1
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
3
|
Stantial N, Dumpe J, Pietrosimone K, Baltazar F, Crowley DJ. Transcription-coupled repair of UV damage in the halophilic archaea. DNA Repair (Amst) 2016; 41:63-68. [DOI: 10.1016/j.dnarep.2016.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
|
4
|
Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2009; 60:2398-2408. [PMID: 19946058 DOI: 10.1099/ijs.0.017160-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A considerable number of species of the Halobacteriaceae possess multiple copies of the 16S rRNA gene that exhibit more than 5 % divergence, complicating phylogenetic interpretations. Two additional problems have been pointed out: (i) the genera Haloterrigena and Natrinema show a very close relationship, with some species being shown to overlap in phylogenetic trees reconstructed by the neighbour-joining method, and (ii) alkaliphilic and neutrophilic species of the genus Natrialba form definitely separate clusters in neighbour-joining trees, suggesting that these two clusters could be separated into two genera. In an attempt to solve these problems, the RNA polymerase B' subunit has been used as an additional target molecule for phylogenetic analysis, using partial sequences of 1305 bp. In this work, a primer set was designed that consistently amplified the full-length RNA polymerase B' subunit gene (rpoB') (1827-1842 bp) from 85 strains in 27 genera of the Halobacteriaceae. Differences in sequence length were found within the first 15 to 31 nt, and their downstream sequences (1812 bp) were aligned unambiguously without any gaps or deletions. Phylogenetic trees reconstructed from nucleotide sequences and deduced amino acid sequences by the maximum-likelihood method demonstrated that multiple species/strains in most genera individually formed cohesive clusters. Two discrepancies were observed: (i) the two species of Natronolimnobius were placed in definitely different positions, in that Natronolimnobius innermongolicus was placed in the Haloterrigena/Natrinema cluster, while Natronolimnobius baerhuensis was closely related to Halostagnicola larsenii, and (ii) Natronorubrum tibetense was segregated from the three other Natronorubrum species in the protein tree, while all four species formed a cluster in the gene tree, although supported by a bootstrap value of less than 50 %. The six Haloterrigena species/strains and the five species of Natrinema formed a large cluster in both trees, with Halopiger xanaduensis and Nln. innermongolicus located in the cluster in the protein tree and Nln. innermongolicus in the gene tree. Hpg. xanaduensis broke into the cluster of the genus Halobiforma, instead of the Haloterrigena/Natrinema cluster, in the gene tree. The six Natrialba species formed a tight cluster with two subclusters, of neutrophilic species and alkaliphilic species, in both trees. Overall, our data strongly suggest that (i) Nln. innermongolicus is a member of Haloterrigena/Natrinema, (ii) Nrr. tibetense might represent a new genus and (iii) the two genera Haloterrigena and Natrinema might constitute a single genus. As more and more novel species and genera are proposed in the family Halobacteriaceae, the full sequence of the rpoB' gene may provide a supplementary tool for determining the phylogenetic position of new isolates.
Collapse
Affiliation(s)
- Hiroaki Minegishi
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe-shi, Saitama, Japan
| | | | - Takashi Itoh
- Japan Collection of Micro-organisms, RIKEN BioResource Center, Wako-shi, Saitama, Japan
| | - Akinobu Echigo
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe-shi, Saitama, Japan
| | - Ron Usami
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe-shi, Saitama, Japan
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe-shi, Saitama, Japan
| | - Tetsuo Hashimoto
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
5
|
Aivaliotis M, Macek B, Gnad F, Reichelt P, Mann M, Oesterhelt D. Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life. PLoS One 2009; 4:e4777. [PMID: 19274099 PMCID: PMC2652253 DOI: 10.1371/journal.pone.0004777] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/02/2009] [Indexed: 11/30/2022] Open
Abstract
In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins.
Collapse
Affiliation(s)
- Michalis Aivaliotis
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| | - Boris Macek
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Gnad
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter Reichelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Madern D, Pfister C, Zaccai G. Mutation at a Single Acidic Amino Acid Enhances the Halophilic Behaviour of Malate Dehydrogenase from Haloarcula Marismortui in Physiological Salts. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1088g.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
8
|
Enache M, Itoh T, Fukushima T, Usami R, Dumitru L, Kamekura M. Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences. Int J Syst Evol Microbiol 2007; 57:2289-2295. [PMID: 17911299 DOI: 10.1099/ijs.0.65190-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to clarify the current phylogeny of the haloarchaea, particularly the closely related genera that have been difficult to sort out using 16S rRNA gene sequences, the DNA-dependent RNA polymerase subunit B′ gene (rpoB′) was used as a complementary molecular marker. Partial sequences of the gene were determined from 16 strains of the family Halobacteriaceae. Comparisons of phylogenetic trees inferred from the gene and protein sequences as well as from corresponding 16S rRNA gene sequences suggested that species of the genera Natrialba, Natronococcus, Halobiforma, Natronobacterium, Natronorubrum, Natrinema/Haloterrigena and Natronolimnobius formed a monophyletic group in all trees. In the RpoB′ protein tree, the alkaliphilic species Natrialba chahannaoensis, Natrialba hulunbeirensis and Natrialba magadii formed a tight group, while the neutrophilic species Natrialba asiatica formed a separate group with species of the genera Natronorubrum and Natronolimnobius. Species of the genus Natronorubrum were split into two groups in both the rpoB′ gene and protein trees. The most important advantage of the use of the rpoB′ gene over the 16S rRNA gene is that sequences of the former are highly conserved amongst species of the family Halobacteriaceae. All sequences determined so far can be aligned unambiguously without any gaps. On the other hand, gaps are necessary at 49 positions in the inner part of the alignment of 16S rRNA gene sequences. The rpoB′ gene and protein sequences can be used as an excellent alternative molecular marker in phylogenetic analysis of the Halobacteriaceae.
