1
|
Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proc Natl Acad Sci U S A 2020; 117:3610-3620. [PMID: 32024753 PMCID: PMC7035488 DOI: 10.1073/pnas.1904469117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elongation factor Tu (EF-Tu) facilitates rapid and accurate selection of aminoacyl-tRNA (aa-tRNA) by the bacterial ribosome during protein synthesis. We show that EF-Tu dissociates from the ribosome as aa-tRNA navigates the accommodation corridor en route to peptide bond formation. We find that EF-Tu’s release from the ribosome during aa-tRNA selection can be reversible. We also demonstrate that new ternary complex formation, accompanied by futile cycles of GTP hydrolysis, can occur on aa-tRNA bound within the ribosome. These findings inform on the decoding mechanism, the contributions of EF-Tu to the fidelity of translation, and the potential consequences of reduced rates of peptide bond formation on cellular physiology. The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.
Collapse
|
2
|
Meinel C, Spartà G, Dahse HM, Hörhold F, König R, Westermann M, Coldewey SM, Cseresnyés Z, Figge MT, Hammerschmidt S, Skerka C, Zipfel PF. Streptococcus pneumoniae From Patients With Hemolytic Uremic Syndrome Binds Human Plasminogen via the Surface Protein PspC and Uses Plasmin to Damage Human Endothelial Cells. J Infect Dis 2019; 217:358-370. [PMID: 28968817 DOI: 10.1093/infdis/jix305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.
Collapse
Affiliation(s)
- Christian Meinel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Giuseppina Spartà
- Klinik für Kinder- und Jugendmedizin, Kantonsspital Winterthur, Switzerland
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Franziska Hörhold
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | - Rainer König
- Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | | | - Sina M Coldewey
- Center for Sepsis Control and Care.,Department of Anesthesiology and Intensive Care Medicine.,Septomics Research Center.,Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care.,Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Volkov IL, Johansson M. Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells. Biochemistry 2018; 58:7-14. [PMID: 30404437 DOI: 10.1021/acs.biochem.8b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Decades of traditional biochemistry, structural approaches, and, more recently, single-molecule-based in vitro techniques have provided us with an astonishingly detailed understanding of the molecular mechanism of ribosome-catalyzed protein synthesis. However, in order to understand these details in the context of cell physiology and population biology, new techniques to probe the dynamics of molecular processes inside the cell are needed. Recent years' development in super-resolved fluorescence microscopy has revolutionized imaging of intracellular processes, and we now have the possibility to directly peek into the microcosm of biomolecules in their native environment. In this Perspective, we discuss how these methods are currently being applied and further developed to study the kinetics of protein synthesis directly inside living cells.
Collapse
Affiliation(s)
- Ivan L Volkov
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| | - Magnus Johansson
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| |
Collapse
|
4
|
Timchenko AA, Novosylna OV, Prituzhalov EA, Kihara H, El’skaya AV, Negrutskii BS, Serdyuk IN. Different Oligomeric Properties and Stability of Highly Homologous A1 and Proto-Oncogenic A2 Variants of Mammalian Translation Elongation Factor eEF1. Biochemistry 2013; 52:5345-53. [DOI: 10.1021/bi400400r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Oleksandra V. Novosylna
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | | | - Hiroshi Kihara
- Department of Physics, Kansai Medical University, Hirakata, Osaka 573-1136,
Japan
| | - Anna V. El’skaya
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | - Boris S. Negrutskii
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | - Igor N. Serdyuk
- Institute of Protein Research, RAS, Pushchino 142290, Russia
| |
Collapse
|
5
|
Chudaev M, Poruri K, Goldman E, Jakubowski H, Jain MR, Chen W, Li H, Tyagi S, Mandecki W. Design and properties of efficient tRNA:EF-Tu FRET system for studies of ribosomal translation. Protein Eng Des Sel 2013; 26:347-57. [PMID: 23447652 PMCID: PMC3630515 DOI: 10.1093/protein/gzt006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 11/14/2022] Open
Abstract
Formation of the ternary complex between GTP-bound form of elongation factor Tu (EF-Tu) and aminoacylated transfer RNA (aa-tRNA) is a key event in protein biosynthesis. Here we show that fluorescently modified Escherichia coli EF-Tu carrying three mutations, C137A, C255V and E348C, and fluorescently modified Phe-tRNA(Phe) form functionally active ternary complex that has properties similar to those of the naturally occurring (unmodified) complex. Similarities include the binding and binding rate constants, behavior in gel retardation assay, as well as activities in tRNA protection and in vitro translation assays. Proper labeling of EF-Tu was demonstrated in MALDI mass spectroscopy experiments. To generate the mutant EF-Tu, a series of genetic constructions were performed. Two native cysteine residues in the wild-type EF-Tu at positions 137 and 255 were replaced by Ala and Val, respectively, and an additional cysteine was introduced either in position 324 or 348. The assembly FRET assay showed a 5- to 7-fold increase of Cy5-labeled EF-Tu E348C mutant fluorescence upon formation of ternary complex with charged tRNA(Phe)(Cy3-labeled) when the complex was excited at 532 nm and monitored at 665 nm. In a control experiment, we did not observe FRET using uncharged tRNA(Phe)(Cy3), nor with wild-type EF-Tu preparation that was allowed to react with Cy5 maleimide, nor in the absence of GTP. The results obtained demonstrate that the EF-Tu:tRNA FRET system described can be used for investigations of ribosomal translation in many types of experiments.
