found to be sensitive to minor sequence variation within the Alu DB-sequence. The C2 complex is specifically repressed by the competing VA1 B-box oligonucleotide and was found to be very stable. In addition, it is downregulated in human cells transformed by adenovirus 5. This is consistent with a view that the C2 complex is formed by a protein (designated as ACR1) that is different from TFIIIC2. The ACR1 protein may be involved in the modulation of Alu transcription in vivo by interfering or cooperating with TFIIIC2. A similar complex is detected with the efficiently transcribed adenovirus VA1 RNA gene B-box. We compared the affinity of complexes formed by ACR1 with Alu and VA1 B-boxes. It was found that both B-boxes bind ACR1 with equal affinity with a dissociation constant of about 2 nM. However, DB-sequences in Alu and VA1 promoters are non-homologous, and C3/C4 complexes are found to be formed with Alu DB, but not formed with VA1 DB sequences. The Alu-specific protein forming C3 (named as ACR2) may cooperate with ACR1 in selective repression of RPIII-dependent Alu transcription in vivo.
Collapse
Affiliation(s)
- A V Kropotov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
5
|
Pruzan R, Flint SJ. Transcription of adenovirus RNA polymerase III genes. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):201-26. [PMID: 7555055 DOI: 10.1007/978-3-642-79496-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Pruzan
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
6
|
Abstract
The protein kinase DAI is an important component of the interferon-induced cellular defense mechanism. In cells infected by adenovirus type 2 (Ad2), activation of the kinase is prevented by the synthesis of a small, highly ordered virus-associated (VA) RNA, VA RNAI. The inhibitory function of this RNA depends on its structure, which has been partially elucidated by a combination of mutagenesis and RNase sensitivity analysis. To gain further insight into the structure and function of this regulatory RNA, we have compared the primary sequences, secondary structures, and functions of seven VA RNA species from five human and animal adenoviruses. The sequences exhibit variable degrees of homology, with a particularly close relationship between the VA RNAII species of Ad2 and Ad7 and notably divergent sequence for the avian (CELO) virus VA RNA. Apart from two pairs of mutually complementary tetranucleotides which are highly conserved, homologies are limited to transcription signals located within the RNA sequence and at its termini. Secondary structure analysis indicated that all seven RNAs conform to the model in which VA RNA possesses three main structural regions, a terminal stem, an apical stem-loop, and a central domain, although these elements vary in size and other details. The apical stem is implicated in binding to DAI, and the central domain is essential for inhibition of DAI activation. One of the pairs of conserved tetranucleotides (CCGG:C/UCGG) provides further evidence for the existence of the apical stem, but the other conserved pair (GGGU:ACCC) strongly suggests a revised structure for the central domain. In two functional assays conducted in vivo, the VA RNAI species of Ad2 and Ad7 were the most active, their corresponding VA RNAII species displayed little activity, and the single VA RNAs of Ad12 and simian adenovirus type 7 exhibited intermediate activity. Correlation of the structural and functional data suggests that the VA RNAII species adopt a structure different from those of the other VA RNA species and may play a different role in the life cycle of the virus.
Collapse
Affiliation(s)
- Y Ma
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
7
|
Pe'ery T, Mellits KH, Mathews MB. Mutational analysis of the central domain of adenovirus virus-associated RNA mandates a revision of the proposed secondary structure. J Virol 1993; 67:3534-43. [PMID: 8098780 PMCID: PMC237700 DOI: 10.1128/jvi.67.6.3534-3543.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell.