Collapse
Affiliation(s)
- Madalin Enache
- Institute of Biology, Romanian Academy, Splaiul Independentei 296, PO Box 56-53, Bucharest 060031, Romania
- Japan Collection of Micro-organisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan
| | - Takashi Itoh
- Japan Collection of Micro-organisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan
| | - Tadamasa Fukushima
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ron Usami
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Lucia Dumitru
- Institute of Biology, Romanian Academy, Splaiul Independentei 296, PO Box 56-53, Bucharest 060031, Romania
| | - Masahiro Kamekura
- Halophiles Research Institute, 677-1 Shimizu, Noda, Chiba 278-0043, Japan
| |
Collapse
|
9
|
Coker JA, DasSarma S. Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA. BMC Genet 2007; 8:61. [PMID: 17892563 PMCID: PMC2121645 DOI: 10.1186/1471-2156-8-61] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 09/24/2007] [Indexed: 11/10/2022] Open
Abstract
Background Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including Halobacterium sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters. Results We attempted to knock out all six TBP and seven TFB genes in Halobacterium sp. NRC-1 using the ura3-based gene deletion system. Knockouts were obtained for six out of thirteen genes, tbpCDF and tfbACG, indicating that they are not essential for cell viability under standard conditions. Screening of a population of 1,000 candidate mutants showed that genes which did not yield mutants contained less that 0.1% knockouts, strongly suggesting that they are essential. The transcriptomes of two mutants, ΔtbpD and ΔtfbA, were compared to the parental strain and showed coordinate down regulation of many genes. Over 500 out of 2,677 total genes were regulated in the ΔtbpD and ΔtfbA mutants with 363 regulated in both, indicating that over 10% of genes in both strains require the action of both TbpD and TfbA for normal transcription. Culturing studies on the ΔtbpD and ΔtfbA mutant strains showed them to grow more slowly than the wild-type at an elevated temperature, 49°C, and they showed reduced viability at 56°C, suggesting TbpD and TfbA are involved in the heat shock response. Alignment of TBP and TFB protein sequences suggested the expansion of the TBP gene family, especially in Halobacterium sp. NRC-1, and TFB gene family in representatives of five different genera of haloarchaea in which genome sequences are available. Conclusion Six of thirteen TBP and TFB genes of Halobacterium sp. NRC-1 are non-essential under standard growth conditions. TbpD and TfbA coordinate the expression of over 10% of the genes in the NRC-1 genome. The ΔtbpD and ΔtfbA mutant strains are temperature sensitive, possibly as a result of down regulation of heat shock genes. Sequence alignments suggest the existence of several families of TBP and TFB transcription factors in Halobacterium which may function in transcription of different classes of genes.
Collapse
Affiliation(s)
- James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
10
|
Klein C, Aivaliotis M, Olsen JV, Falb M, Besir H, Scheffer B, Bisle B, Tebbe A, Konstantinidis K, Siedler F, Pfeiffer F, Mann M, Oesterhelt D. The Low Molecular Weight Proteome of Halobacterium salinarum. J Proteome Res 2007; 6:1510-8. [PMID: 17326674 DOI: 10.1021/pr060634q] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic investigation of low molecular weight proteins (LMW, below 20 kDa) in the archaeon Halobacterium salinarum resulted in a 6-fold enhancement of the identification rate, reaching 35% of the theoretical proteome in that size range. This was achieved by optimization of common protocols for protein analysis with general applicability. LMW proteins were rapidly and effectively enriched by filter membrane centrifugation followed by tricine SDS-PAGE. Without staining and with significantly shortened digestion protocols, LMW proteins were identified using an FT-ICR mass spectrometer which allows reliable protein identification by MS3 of a single peptide. In addition to a series of technical challenges, small proteins may show low gene expression levels as suggested by their low average codon adaptation index. Twenty functionally uncharacterized proteins contain a characteristic DNA/RNA binding zinc finger motif which underlines the biological relevance of the small proteome and the necessity of their analysis for systems biology.
Collapse
Affiliation(s)
- Christian Klein
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeske S, Meinhardt F, Klassen R. Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Stiller JW, Harrell L. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny. BMC Evol Biol 2005; 5:71. [PMID: 16336687 PMCID: PMC1326215 DOI: 10.1186/1471-2148-5-71] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 12/09/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary analyses of the largest subunit of RNA polymerase II (RPB1) have yielded important and at times provocative results. One particularly troublesome outcome is the consistent inference of independent origins of red algae and green plants, at odds with the more widely accepted view of a monophyletic Plantae comprising all eukaryotes with primary plastids. If the hypothesis of a broader kingdom Plantae is correct, then RPB1 trees likely reflect a persistent phylogenetic artifact. To gain a better understanding of RNAP II evolution, and the presumed artifact relating to green plants and red algae, we isolated and analyzed RPB1 from representatives of Glaucocystophyta, the third eukaryotic group with primary plastids. RESULTS Phylogenetic analyses incorporating glaucocystophytes do not recover a monophyletic Plantae; rather they result in additional conflicts with the most widely held views on eukaryotic relationships. In particular, glaucocystophytes are recovered as sister to several amoebozoans with strong support. A detailed investigation shows that this clade can be explained by what we call "short-branch exclusion," a phylogenetic artifact integrally associated with "long-branch attraction." Other systematic discrepancies observed in RPB1 trees can be explained as phylogenetic artifacts; however, these apparent artifacts also appear in regions of the tree that support widely held views of eukaryotic evolution. In fact, most of the RPB1 tree is consistent with artifacts of rate variation among sequences and co-variation due to functional constraints related to C-terminal domain based RNAP II transcription. CONCLUSION Our results reveal how subtle and easily overlooked biases can dominate the overall results of molecular phylogenetic analyses of ancient eukaryotic relationships. Sources of potential phylogenetic artifact should be investigated routinely, not just when obvious "long-branch attraction" is encountered.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC USA
| | - Leslie Harrell
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC USA
| |
Collapse
|
13
|
He JG, Lü L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM. Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 2002; 292:185-97. [PMID: 11878922 DOI: 10.1006/viro.2001.1245] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a tiger frog virus (TFV) from diseased tiger frogs, Rana tigrina rugulosa. The genome was a linear double-stranded DNA of 105,057 basepairs in length with a base composition of 55.01% G+C. About 105 open reading frames were identified with coding capacities for polypeptides ranging from 40 to 1294 amino acids. Computer-assisted analyses of the deduced amino acid sequences revealed that 39 of 105 putative gene products showed significant homology to functionally characterized proteins of other species in the GenBank/EMBL/DDBJ databases. These proteins included enzymes and structural proteins involved in virus replication, transcription, modification, and virus--host interaction. The deduced amino acid sequences of TFV gene products showed more than 90% identity to FV3, but a low degree of similarity among TFV, ISKNV, and LCDV-1. The results from this study indicated that TFV may belong to the genus Ranavirus of the family Iridoviridae.
Collapse
Affiliation(s)
- Jian G He
- State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maeshima H, Okuno E, Aimi T, Morinaga T, Itoh T. An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett 2001; 507:336-40. [PMID: 11696367 DOI: 10.1016/s0014-5793(01)02996-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene encoding the 54 kDa protein of signal recognition particle (SRP54) in the hyperthermophilic archaeon Pyrococcus furiosus has been cloned and sequenced. Recombinant P. furiosus SRP54 (pf-SRP54) and the N-terminal G-domain and C-terminal M-domain (pf-SRP54M) of pf-SRP54 with an amino-terminal addition of six histidine residues were expressed in Escherichia coli and subjected to binding experiments for SRP RNA, non-conserved 213-nucleotide RNA (helices 1, 2, 3, 4 and 5) and conserved 107-nucleotide RNA (helices 6 and 8) from SRP RNA. The RNA binding properties of the purified protein were determined by filter binding assays. The histidine-tagged pf-SRP54M bound specifically to the conserved 107-nucleotide RNA in the absence of pf-SRP19, unlike the eukaryotic homologue, with an apparent binding constant (K) of 18 nM.