Collapse
Affiliation(s)
- Maxim Chudaev
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Kiran Poruri
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Emanuel Goldman
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| | - Mohit Raja Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, UMDNJ – New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, UMDNJ – New Jersey Medical School, Newark, NJ 07103, USA
| | - Wlodek Mandecki
- Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
6
|
Abstract
In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3'-->5' exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in DeltaRNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codon. Deletions of the genes encoding polynucleotide phosphorylase (PNPase) and RNase R had little effect on A-site cleavage. However, PNPase overexpression restored A-site cleavage activity to DeltaRNase II cells. Purified RNase II and PNPase were both unable to directly catalyse A-site cleavage in vitro. Instead, these exonucleases degraded ribosome-bound mRNA to positions +18 and +24 nucleotides downstream of the ribosomal A site respectively. Finally, a stable structural barrier to exoribonuclease activity inhibited A-site cleavage when introduced immediately downstream of paused ribosomes. These results demonstrate that 3'-->5' exonuclease activity is an important prerequisite for efficient A-site cleavage. We propose that RNase II degrades mRNA to the downstream border of paused ribosomes, facilitating cleavage of the A-site codon by an unknown RNase.
Collapse
Affiliation(s)
- Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology University of California, Santa Barbara Santa Barbara, CA 93106−9610
| | - Shinichiro Shoji
- Department of Microbiology The Ohio State University 484 West 12 Ave, Columbus, OH 43210
- Center for RNA Biology The Ohio State University 484 West 12 Ave, Columbus, OH 43210
| | - Kurt Fredrick
- Department of Microbiology The Ohio State University 484 West 12 Ave, Columbus, OH 43210
- Center for RNA Biology The Ohio State University 484 West 12 Ave, Columbus, OH 43210
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology University of California, Santa Barbara Santa Barbara, CA 93106−9610
- Biomolecular Science and Engineering Program University of California, Santa Barbara Santa Barbara, CA 93106−9610
| |
Collapse
|
7
|
Borovinskaya MA, Shoji S, Fredrick K, Cate JHD. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA (NEW YORK, N.Y.) 2008; 14:1590-9. [PMID: 18567815 PMCID: PMC2491480 DOI: 10.1261/rna.1076908] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 05/18/2023]
Abstract
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.
Collapse
Affiliation(s)
- Maria A Borovinskaya
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
8
|
Borovinskaya MA, Shoji S, Holton JM, Fredrick K, Cate JHD. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem Biol 2007; 2:545-552. [PMID: 17696316 PMCID: PMC4624401 DOI: 10.1021/cb700100n] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The widely used antibiotic spectinomycin inhibits bacterial protein synthesis by blocking translocation of messenger RNA and transfer RNAs on the ribosome. Here, we show that in crystals of the Escherichia coli 70S ribosome spectinomycin binding traps a distinct swiveling state of the head domain of the small ribosomal subunit. Spectinomycin also alters the rate and completeness of reverse translocation in vitro. These structural and biochemical data indicate that in solution spectinomycin sterically blocks swiveling of the head domain of the small ribosomal subunit and thereby disrupts the translocation cycle.
Collapse
Affiliation(s)
- Maria A. Borovinskaya
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Shinichiro Shoji
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
| | - James M. Holton
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Jamie H. D. Cate
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
9
|
Krab IM, Parmeggiani A. Mechanisms of EF-Tu, a pioneer GTPase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:513-51. [PMID: 12102560 DOI: 10.1016/s0079-6603(02)71050-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review considers several aspects of the function of EF-Tu, a protein that has greatly contributed to the advancement of our knowledge of both protein biosynthesis and GTP-binding proteins in general. A number of topics are described with emphasis on the function-structure relationships, in particular of EF-Tu's domains, the nucleotide-binding site, and the magnesium-binding network. Aspects related to the interaction with macromolecular ligands and antibiotics and to folding and GTPase activity are also presented and discussed. Comments and criticism are offered to draw attention to remaining discrepancies and problems.