Collapse
Affiliation(s)
- T Pe'ery
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
8
|
Bandea CI, Wu MW, Wu GJ. Adenovirus VARNA1 gene B block promoter element sequences required for transcription and for interaction with transcription factors. J Mol Biol 1992; 227:1068-85. [PMID: 1433287 DOI: 10.1016/0022-2836(92)90522-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We constructed mutants with a deletion of either half of the 18 base-pair B block palindrome in the VARNA1 gene, mutants with different intra-palindromic spacings, a complete set of mutants with single base substitutions, and mutants with double and triple base substitutions in the palindrome. The transcription efficiencies of these mutants were determined in human KB cell-free cytoplasmic S100 extracts. The relative competing strength of each mutant, as determined by a sequential competition experiment, was used to assess each mutant's ability to sequester factors into formation of a stable preinitiation complex. The ability of each mutant to assemble transcriptionally active preinitiation complexes was also determined by direct transcription of the isolated complexes. Finally, the ability of each mutant to interact with the transcription factor(s) TFIIIC and form a distinct gel-resolved complex was also determined. From the results of the above assays, we concluded that the two seemingly identical halves of the palindrome did not contribute equally to transcription, or to assembly of the functional preinitiation complex, nor to interaction with TFIIIC. The anterior half (B1) of the B block palindrome, which is proximal to the A block promoter element, played a stronger role in transcription and in assembly of the functional preinitiation complex than the posterior half (B2) of the palindrome. Consistent with this observation, the point mutations in four base-pairs, GTTC, from +60 to +63 in the anterior half of the B block palindrome, has the most severe effect on transcription. In contrast, we showed that the central sequence and the posterior half (B2) played a stronger role than the anterior half (B1) of the B block palindrome in the interaction of the promoter with TFIIIC. This was corroborated by the observation that base substitutions in the central four base-pair sequence of the palindrome, TCGA, from +62 to +65, had the most severe effect on interaction with TFIIIC, and that mutations in most of the sequences in the posterior half of the B block palindrome had more drastic effects than mutations in the anterior half of the palindrome in this interaction. Furthermore, the spacing between the two halves of the B block palindrome had a drastic effect on the overall transcription efficiency and the interaction of the promoter with TFIIIC, suggesting that the interaction between the two halves of the B block palindrome is not only essential, but also synergistic for the interaction with TFIIIC as well as the assembly of a transcriptionally active preinitiation complex and efficient transcription.
Collapse
Affiliation(s)
- C I Bandea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | |
Collapse
|
9
|
Mellits KH, Pe'ery T, Mathews MB. Role of the apical stem in maintaining the structure and function of adenovirus virus-associated RNA. J Virol 1992; 66:2369-77. [PMID: 1548768 PMCID: PMC289032 DOI: 10.1128/jvi.66.4.2369-2377.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenovirus virus-associated (VA) RNAI maintains efficient protein synthesis during the late phase of infection by preventing the activation of the double-stranded-RNA-dependent protein kinase, DAI. A secondary structure model for VA RNAI predicts the existence of two stems joined by a complex stem-loop structure, the central domain. The structural consequences of mutations and compensating mutations introduced into the apical stem lend support to this model. In transient expression assays for VA RNA function, foreign sequences inserted into the apical stem were fully tolerated provided that the stem remained intact. Mutants in which the base of the apical stem was disrupted retained partial activity, but truncation of the apical stem abolished the ability of the RNA to block DAI activation in vitro, suggesting that the length and position of the stem are both important for VA RNA function. These results imply that VA RNAI activity depends on secondary structure at the top of the apical stem as well as in the central domain and are consistent with a two-step mechanism involving DAI interactions with both the apical stem and the central domain.