Collapse
Affiliation(s)
- H Maeshima
- School of Bioresources, Hiroshima Prefectural University, Shobara City, 727-0023, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J Mol Biol 2001; 309:347-60. [PMID: 11371158 DOI: 10.1006/jmbi.2001.4669] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We mapped transcription start sites for ten unrelated protein-encoding Pyrobaculum aerophilum genes by primer extension and S(1) nuclease mapping. All of the mapped transcripts start at the computationally predicted translation start codons, two of which were supported by N-terminal protein sequencing. A whole genome computational analysis of the regions from -50 to +50 nt around the predicted translation starts codons revealed a clear upstream pattern matching the consensus sequence of the archaeal TATA box located unusually close to the translation starts. For genes with the TATA boxes that best matched the consensus sequence, the distance between the TATA box and the translation start codon appears to be shorter than 30 nt. Two other promoter elements distinguished were also found unusually close to the translation start codons: a transcription initiator element with significant elevation of C and T frequencies at the -1 position and a BRE element with more frequent A bases at position -29 to -32 (counting from the translation start site). We also show that one of the mapped genes is transcribed as the first gene of an operon. For a set of genes likely to be internal in operons the upstream signal extracted by computer analysis was a Shine-Dalgarno pattern matching the complementary sequence of P. aerophilum 16 S rRNA. Together these results suggest that the translation of proteins encoded by single genes or genes that are first in operons in the hyperthermophilic crenarchaeon P. aerophilum proceeds mostly, if not exclusively, through leaderless transcripts. Internal genes in operons are likely to undergo translation via a mechanism that is facilitated by ribosome binding to the Shine-Dalgarno sequence.
Collapse
Affiliation(s)
- M M Slupska
- Department of Microbiology, Molecular Biology Institute, University of Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
17
|
Furumoto H, Taguchi A, Itoh T, Morinaga T, Itoh T. 5S rRNA binding proteins from the hyperthermophilic archaeon, Pyrococcus furiosus. FEBS Lett 2000; 486:195-9. [PMID: 11119702 DOI: 10.1016/s0014-5793(00)02293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Pyrococcus furiosus
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- H Furumoto
- School of Bioresources, Hiroshima Prefectural University, Shobara City, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
18
|
Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S. Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 2000; 97:12176-81. [PMID: 11016950 PMCID: PMC17314 DOI: 10.1073/pnas.190337797] [Citation(s) in RCA: 492] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the complete sequence of an extreme halophile, Halobacterium sp. NRC-1, harboring a dynamic 2,571,010-bp genome containing 91 insertion sequences representing 12 families and organized into a large chromosome and 2 related minichromosomes. The Halobacterium NRC-1 genome codes for 2,630 predicted proteins, 36% of which are unrelated to any previously reported. Analysis of the genome sequence shows the presence of pathways for uptake and utilization of amino acids, active sodium-proton antiporter and potassium uptake systems, sophisticated photosensory and signal transduction pathways, and DNA replication, transcription, and translation systems resembling more complex eukaryotic organisms. Whole proteome comparisons show the definite archaeal nature of this halophile with additional similarities to the Gram-positive Bacillus subtilis and other bacteria. The ease of culturing Halobacterium and the availability of methods for its genetic manipulation in the laboratory, including construction of gene knockouts and replacements, indicate this halophile can serve as an excellent model system among the archaea.
Collapse
Affiliation(s)
- W V Ng
- Department of Molecular Biotechnology, University of Washington, Seattle, WA 98195, USA. tment of Microbiology, University of Massachusetts, Amherst, MA 01003; Centre for Extremophile Research, Department of Biology and Biochemistry, Univer
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- B Snel
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | |
Collapse
|
20
|
Sano K, Taguchi A, Furumoto H, Uda T, Itoh T. Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium. Biochem Biophys Res Commun 1999; 264:24-8. [PMID: 10527834 DOI: 10.1006/bbrc.1999.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A determination was made of the nucleotide sequence of the 3215-bp region of a ribosomal protein gene cluster (HS13, HS4, HS11, and HeL18), RNA polymerase (RNA poly D), and tRNA genes (tRNAser and tRNAarg) of halophilic Archaea Halobacterium halobium, which is analogous to the alpha-operon of Escherichia coli (tRNAser-HS13-HS4-HS11-RNA poly D-tRNAarg-HeL18). The seven-gene string was preceded by a pseudoknot-like structure similar to the proposed S4 ribosomal protein binding site of the alpha-operon mRNA leader in E. coli. Using an inducible expression system H. halobium HS4 was produced in large amounts in E. coli, and immunoblot analysis showed the S4 to constitute a 21-kDa polypeptide component of the ribosome. Analysis of the deduced amino acids sequence revealed that the HS13, HS4, and HS11 sequences including the RNA polymerase subunit are more similar to their eukaryotic than to their bacterial counterparts. HeL18, located downstream of the gene cluster analogous to the E. coli alpha-operon (S13-S11-S4-RNA poly D-L17), was similar to both the eukaryotic (eL18) and eubacterial ribosomal protein L15 located in the spc-operon, but not to L17 positioned as the terminal gene of the bacterial alpha-operon.
Collapse
Affiliation(s)
- K Sano
- School of Bioresources, Hiroshima Prefectural University, Shobara City, Hiroshima, 727-0023, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
The KH motif has recently been identified in single or multiple copies in a number of RNA associated proteins. Here we review the current knowledge accumulated about the sequence, structure, and functions of the KH. The multidomain architecture of most of the KH-containing proteins inspired an approach based on the production of peptides spanning the sequence of an isolated KH motif. Correct identification of the minimal length necessary for producing a folded peptide has had a number of important consequences for interpreting functional data. The presence of the KH motifs in fmr1, the protein responsible for the fragile X syndrome, and their possible role in the fmr1 functions are also discussed.
Collapse
Affiliation(s)
- S Adinolfi
- The National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | | | | | | | |
Collapse
|
22
|
Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV. Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. Genome Res 1999. [DOI: 10.1101/gr.9.7.608] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative analysis of the protein sequences encoded in the four euryarchaeal species whose genomes have been sequenced completely (Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, andPyrococcus horikoshii) revealed 1326 orthologous sets, of which 543 are represented in all four species. The proteins that belong to these conserved euryarchaeal families comprise 31%–35% of the gene complement and may be considered the evolutionarily stable core of the archaeal genomes. The core gene set includes the great majority of genes coding for proteins involved in genome replication and expression, but only a relatively small subset of metabolic functions. For many gene families that are conserved in all euryarchaea, previously undetected orthologs in bacteria and eukaryotes were identified. A number of euryarchaeal synapomorphies (unique shared characters) were identified; these are protein families that possess sequence signatures or domain architectures that are conserved in all euryarchaea but are not found in bacteria or eukaryotes. In addition, euryarchaea-specific expansions of several protein and domain families were detected. In terms of their apparent phylogenetic affinities, the archaeal protein families split into bacterial and eukaryotic families. The majority of the proteins that have only eukaryotic orthologs or show the greatest similarity to their eukaryotic counterparts belong to the core set. The families of euryarchaeal genes that are conserved in only two or three species constitute a relatively mobile component of the genomes whose evolution should have involved multiple events of lineage-specific gene loss and horizontal gene transfer. Frequently these proteins have detectable orthologs only in bacteria or show the greatest similarity to the bacterial homologs, which might suggest a significant role of horizontal gene transfer from bacteria in the evolution of the euryarchaeota.