Collapse
Affiliation(s)
- Ivo M Krab
- Laboratory of Biophysics, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
10
|
Budkevich TV, Timchenko AA, Tiktopulo EI, Negrutskii BS, Shalak VF, Petrushenko ZM, Aksenov VL, Willumeit R, Kohlbrecher J, Serdyuk IN, El'skaya AV. Extended conformation of mammalian translation elongation factor 1A in solution. Biochemistry 2002; 41:15342-9. [PMID: 12484773 DOI: 10.1021/bi026495h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformation of mammalian elongation factor eEF1A in solution was examined by the small angle neutron scattering and scanning microcalorimetry. We have found that in contrast to the bacterial analogue the eEF1A molecule has no fixed rigid structure in solution. The radius of gyration of the eEF1A molecule (5.2 nm) is much greater than that of prokaryotic EF1A. The specific heat of denaturation is considerably lower for eEF1A than for EF1A, suggesting that the eEF1A conformation is significantly more disordered. Despite its flexible conformation, eEF1A is found to be highly active in different functional tests. According to the neutron scattering data, eEF1A becomes much more compact in the complex with uncharged tRNA. The absence of a rigid structure and the possibility of large conformational change upon interaction with a partner molecule could be important for eEF1A functioning in channeled protein synthesis and/or for the well-known capability of the protein to interact with different ligands besides the translational components.
Collapse
Affiliation(s)
- T V Budkevich
- Institute of Molecular Biology and Genetics, National Academy of Sciences, 150 Zabolotnogo Street, Kiev, 03143 Ukraine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Malki A, Caldas T, Parmeggiani A, Kohiyama M, Richarme G. Specificity of elongation factor EF-TU for hydrophobic peptides. Biochem Biophys Res Commun 2002; 296:749-54. [PMID: 12176046 DOI: 10.1016/s0006-291x(02)00935-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The elongation factor EF-Tu carries aminoacyl-tRNAs to the A-site of the ribosome during the elongation process of protein biosynthesis. We, and others, have recently reported that the Escherichia coli EF-Tu interacts with unfolded and denatured proteins and behaves like a chaperone in protein folding and protection against protein thermal denaturation. In this study, we have identified EF-Tu binding sites in protein substrates by screening cellulose-bound peptides scanning the sequences of several proteins. The binding motifs recognized by EF-Tu in protein substrates are also recognized by the chaperone DnaK and mainly consist of hydrophobic clusters. EF-Tu interacts as efficiently as DnaK with the membrane spanning sequence of the membrane protein phospholemman and with the signal sequence of alkaline phosphatase. It interacts less efficiently with several other hydrophobic clusters of lysozyme and alkaline phosphatase, which are also DnaK substrates and fails to bind to several DnaK binding sites. Our results suggest that EF-Tu, like DnaK, interacts albeit more weakly with the hydrophobic regions of substrate protein and are consistent with the hypothesis that it possesses chaperone properties.
Collapse
Affiliation(s)
- Abdelharim Malki
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- J Swartz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Kim DM, Swartz JR. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol Bioeng 2001. [DOI: 10.1002/bit.1121] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Raimo G, Masullo M, Lombardo B, Bocchini V. The archaeal elongation factor 1alpha bound to GTP forms a ternary complex with eubacterial and eukaryal aminoacyl-tRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6012-8. [PMID: 10998062 DOI: 10.1046/j.1432-1327.2000.01678.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The archaeal Sulfolobus solfataricus elongation factor 1alpha (SsEF-1alpha) bound to GTP or to its analogue guanyl-5'-yl imido diphosphate [Gpp(NH)p] formed a ternary complex with either Escherichia coli Val-tRNAVal or Saccharomyces cerevisiae Phe-tRNAPhe as demonstrated by gel-shift and gel-filtration experiments. Evidence of such an interaction also came from the observation that SsEF-1alphaz.rad;Gpp(NH)p was able to display a protective effect against either the spontaneous deacylation or the digestion of aminoacyl-tRNA by RNase A. Protection against the deacylation of aminoacyl-tRNA allowed evaluatation of the affinity of SsEF-1alphaz. rad;Gpp(NH)p for both aminoacyl-tRNAs used. The K'd values of the ternary complex containing S. cerevisiae Phe-tRNAPhe or E. coli Val-tRNAVal were 0.3 microM and 4.4 microM, respectively. In both cases, the affinity of SsEF-1alphaz.rad;Gpp(NH)p for aminoacyl-tRNA was three orders of magnitude lower than that of the homologous eubacterial ternary complexes, but comparable with the affinity shown by the ternary complex involving eukaryal EF-1alpha [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. 60, 47-77]. As already observed with eukaryal EF-1alpha, SsEF-1alpha in its GDP-bound form was also able to protect the ester bond of aminoacyl-tRNA, even though with a 10-fold lower efficiency compared with SsEF-1alphaz.rad;Gpp(NH)p. The overall results indicated that the archaeal elongation factor 1alpha shares several properties with eukaryal EF-1alpha but not with eubacterial EF-Tu.