Collapse
Affiliation(s)
- K H Mellits
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
10
|
Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation. J Virol 1991; 65:1735-42. [PMID: 2002541 PMCID: PMC239978 DOI: 10.1128/jvi.65.4.1735-1742.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sequence-specific methylation of the promoter and adjacent regions in mammalian genes transcribed by RNA polymerase II leads to the inhibition of these genes. So far, RNA polymerase III-transcribed genes have not been investigated in depth. We therefore studied methylation effects on the RNA polymerase III-transcribed VAI gene of adenovirus type 2 DNA. The VAI gene contains 20 5'-CG-3' dinucleotides, of which 4 (20%) can be methylated by HpaII (5'-CCGG-3') and HhaI (5'-GCGC-3'). Three of these 5'-CG-3' sequences are located close to the internal regulatory region of the VAI segment. An unmethylated, a 5'-CCGG-3'- and 5'-GCGC-3'-methylated, and a 5'-CG-3'-methylated pUC18 construct containing the VAI and VAII regions were transfected into mammalian cells. In many experiments, an inactivating effect of 5'-CCGG-3' and 5'-GCGC-3' DNA methylation on the VAI region was not observed. In contrast, methylation of all 20 5'-CG-3' sequences in the VAI region by a CpG-specific DNA methyltransferase from Spiroplasma species did interfere with VAI transcription. Transcription of the VAI- and VAII- and of the VAI-containing constructs was also shown to be inhibited in an in vitro cell-free transcription system after the constructs had been methylated at the 5'-CCGG-3' and 5'-GCGC-3' sequences or at all 5'-CG-3' sequences. When an oligodeoxyribonucleotide which carried the internal control block A of the VAI region was methylated at three 5'-CG-3' sequences, the formation of a complex with HeLa nuclear proteins was abrogated. The results presented support the notion that the VAI gene transcribed by the DNA-dependent RNA polymerase III is also inactivated by methylation of the decisive 5'-CG-3' sequences.
Collapse
|
11
|
Moon IS, Krause MO. Common RNA polymerase I, II, and III upstream elements in mouse 7SK gene locus revealed by the inverse polymerase chain reaction. DNA Cell Biol 1991; 10:23-32. [PMID: 1671331 DOI: 10.1089/dna.1991.10.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
7SK RNA in mammalian cells is derived from a gene or genes belonging to a middle-repetitive family in the genome. Standard library search techniques applied to isolating such genes are complicated by the finding of multiple truncated or otherwise modified versions of the sequence, whereas the true gene loci can sometimes be eliminated from amplified libraries. After an unsuccessful search for the 7SK RNA gene in four mouse genomic libraries, we used the inverse polymerase chain reaction (IPCR) on fractionated genomic DNA to characterize sequences containing complete copies of 7SK plus flanking regions for analysis of putative transcription regulatory sequences. Direct sequence of IPCR-amplified material allowed for selection of upstream and downstream primers which could then be used for direct PCR, sequencing, and characterization of the mouse 7SK gene locus. So far, we found only one complete copy of the canonical 7SK gene that differed from the human sequence in only 4 bases. The gene is flanked by a very well-conserved upstream control region that includes a TATA motif, two direct repeats, and a proximal sequence element common to mammalian genes transcribed by all three RNA polymerases. The 3' region contains multiple stretches of T residues, typical of class III terminators.
Collapse
Affiliation(s)
- I S Moon
- Department of Biology, University of New Brunswick, Fredericton, Canada
| | | |
Collapse
|
12
|
Zhang ZG, Shastry BS. Specific interaction of a partially purified Xenopus transcription factor IIIC (TFIIIC) with frog tRNA gene. Biochem Biophys Res Commun 1990; 172:692-7. [PMID: 2241962 DOI: 10.1016/0006-291x(90)90729-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factor IIIC (TFIIIC) from Xenopus has been partially purified and characterized. Footprinting analyses indicate that a partially purified TFIIIC fraction contains an activity which specifically recognizes the "B" block element of tRNA gene. In addition, two other regions located downstream from the "B" block sequence are also protected. Protection experiments on 5S genes by DNAase I with either TFIIIC alone or TFIIIA and TFIIIC produced a minimal change in the cleavage pattern implying that TFIIIC does not intimately associate with DNA. The implications of these findings in relation to the class III gene transcription are discussed.
Collapse
Affiliation(s)
- Z G Zhang
- Eye Research Institute of Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|
13
|
A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol Cell Biol 1990. [PMID: 2204807 DOI: 10.1128/mcb.10.10.5106] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus.