Collapse
|
23
|
van der Oost J, Ciaramella M, Moracci M, Pisani FM, Rossi M, de Vos WM. Molecular biology of hyperthermophilic Archaea. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:87-115. [PMID: 9670798 DOI: 10.1007/bfb0102290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.
Collapse
Affiliation(s)
- J van der Oost
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
25
|
Sepehri S, Hernandez N. The largest subunit of human RNA polymerase III is closely related to the largest subunit of yeast and trypanosome RNA polymerase III. Genome Res 1997; 7:1006-19. [PMID: 9331371 PMCID: PMC310672 DOI: 10.1101/gr.7.10.1006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023]
Abstract
In both yeast and mammalian systems, considerable progress has been made toward the characterization of the transcription factors required for transcription by RNA polymerase III. However, whereas in yeast all of the RNA polymerase III subunits have been cloned, relatively little is known about the enzyme itself in higher eukaryotes. For example, no higher eukaryotic sequence corresponding to the largest RNA polymerase III subunit is available. Here we describe the isolation of cDNAs that encode the largest subunit of human RNA polymerase III, as suggested by the observations that (1) antibodies directed against the cloned protein immunoprecipitate an active enzyme whose sensitivity to different concentrations of alpha-amanitin is that expected for human RNA polymerase III; and (2) depletion of transcription extracts with the same antibodies results in inhibition of transcription from an RNA polymerase III, but not from an RNA polymerase II, promoter. Sequence comparisons reveal that regions conserved in the RNA polymerase I, II, and III largest subunits characterized so far are also conserved in the human RNA polymerase III sequence, and thus probably perform similar functions for the human RNA polymerase III enzyme.
Collapse
Affiliation(s)
- S Sepehri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
26
|
Severinov K, Mooney R, Darst SA, Landick R. Tethering of the large subunits of Escherichia coli RNA polymerase. J Biol Chem 1997; 272:24137-40. [PMID: 9305860 DOI: 10.1074/jbc.272.39.24137] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rpoB and rpoC genes of eubacteria and archaea, coding, respectively, for the beta and beta'-like subunits of DNA-dependent RNA polymerase, are organized in an operon with rpoB always preceding rpoC. Here, we show that in Escherichia coli the two genes can be fused and that the resulting 2751-amino acid beta::beta' fusion polypeptide assembles into functional RNA polymerase in vivo and in vitro. The results establish that the C terminus of the beta subunit and the N terminus of the beta' subunit are in close proximity to each other on the surface of the assembled RNA polymerase during all phases of the transcription cycle and also suggest that RNA polymerase assembly in vivo may occur co-translationally.
Collapse
Affiliation(s)
- K Severinov
- The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
We have compiled a list of all the inteins (protein splicing elements) whose sequences have been published or were available from on-line sequence databases as of September 18, 1996. Analysis of the 36 available intein sequences refines the previously described intein motifs and reveals the presence of another intein motif, Block H. Furthermore, analysis of the new inteins reshapes our view of the conserved splice junction residues, since three inteins lack the intein penultimate His seen in prior examples. Comparison of intein sequences suggests that, in general, (i) inteins present in the same location within extein homologs from different organisms are very closely related to each other in paired sequence comparison or phylogenetic analysis and we suggest that they should be considered intein alleles; (ii) multiple inteins present in the same gene are no more similar to each other than to inteins present in different genes; (iii) phylogenetic analysis indicates that inteins are so divergent that trees with statistically significant branches cannot be generated except for intein alleles.
Collapse
Affiliation(s)
- F B Perler
- New England Biolabs Inc., Beverly, MA 01915, USA.
| | | | | |
Collapse
|
28
|
Purschke WG, Schmidt CL, Petersen A, Schäfer G. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 1997; 179:1344-53. [PMID: 9023221 PMCID: PMC178835 DOI: 10.1128/jb.179.4.1344-1353.1997] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation.
Collapse
Affiliation(s)
- W G Purschke
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|
29
|
Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:27969-74. [PMID: 8910400 DOI: 10.1074/jbc.271.44.27969] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta and beta' subunits of Escherichia coli DNA-dependent RNA polymerase are highly conserved throughout eubacterial and eukaryotic kingdoms. However, in some archaebacteria and chloroplasts, the corresponding sequences are "split" into smaller polypeptides that are encoded by separate genes. To test if such split sites can be accommodated into E. coli RNA polymerase, subunit fragments encoded by the segments of E. coli rpoB and rpoC genes corresponding to archaebacterial and chloroplast split subunits were individually overexpressed. The purified fragments, when mixed in vitro with complementing intact RNA polymerase subunits, yielded an active enzyme capable of catalyzing the phosphodiester bond formation. Thus, the large subunits of eubacteria and eukaryotes are composed of independent structural modules corresponding to the smaller subunits of archaebacteria and chloroplasts.
Collapse
Affiliation(s)
- K Severinov
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Dejgaard K, Leffers H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:425-31. [PMID: 8917439 DOI: 10.1111/j.1432-1033.1996.00425.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The KH module is a sequence motif recently identified in a number of diversified RNA-binding proteins and suggested to be the functional element responsible for RNA binding. So far, however, this hypothesis has not received direct experimental support. We have expressed the three KH-domains from heterogeneous nuclear ribonucleoprotein K (hnRNP-K), the poly(C)-binding proteins PCBP-1 and PCBP-2, the first three to four domains from the high-density binding protein HBP, the one and a half domain from the archaeon Halobacterium halobium ORF139 and one and a half domain of the fragile-X protein FMR1 in Escherichia coli and analysed their nucleic-acid-binding properties in vitro. The results showed that the in vitro poly(rC)-binding activity of hnRNP-K can be assigned to KH-domain 3, whereas both domains 1 and 3 in the PCBPs bind poly(rC). In addition, all these domains exhibit binding activity towards other nucleic acids, albeit at a significantly lower level. The first KH domain from the FMR1 protein binds poly(rG) and single-stranded and double-stranded DNA. The N-terminal three or four domains from HBP bind poly(rG) and, at a much lower level, single-stranded and double-stranded DNA. Thus, single KH domains are discrete and independent nucleic-acid-binding units. Moreover, different KH domains bind different nucleic acids, suggesting that KH domains are composed of a conserved, weakly nucleic-acid-binding, structure that is fine tuned, by sequence variation, resulting in sequence-specific nucleic-acid-binding entities.