Collapse
|
14
|
Clark ME, Dasgupta A. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol Cell Biol 1990; 10:5106-13. [PMID: 2204807 PMCID: PMC361180 DOI: 10.1128/mcb.10.10.5106-5113.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus.
Collapse
Affiliation(s)
- M E Clark
- Department of Microbiology and Immunology, University of California, School of Medicine, Los Angeles 90024
| | | |
Collapse
|
15
|
Pogue GP, Marsh LE, Hall TC. Point mutations in the ICR2 motif of brome mosaic virus RNAs debilitate (+)-strand replication. Virology 1990; 178:152-60. [PMID: 2389549 DOI: 10.1016/0042-6822(90)90388-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sequences at the 5' termini of the genomic RNAs of brome mosaic virus (BMV) and other (+)-stranded RNA viruses have been shown (L.E. Marsh and T.C. Hall, 1987, Cold Spring Harbor Symp. Quant. Biol. 52, 331-341) to resemble the ICRs 1 and 2 (A and B boxes) of tRNA genes, with the complementary sequences at the 3' termini of the (-) strands resembling the ICR2 motif of methionine initiator tRNA genes (L.E. Marsh, G.P. Pogue, and T.C. Hall, 1989, Virology 172, 415-427). In order to examine the role of these sequences in viral replication, point mutations have been introduced into the ICR2-like sequence of a BMV RNA-2 deletion mutant, pRNA delta M/S (parasitic RNA), that does not encode a functional viral protein but replicates in the presence of genomic RNA-1 and -2. Single-base substitutions introduced at positions A7 or T8 of the (+)-sense ICR2-like motif reduced pRNA delta M/S replication by 70-82%, the primary effect being shown by kinetic analyses to be debilitation of (+)-strand synthesis. Whether these motifs act in their (+)-sense orientation in a manner analogous to tRNA genes or through the tRNA(Meti)-like sequence on the 3' (-) strand remains to be determined, but the data clearly demonstrate that the base composition within the ICR-like region of BMV RNAs contributes greatly to (+)-strand promoter function.
Collapse
Affiliation(s)
- G P Pogue
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | |
Collapse
|
16
|
|
17
|
Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 1989. [PMID: 2668737 DOI: 10.1128/mcb.9.6.2551] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes.
Collapse
|
18
|
Wu GJ. Formation of large, sedimentable transcription complexes with VARNA genes and other related genes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81722-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Kassavetis GA, Riggs DL, Negri R, Nguyen LH, Geiduschek EP. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 1989; 9:2551-66. [PMID: 2668737 PMCID: PMC362328 DOI: 10.1128/mcb.9.6.2551-2566.1989] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes.
Collapse
Affiliation(s)
- G A Kassavetis
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
20
|
Gottlieb E, Steitz JA. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 1989; 8:851-61. [PMID: 2470590 PMCID: PMC400884 DOI: 10.1002/j.1460-2075.1989.tb03446.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have tested the hypothesis that the mammalian La protein, which appears to be required for accurate and efficient RNA polymerase III transcription, is a transcription termination factor. Our data suggest that 3' foreshortened transcripts generated in La's absence are components of a novel transcription intermediate containing a paused polymerase. These transcripts are produced by fractionated transcription complexes, are synthesized with kinetics different from full-length transcripts, and are chasable to completion from the stalled transcription complexes. Together, these findings argue that termination by RNA polymerase III requires auxilliary factor(s) and implicate La as such a factor. Since La appears to facilitate transcript completion and release and also binds the resulting RNA product, it may be a regulator of RNA polymerase III transcription.
Collapse
Affiliation(s)
- E Gottlieb
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
21
|
Abstract
The separation of the mammalian class III transcription factor TFIIIC into two functional components, termed TFIIIC1 and TFIIIC2, enabled an analysis of their functions in transcription initiation. Template competition assays were used to define the order with which these factors interact in vitro to form stable preinitiation complexes on the adenovirus VAI and Drosophila melanogaster tRNA(Arg) genes. The interaction between these genes and TFIIIC2, the factor that binds with high affinity to the B block, was both necessary and sufficient for template commitment. When either the VAI or tRNA(Arg) gene was preincubated with TFIIIC2 alone, transcription of a second gene added subsequently was excluded, indicating that TFIIIC2 bound stably to the first template. Furthermore, the interaction between TFIIIC2 and these genes must occur prior to that of TFIIIC1 or TFIIIB. Once TFIIIC2 was bound, TFIIIC1 could bind to the tRNA(Arg) and VAI genes, although its interaction with the VAI gene was less stable than that with the tRNA(Arg) gene. TFIIIB activity bound stably to the complex of both genes with TFIIIC2. These results demonstrate that TFIIIC2 is the first transcription factor to bind to these genes and that TFIIIB and TFIIIC1 can then interact in either order to form a preinitiation complex.
Collapse
|
22
|
Abstract
The separation of the mammalian class III transcription factor TFIIIC into two functional components, termed TFIIIC1 and TFIIIC2, enabled an analysis of their functions in transcription initiation. Template competition assays were used to define the order with which these factors interact in vitro to form stable preinitiation complexes on the adenovirus VAI and Drosophila melanogaster tRNA(Arg) genes. The interaction between these genes and TFIIIC2, the factor that binds with high affinity to the B block, was both necessary and sufficient for template commitment. When either the VAI or tRNA(Arg) gene was preincubated with TFIIIC2 alone, transcription of a second gene added subsequently was excluded, indicating that TFIIIC2 bound stably to the first template. Furthermore, the interaction between TFIIIC2 and these genes must occur prior to that of TFIIIC1 or TFIIIB. Once TFIIIC2 was bound, TFIIIC1 could bind to the tRNA(Arg) and VAI genes, although its interaction with the VAI gene was less stable than that with the tRNA(Arg) gene. TFIIIB activity bound stably to the complex of both genes with TFIIIC2. These results demonstrate that TFIIIC2 is the first transcription factor to bind to these genes and that TFIIIB and TFIIIC1 can then interact in either order to form a preinitiation complex.
Collapse
Affiliation(s)
- N Dean
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | |
Collapse
|
23
|
Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linker-scanning mutants. Mol Cell Biol 1988. [PMID: 3367906 DOI: 10.1128/mcb.8.3.1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The adenovirus type 2-specific virus-associated RNA 1 (VARNA1) gene is transcribed by eucaryotic RNA polymerase III. Previous studies using deletion mutants for transcription have shown that the VARNA1 gene has a large control region which is composed of several regulatory elements. Twenty-five exact linker-scanning mutations in the control region, from -33 to +77, of this gene were used for definition of the number and boundaries of these elements. The effects of these mutations on transcription and competition for transcription factors in human KB cell extracts revealed five positive regulatory elements. The essential element, which coincided with the B block, was absolutely required for both transcription and formation of stable complexes. A second element, which included the A block, was also required for both transcription and formation of stable complexes. Although this element is not as essential as the B-block element, together with the B-block element it may be necessary for formation of the most basal form of transcription machinery. Therefore, these two elements are the promoter elements in this gene. In addition, one possible element in the interblock region and two elements in the 5' flanking region were also required for efficient transcription, but they were moderately required for formation of stable complexes. Transcription of these mutants and the wild-type gene using an extract of 293 cells was stimulated at least threefold over that with the KB cell extract, as expected. Similar regulatory elements of this gene were revealed, however, when the 293 cell extract was used for transcription of these mutants, suggesting that the E1A-mediated specific transcription factors act on the transcription machinery in a sequence-nonspecific manner.