Collapse
Affiliation(s)
- K Dejgaard
- Institute of Medical Biochemistry, Aarhus University, Denmark
| | | |
Collapse
|
31
|
Song S, Inouye S, Kawai M, Fukami-Kobayashi K, Gõ M, Nakazawa A. Cloning and characterization of the gene encoding Halobacterium halobium adenylate kinase. Gene X 1996; 175:65-70. [PMID: 8917077 DOI: 10.1016/0378-1119(96)00121-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene (AK) encoding adenylate kinase (AK) of Halobacterium halobium was cloned. AK consisted of 648 bp and coded for 216 amino acids (aa). S1 mapping and primer extension experiments indicated that the transcription start point (tsp) was located immediately upstream from the start codon. The TAT-like promoter sequence was found at a position 20-24 bp upstream from tsp. The most striking property of the enzyme was a putative Zn finger-like structure with four cysteines. It might contribute to the structural stability of the molecule in high-salt conditions. Phylogenetic analysis indicated two lineages of the AK family, the short and long types which diverged a long time ago, possibly before the separation of prokaryotes and eukaryotes. Although the H. halobium AK belongs to the long-type AK lineage, it is located in an intermediary position between the two lineages of the phylogenetic tree, indicating early divergence of the gene along the long-type lineage.
Collapse
Affiliation(s)
- S Song
- Department of Biochemistry, Yamaguchi University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Quon DV, Delgadillo MG, Johnson PJ. Transcription in the early diverging eukaryote Trichomonas vaginalis: an unusual RNA polymerase II and alpha-amanitin-resistant transcription of protein-coding genes. J Mol Evol 1996; 43:253-62. [PMID: 8703091 DOI: 10.1007/bf02338833] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined transcription in an early diverging eukaryote by analyzing the effect of the fungus-derived toxin alpha-amanitin on the transcription of protein-coding genes of the protist Trichomonas vaginalis. In contrast to that typical in eukaryotes, the RNA polymerase that transcribes T. vaginalis protein-coding genes is relatively resistant to alpha-amanitin (50% inhibition = 250 microg alpha-amanitin/ml). We have also characterized the gene encoding the largest subunit of RNA polymerase II, the subunit that binds alpha-amanitin. This protein is 41% identical to the mouse RNA polymerase II. Sequence analysis of the 50-amino-acid region thought to bind alpha-amanitin shows that this region of the trichomonad RNA polymerase II lacks many of the conserved amino acids present in the putative binding site, in agreement with the observed insensitivity to this inhibitor. Similar to other RNA polymerase IIs analyzed from ancient eukaryotes, the T. vaginalis RNA polymerase II lacks the typical heptapeptide (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) repeat carboxyl-terminal domain (CTD) that is a hallmark of higher eukaryotic RNA polymerase IIs. The trichomonad enzyme, however, does contain a short modified CTD that is rich in the amino acid residues that compose the repeat. These data suggest that T. vaginalis protein-coding genes are transcribed by a RNA polymerase II that is relatively insensitive to alpha-amanitin and that differs from typical eukaryotic RNA polymerase IIs as it lacks a heptapeptide repeated CTD.
Collapse
Affiliation(s)
- D V Quon
- Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles, 90095-1747, USA
| | | | | |
Collapse
|
33
|
Heisler LM, Feng G, Jin DJ, Gross CA, Landick R. Amino acid substitutions in the two largest subunits of Escherichia coli RNA polymerase that suppress a defective Rho termination factor affect different parts of the transcription complex. J Biol Chem 1996; 271:14572-83. [PMID: 8662850 DOI: 10.1074/jbc.271.24.14572] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Among the earliest rpoBC mutations identified are three suppressors of the conditional lethal rho allele, rho201. These three mutations are of particular interest because, unlike rpoB8, they do not increase termination at all rho-dependent and rho-independent terminators. rpoB211 and rpoB212 both change Asn-1072 to His in conserved region H of rpoB (betaN1072H), whereas rpoC214 changes Arg-352 to Cys in conserved region C of rpoC (beta'R352C). Both substitutions significantly reduce the overall rate of transcript elongation in vitro relative to wild-type RNA polymerase; however, they probably slow elongation for different reasons. The nucleotide triphosphate concentrations required at the T7 A1 promoter for both abortive trinucleotide synthesis and for promoter escape are much greater for betaN1072H. In contrast, beta'R352C and two adjacent substitutions (beta'G351S and beta'S350F), but not betaN1072H, formed open complexes of greatly reduced stability. The sequence in this region of beta' modestly resembles a region of Escherichia coli DNA polymerase I that contacts the phosphate backbone of DNA in co-crystals. Core determinants affecting open complex formation do not reside exclusively in beta', however, since the Rifr mutation rpoB2 in beta also dramatically destabilized open complexes. We suggest that the principal defects of the two Rho-suppressing substitutions may differ, perhaps reflecting a greater role of beta region H in nucleoside triphosphate-binding and nucleotide addition and of beta' region C in contacts to the DNA strands that could be important for translocation. Although both probably suppress rho201 by slowing RNA chain elongation, these differences may lead to terminator specificity that depends on the rate-limiting step at different sites.
Collapse
Affiliation(s)
- L M Heisler
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Archaeal RNA polymerases show a weak ability in vitro to bind to promoter DNA and/or to initiate transcription with low activity independent of upstream regulatory DNA sequences. Active transcription in vitro and in vivo, however, depends strictly on a TATA box resembling the TATA box of eucaryal polII promoters. This TATA box is recognized by a polypeptide related to eucaryal TATA-binding protein (TBP) that was formerly designated aTFB. Template competition studies showed that this archaeal TATA-binding protein (aTBP) is stably sequestered at the promoter by interaction with the second archaeal transcription factor, aTFA, which is related to eucaryal transcription factor IIB (TFIIB). The association of archaeal TFIIB (aTFIIB) with the aTBP-promoter complex leads to template commitment, indicating that aTFIIB recruits archaeal RNA polymerase to the preinitiation complex. These analyses suggest the following order for assembly of transcription factors on the archaeal promoter: aTBP, aTFIIB, RNA polymerase, and provide evidence for a common molecular mechanism of transcription initiation by eucaryal RNA polymerase II and archaeal RNA polymerases. The sequence of the genes encoding aTBP and aTFIIB (TFB) showed all the characteristics conserved in their eucaryal counterparts. The degree of sequence similarity between archaeal and eucaryal transcription factors is between 27 to 35% for TFIIB and between 36 to 41% for TBP. The findings discussed here indicate that TBP and TFIIB perform analogous functions in Archaea and Eucarya and show that four essential components of archaeal and eucaryal transcriptional machineries. RNA polymerase, TATA box, TBP and TFIIB are homologous.
Collapse
Affiliation(s)
- M Thomm
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
35
|
Danner S, Soppa J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol 1996; 19:1265-76. [PMID: 8730868 DOI: 10.1111/j.1365-2958.1996.tb02471.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sequence and spacing requirements of the archaeal "distal promoter element' (DPE) were examined by randomizing positions -19 to -32 upstream of the transcriptional start site of the ferredoxin (fdx) promoter of Halobacterium salinarium. This randomized promoter library containing 4(14) entries was cloned in front of the dihydrofolate reductase (DHFR) reporter gene and transformed into Haloferax volcanii. Two approaches were used to characterize these synthetic promoters. First, 1040 independent clones were randomly chosen and their degrees of trimethoprim resistance were determined. The sequences of 20 clones that were either sensitive, partially resistant or very resistant, respectively, were determined. Secondly, the transformed library was screened by direct selection for high-activity promoters by growing transformants in the presence of trimethoprim. Both approaches produced the following consensus sequence for a halobacterial promoter: (Formula: see text) (where R = A or G; Y = C or T; W = A or T; S = G or C; N = A, C, G or T). Further characterization of two sensitive, two partially resistant, and two very resistant clones verified that DHFR activity and cell phenotype are directly correlated. Sensitive clones did not contain detectable dhfr mRNA, whereas partially resistant clones contained a 700 nucleotide (nt)-long transcript, and very resistant clones contained both the 700nt-long transcript and a second, more abundant, 500nt-long truncated transcript. Quantification of the dhfr mRNA and DHFR enzyme activity suggests that the 3'-untranslated region of the dhfr transcript, missing from the shorter transcript, functions as a negative regulator of translation.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Consensus Sequence
- DNA Probes/genetics
- DNA, Bacterial/genetics
- Genes, Bacterial
- Genes, Reporter
- Halobacterium/genetics
- Halobacterium/metabolism
- Molecular Sequence Data
- Mutagenesis
- Plasmids/genetics
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Tetrahydrofolate Dehydrogenase/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- S Danner
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
36
|
Engemann S, Noelle R, Herfurth E, Briesemeister U, Grelle G, Wittmann-Liebold B. Cartography of ribosomal proteins of the 30S subunit from the halophilic Haloarcula marismortui and complete sequence analysis of protein HS26. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:24-31. [PMID: 8529646 DOI: 10.1111/j.1432-1033.1995.024_c.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By two-dimensional polyacrylamide gel electrophoresis of 30S ribosomal subunit proteins (S proteins) from Haloarcula marismortui we identified 27 distinct spots and analyzed all of them by protein sequence analysis. We demonstrated that protein HmaS2 (HS2) is encoded by the open reading frame orfMSG and has sequence similarities to the S2 ribosomal protein family. The proteins HmaS5 and HmaS14 were identified as spots HS7 and HS21/HS22, respectively. Protein HS4 was characterized by amino-terminal sequence analysis. The spot HS25 was recognized as an individual protein and also characterized by sequence analysis. Furthermore, the complete primary sequence of HS26 is reported, showing similarity only to eukaryotic ribosomal proteins. The sequence data of a further basic protein shows a high degree of similarity to ribosomal protein S12, therefore, it was designated HmaS12. Slightly different results compared to published sequence data were obtained for the protein HS12 and HmaS19. The putative 'ribosomal' protein HSH could not be localized in the two-dimensional pattern of the total 30S ribosomal subunit proteins of H. marismortui. Therefore, it seems to be unlikely that this protein is a real constituent of the H. marismortui ribosome.
Collapse
Affiliation(s)
- S Engemann
- Max-Delbrück-Centrum für Molekulare Medizin, Abteilung Proteinchemie, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Madern D, Pfister C, Zaccai G. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1088-95. [PMID: 7601139 DOI: 10.1111/j.1432-1033.1995.tb20659.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a statistical analysis of the amino acid compositions of 26 halophilic proteins, 24 showed an increase in acidic amino acids and a decrease in basic ones when compared to their non-halophilic homologues. The role of acidic residues in halophilic adaptation was investigated by site-directed mutagenesis of malate dehydrogenase (MalDH) from Haloarcula marismortui. In all of 40 non-halophilic homologous proteins, the position aligned with E243 in halophilic MalDH is occupied by a non-acidic amino acid, most frequently by arginine. The E243R mutant of halophilic MalDH was constructed, over-expressed in Escherichia coli, renatured and purified. Its salt-dependent catalytic activity was not affected compared to the wild-type enzyme and both proteins have the same Km values for their substrates. The resistance to denaturation of the mutant was compared to that of the wild-type protein in different physiological salt (NaCl or KCl) and temperature conditions and interpreted in terms of classical quasi-thermodynamic parameters. The mutant is more halophilic than the wild-type protein; it is more sensitive to temperature and requires significantly higher concentrations of NaCl or KCl for equivalent stability. These results highlight the role of acidic amino acids in halophilic behaviour and are in agreement with a model in which these amino acids act cooperatively to organise hydrated ion binding to the protein.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
38
|
Abstract
The DNA-dependent RNA polymerase (DdRP or RNAP) is an essential enzyme of transcription of replicating systems of prokaryotic and eukaryotic organisms as well as cytoplasmic DNA viruses. DdRPs are complex multisubunit enzymes consisting of 8-14 subunits, including two large subunits and several smaller polypeptides (small subunits). An extensive search between the amino acid sequences of the known largest subunit of DNA-dependent RNA polymerases (RPO1) of different organisms indicates that all these polypeptides possess a universal heptapeptide NADFDGD in domain D. All RPO1 harbor a second well-conserved hexapeptide RQP(TS)LH upstream (26-31 amino acids) of the universal motif. The genes encoding the largest subunit of DdRP of insect iridescent virus type 6 (IIV6), fish lymphocystis disease virus (LCDV), and molluscum contagiosum virus (MCV-1), all members of the group of cytoplasmic DNA viruses, were identified by PCR technology. With the exception of IIV6, all other viral RPO1 possess the two C-terminal conserved regions G and H. The lack of C-terminal repetitive heptapeptide (YSPTSPS), which is a common feature of the largest subunit of eukaryotic RNAPII, is an additional characteristic of RPO1 proteins of LCDV and of MCV-1. All viral RPO1 proteins were found to be lacking the amino acid N at a distinct position in domain F. This amino acid is known to be highly conserved in alpha-amanitin-sensitive eukaryotic RNA polymerases II. Comparison of the amino acid sequences of the RPO1 polypeptides of IIV6, LCDV, and MCV-1 with the corresponding prokaryotic, eukaryotic, and viral proteins revealed differences in amino acid similarity and phylogenetic relationships. IIV6 RPO1 possesses the closest similarity to the homologous subunit of eukaryotic RNAPII and lower but also significant similarity to that of eukaryotic RNAPI and RNAPIII, archaeal, eubacterial, and viral polymerases. The similarity between RPO1 of IIV6 and the cellular polymerase subunits is consistently higher than to the RPO1 of other cytoplasmic DNA viruses, for example, vaccinia and variola virus, African swine fever virus (ASFV), and MCV-1. The RPO1 of LCDV shows the highest similarity to the RPO1 of IIV6 and significant lower similarity to the eukaryotic polymerases II and III as well as to the archaebacteral subunit. However, it is still considerably more similar to the cellular polymerase subunits than to the homologous viral proteins. The RPO1 of IIV6 possesses more similarity to cellular polymerases than the complete RPO1 of LCDV, indicating that there is a substantial difference in the organization of the RPO1 genes between these members of two genera of the Iridoviridae family. Analysis of the MCV-1 RPO1 revealed high amino acid homologies to the corresponding polypeptides of vaccinia and variola virus. The viral RPO1 proteins, including vaccinia and variola virus, MCV-1, ASFV, IIV6, and LCDV, share the common feature of showing the highest similarity to the largest subunit of eukaryotic RNAPII than to that of RNAPI, RNAPIII, and RPO1 of archaebacterias, eubacterias, ASFV, IIV6, and LCDV. Evolution of the individual largest subunit of DdRPs was tentatively investigated by generating phylogenetic trees using multiple amino acid alignments. These indicate that the RPO1 proteins of IIV6 and LCDV might have evolved from the largest subunit of eukaryotic RNAPII after divergence from the homologous subunits of RNAPI and RNAPIII. In contrast, evolutionary development of the RPO1 of vaccinia and variola virus, MCV-1, and ASFV seems to be quite different, with their common ancestor diverging from cellular homologues before the separation of the three types of eukaryotic ploymerases and having probably diverged earlier from their common lineage with cellular proteins.