Collapse
|
24
|
Railey JF, Wu GJ. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linker-scanning mutants. Mol Cell Biol 1988; 8:1147-59. [PMID: 3367906 PMCID: PMC363259 DOI: 10.1128/mcb.8.3.1147-1159.1988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The adenovirus type 2-specific virus-associated RNA 1 (VARNA1) gene is transcribed by eucaryotic RNA polymerase III. Previous studies using deletion mutants for transcription have shown that the VARNA1 gene has a large control region which is composed of several regulatory elements. Twenty-five exact linker-scanning mutations in the control region, from -33 to +77, of this gene were used for definition of the number and boundaries of these elements. The effects of these mutations on transcription and competition for transcription factors in human KB cell extracts revealed five positive regulatory elements. The essential element, which coincided with the B block, was absolutely required for both transcription and formation of stable complexes. A second element, which included the A block, was also required for both transcription and formation of stable complexes. Although this element is not as essential as the B-block element, together with the B-block element it may be necessary for formation of the most basal form of transcription machinery. Therefore, these two elements are the promoter elements in this gene. In addition, one possible element in the interblock region and two elements in the 5' flanking region were also required for efficient transcription, but they were moderately required for formation of stable complexes. Transcription of these mutants and the wild-type gene using an extract of 293 cells was stimulated at least threefold over that with the KB cell extract, as expected. Similar regulatory elements of this gene were revealed, however, when the 293 cell extract was used for transcription of these mutants, suggesting that the E1A-mediated specific transcription factors act on the transcription machinery in a sequence-nonspecific manner.
Collapse
Affiliation(s)
- J F Railey
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
25
|
Dean N, Berk AJ. Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography. Nucleic Acids Res 1987; 15:9895-907. [PMID: 3697084 PMCID: PMC306538 DOI: 10.1093/nar/15.23.9895] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, it has been shown that mammalian transcription factor IIIC (TFIIIC) activity can be separated by anion exchange FPLC chromatography into two functional components (1), both of which are required for transcription of tRNA and the adenovirus VA RNA genes. Here we show that these two functional components, designated TFIIIC1 and TFIIIC2, can also be separated by sequence specific DNA affinity chromatography. These results confirm the observation that TFIIIC can be fractionated into two components, which are both required for transcription of VA I and tRNA genes in vitro. Thus in the mammalian reconstituted system, a minimum of three proteins, in addition to RNA polymerase III, are required for the transcription of the VA and tRNA genes in vitro. The DNA binding component, TFIIIC2, binds specifically to the 3' segment of the internal promoter (the B block), demonstrated by its ability to protect this region from digestion by DNase I. TFIIIC2 is the limiting, titratable component in the phosphocellulose C fraction required for the formation of a stable pre-initiation complex on the VAI RNA gene in vitro, as demonstrated with a template competition and rescue assay.
Collapse
Affiliation(s)
- N Dean
- Molecular Biology Institute, UCLA, Los Angeles, CA 90024
| | | |
Collapse
|
26
|
|
27
|
Snouwaert J, Bunick D, Hutchison C, Fowlkes DM. Large numbers of random point and cluster mutations within the adenovirus VA I gene allow characterization of sequences required for efficient transcription. Nucleic Acids Res 1987; 15:8293-303. [PMID: 3671085 PMCID: PMC306360 DOI: 10.1093/nar/15.20.8293] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have isolated clones with well over 100 randomly dispersed point mutations distributed throughout the 5' half of chemically synthesized adenovirus type 2 VA I genes. In addition, we have isolated clusters of mutations targeted to the regions corresponding to the A and B block consensus sequences of eukaryotic tRNA and adenovirus VA genes. In vitro analyses of these constructs have allowed us to survey in detail the importance of DNA sequence to transcriptional efficiency. Our analyses demonstrate that certain constructs with radically substituted A block regions can be transcribed efficiently. In contrast, there is little tolerance for variation in the sequence within the B block region. We propose that the B block sequence should be R-G-A/T-T-C-R-A-N-N-C for optimal transcriptional efficiency of the VA I gene in mammalian cells.
Collapse
Affiliation(s)
- J Snouwaert
- Department of Pathology, University of North Carolina, Chapel Hill 27514
| | | | | | | |
Collapse
|