Collapse
Affiliation(s)
- K C Sonntag
- Institut für Medizinische Virologie, Universität Heidelberg, FRG
| | | |
Collapse
|
39
|
Klenk HP, Zilllg W, Lanzendorfer M, Grampp B, Palm P. Location of Protist Lineages in a Phylogenetic Tree Inferred from Sequences of DNA-dependent RNA Polymerases. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0003-9365(11)80317-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Abstract
We have used a plasmid-based transcriptional reporter system to examine the transcriptional effects of 33 single point mutations in the box A region (TATA-like sequence) of the Haloferax volcanii tRNA(Lys) promoter. The most pronounced effects on transcriptional efficiency were found when the nucleotides corresponding to the TATA-like region were altered. Promoters with wild-type or higher levels of transcriptional activity conformed to the general archaeal box A consensus, 5'-T/CTTAT/AA-3'. The preference for a pyrimidine residue in the 5' position of this region and the exclusion of guanine and cytosine in the next four positions in the 3' direction are defining characteristics shared by all efficient archaeal promoters. We have also observed that replacement of a 10-nucleotide purine-rich sequence, located 5' of the H. volcanii tRNA(Lys) box A element, completely abolished transcription from this promoter. These data show that the H. volcanii tRNA(Lys) promoter is dependent on two separate, and essential, sequence elements. The possible functions of these sequences, in view of the recent descriptions of eucaryal-like transcription factors for Archaea, are discussed.
Collapse
Affiliation(s)
- J R Palmer
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
41
|
Ceccarelli E, Bocchetta M, Creti R, Sanangelantoni AM, Tiboni O, Cammarano P. Chromosomal organization and nucleotide sequence of the genes for elongation factors EF-1 alpha and EF-2 and ribosomal proteins S7 and S10 of the hyperthermophilic archaeum Desulfurococcus mobilis. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:687-96. [PMID: 7898436 DOI: 10.1007/bf00290714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Desulfurococcus mobilis genes fus (encoding EF-2) and tuf (for EF-1 alpha) were cloned and sequenced together with genes for ribosomal proteins S10 (rps10) and S7 (rps7). Unlike Methanococcus, which displays the bacterial-like fus and tuf gene context 5'-rps12-rps7-fus-tuf-3', and similar to Sulfolobus and Pyrococcus, the Desulfurococcus fus gene (734 codons) has a distinct chromosomal location. Moreover, tuf (441 codons) is the promoter-proximal unit of a three-gene cluster comprising the genes rps10 (98 codons) and tRNA(Ser); the arrangement of the cluster is 5'-tuf-91 bp spacer -rps10-138 bp spacer -tRNA(Ser)-3' and the tuf gene is preceded by a canonical archaeal promoter. The D. mobilis gene rps7 (198 codons) is located further upstream from tuf (535 bp 'silent' intergenic spacing) and no rps12 homolog occurs in its immediate vicinity. Also, judging from putative promoter and transcription termination sequences, rps7 appears to be separately transcribed. Analysis of the predicted fus and tuf gene products revealed the three consensus motifs characteristic of GTP-binding proteins, and the fus-encoded EF-2 protein also displayed the consensus sequence required for ADP-ribosylation by Diphtheria toxin. Both EF sequences were definitely crenarchaeal by comparison with available homologs from other Archaea. Outgroup-rooted phylogenies derived from the sequences of ribosomal proteins S10 and S7 yielded the Sulfolobus-Desulfurococcus association at a high bootstrap confidence level.
Collapse
Affiliation(s)
- E Ceccarelli
- Instituto Pasteur Fondazione Cenci-Bolognetti, Dipartimento di Biopatologia Umana, Università di Roma I, Policlinico Umberto I, Italy
| | | | | | | | | | | |
Collapse
|
42
|
López-García P, St Jean A, Amils R, Charlebois RL. Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei. J Bacteriol 1995; 177:1405-8. [PMID: 7868620 PMCID: PMC176752 DOI: 10.1128/jb.177.5.1405-1408.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through hybridization of available probes, we have added nine genes to the macrorestriction map of the Haloferax mediterranei chromosome and five genes to the contig map of Haloferax volcanii. Additionally, we hybridized 17 of the mapped cosmid clones from H. volcanii to the H. mediterranei genome. The resulting 35-point chromosomal comparison revealed only two inversions and a few translocations. Forces known to promote rearrangement, common in the haloarchaea, have been ineffective in changing global gene order throughout the nearly 10(7) years of these species' divergent evolution.
Collapse
Affiliation(s)
- P López-García
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
43
|
|
44
|
Furter-Graves EM, Hall BD, Furter R. Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res 1994; 22:4932-6. [PMID: 7800482 PMCID: PMC523758 DOI: 10.1093/nar/22.23.4932] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The yeast shi mutation affects the spacing between the TATA promoter element and transcription initiation sites; for the H2B and ADH1 genes, a series of start sites located approximately 50-80 bp downstream of TATA is used in addition to the wild-type initiation sites located at around 100 bp from TATA (1). Here, the yeast SHI wild-type gene has been isolated by complementation and shown to be identical to RPB9, the gene encoding a small subunit of RNA polymerase II. A point mutation in the shi gene, changing a cysteine residue in a putative zinc ribbon motif into a phenylalanine residue, was demonstrated to permit the observed usage of upstream initiation sites. Deletion of the non-essential SHI gene also results in usage of upstream initiation sites and causes conditional growth defects.
Collapse
Affiliation(s)
- E M Furter-Graves
- Institute for Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich
| | | | | |
Collapse
|
45
|
C25, an essential RNA polymerase III subunit related to the RNA polymerase II subunit RPB7. Mol Cell Biol 1994. [PMID: 8065349 DOI: 10.1128/mcb.14.9.6164] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a partially sequenced Saccharomyces cerevisiae gene which encodes a protein related to the S. cerevisiae RNA polymerase II subunit, RPB7. Several lines of evidence suggest that this related gene, YKL1, encodes the RNA polymerase III subunit C25. C25, like RPB7, is present in submolar ratios, easily dissociates from the enzyme, is essential for cell growth and viability, but is not required in certain transcription assays in vitro. YKL1 has ABF-1 and PAC upstream sequences often present in RNA polymerase subunit genes. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of the YKL1 gene product is equivalent to that of the RNA polymerase III subunit C25. Finally, a C25 conditional mutant grown at the nonpermissive temperature synthesizes tRNA at reduced rates relative to 5.8S rRNA, a hallmark of all characterized RNA polymerase III mutants.
Collapse
|
46
|
Sadhale PP, Woychik NA. C25, an essential RNA polymerase III subunit related to the RNA polymerase II subunit RPB7. Mol Cell Biol 1994; 14:6164-70. [PMID: 8065349 PMCID: PMC359143 DOI: 10.1128/mcb.14.9.6164-6170.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We identified a partially sequenced Saccharomyces cerevisiae gene which encodes a protein related to the S. cerevisiae RNA polymerase II subunit, RPB7. Several lines of evidence suggest that this related gene, YKL1, encodes the RNA polymerase III subunit C25. C25, like RPB7, is present in submolar ratios, easily dissociates from the enzyme, is essential for cell growth and viability, but is not required in certain transcription assays in vitro. YKL1 has ABF-1 and PAC upstream sequences often present in RNA polymerase subunit genes. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of the YKL1 gene product is equivalent to that of the RNA polymerase III subunit C25. Finally, a C25 conditional mutant grown at the nonpermissive temperature synthesizes tRNA at reduced rates relative to 5.8S rRNA, a hallmark of all characterized RNA polymerase III mutants.
Collapse
Affiliation(s)
- P P Sadhale
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
47
|
McKune K, Woychik NA. Halobacterial S9 operon contains two genes encoding proteins homologous to subunits shared by eukaryotic RNA polymerases I, II, and III. J Bacteriol 1994; 176:4754-6. [PMID: 8045907 PMCID: PMC196299 DOI: 10.1128/jb.176.15.4754-4756.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One key component of the eukaryotic transcriptional apparatus is the multisubunit enzyme RNA polymerase II. We have discovered that two of the subunits shared by the three nuclear RNA polymerases in the yeast Saccharomyces cerevisiae, RPB6 and RPB10, have counterparts among the Archaea.
Collapse
Affiliation(s)
- K McKune
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
48
|
Abstract
DNA sequencing efforts frequently uncover genes other than the targeted ones. We have used rapid database scanning methods to search for undescribed eubacterial and archean protein coding frames in regions flanking known genes. By searching all prokaryotic DNA sequences not marked as coding for proteins or stable RNAs against the protein databases, we have identified more than 450 new examples of bacterial proteins, as well as a smaller number of possible revisions to known proteins, at a surprisingly high rate of one new protein or revision for every 24 initial DNA sequences or 8,300 nucleotides examined. Seven proteins are members of families which have not been described in prokaryotic sequences. We also describe 49 re-interpretations of existing sequence data of particular biological significance.
Collapse
Affiliation(s)
- K Robison
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
49
|
St Jean A, Trieselmann BA, Charlebois RL. Physical map and set of overlapping cosmid clones representing the genome of the archaeon Halobacterium sp. GRB. Nucleic Acids Res 1994; 22:1476-83. [PMID: 8190640 PMCID: PMC308008 DOI: 10.1093/nar/22.8.1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have constructed a complete, five-enzyme restriction map of the genome of the archaeon Halobacterium sp. GRB, based on a set of 84 overlapping cosmid clones. Fewer than 30 kbp, in three gaps, remain uncloned. The genome consists of five replicons: a chromosome (2038 kbp) and four plasmids (305, 90, 37, and 1.8 kbp). The genome of Halobacterium sp. GRB is similar in style to other halobacterial genomes by being partitioned among multiple replicons and by being mosaic in terms of nucleotide composition. It is unlike other halobacterial genomes, however, in lacking multicopy families of insertion sequences.
Collapse
Affiliation(s)
- A St Jean
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
50
|
Klenk HP, Zillig W. DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol 1994; 38:420-32. [PMID: 8007009 DOI: 10.1007/bf00163158] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The branching topology of the archaeal (archaebacterial) domain was inferred from sequence comparisons of the largest subunit (B) of DNA-dependent RNA polymerases (RNAP). Both the nucleic acid sequences of the genes coding for RNAP subunit B and the amino acid sequences of the derived gene products were used for phylogenetic reconstructions. Individual analysis of the three nucleotide positions of codons revealed significant inequalities with respect to guanosine and cytosine (GC) content and evolutionary rates. Only the nucleotides at the second codon positions were found to be unbiased by varied GC contents and sufficiently conserved for reliable phylogenetic reconstructions. A decision matrix was used for the combination of the results of distance matrix, maximum parsimony, and maximum likelihood methods. For this purpose the original results (sums of squares, steps, and logarithms of likelihoods) were transformed into comparable effective values and analyzed with methods known from the theory of statistical decisions. Phylogenetic invariants and statistical analysis with resampling techniques (bootstrap and jackknife) confirmed the preferred branching topology, which is significantly different from the topology known from phylogenetic trees based on 16S rRNA sequences. The preferred topology reconstructed by this analysis shows a common stem for the Methanococcales and Methanobacteriales and a separation of the thermophilic sulfur archaea from the methanogens and halophiles. The latter coincides with a unique phylogenetic location of a characteristic splitting event replacing the largest RNAP subunit of thermophilic sulfur archaea by two fragments in methanogens and halophiles. This topology is in good agreement with physiological and structural differences between the various archaea and demonstrates RNAP to be a suitable phylogenetic marker molecule.
Collapse
Affiliation(s)
- H P Klenk
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|