Collapse
Affiliation(s)
- G Raimo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|
16
|
Bilgin N, Ehrenberg M, Ebel C, Zaccai G, Sayers Z, Koch MH, Svergun DI, Barberato C, Volkov V, Nissen P, Nyborg J. Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate. Biochemistry 1998; 37:8163-72. [PMID: 9609712 DOI: 10.1021/bi9802869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex formation between elongation factor Tu (EF-Tu), Phe-tRNAPhe, and GTP was analyzed by small-angle neutron and X-ray scattering methods. Both techniques show that the ternary complex consists of one EF-Tu and one aminoacyl-tRNA. No shift in stoichiometry was detected when the temperature was raised from 5 to 37 degreesC, in contrast to previous observations obtained from RNase A protection experiments [Bilgin and Ehrenberg (1995) Biochemistry34, 715-719]. A small but significant increase in the radius of gyration of the complex was observed when the temperature was decreased from 37 to 5 degreesC. The X-ray solution scattering patterns were compared with those calculated from the crystal structure of the complex formed between EF-Tu from Thermus aquaticus and Phe-tRNAPhe from yeast. The comparison shows that the solution structure of the ternary complex, formed entirely from Escherichia coli components and under translationally optimal buffer conditions, is very close to the crystal structure, formed from heterologous components under very different conditions. Furthermore, for the hybrid complex in solution there is no evidence for the formation of trimers as suggested by the crystal structure.
Collapse
Affiliation(s)
- N Bilgin
- Department of Molecular Biology, The Biomedical Center, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Caldas TD, El Yaagoubi A, Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 1998; 273:11478-82. [PMID: 9565560 DOI: 10.1074/jbc.273.19.11478] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor Tu (EF-Tu) is involved in the binding and transport of the appropriate codon-specified aminoacyl-tRNA to the aminoacyl site of the ribosome. We report herewith that the Escherichia coli EF-Tu interacts with unfolded and denatured proteins as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-Tu promotes the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. It prevents the aggregation of citrate synthase under heat shock conditions, and it forms stable complexes with several unfolded proteins such as reduced carboxymethyl alpha-lactalbumin and unfolded bovine pancreatic trypsin inhibitor. The EF-Tu.GDP complex is much more active than EF-Tu.GTP in stimulating protein renaturation. These chaperone-like functions of EF-Tu occur at concentrations that are at least 20-fold lower than the cellular concentration of this factor. These results suggest that EF-Tu, in addition to its function in translation elongation, might be implicated in protein folding and protection from stress.
Collapse
Affiliation(s)
- T D Caldas
- Biochimie Génétique, Institut Jacques Monod, Université Paris 7, 2 place Jussieu, 75005 Paris, France
| | | | | |
Collapse
|
18
|
Cavallius J, Popkie AP, Merrick WC. Site-directed mutants of post-translationally modified sites of yeast eEF1A using a shuttle vector containing a chromogenic switch. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:345-58. [PMID: 9061031 DOI: 10.1016/s0167-4781(96)00181-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A, formerly eEF-1 alpha) carries aminoacyl-tRNAs into the A-site of the ribosome in a GTP-dependent manner. In order to probe the structure/function relationships of eEF1A, we have generated site-directed mutants using a modification of a highly versatile yeast shuttle vector, which consists of the insertion of a 66 base long synthetic DNA fragment in the vector's polylinker. Via oligonucleotide-directed mutagenesis, the modification permits the identification of mutant clones based on a chromogenic screen of beta-galactosidase activity. Mutagenesis reactions are performed with two or more oligonucleotides, one introducing the chromogenic shift, and the other(s) introducing the mutation(s) of interest in eEF1A. Several rounds of chromogenic shifts and additional mutations can be performed in succession on the same vector. To address the possible function of the methylated lysines in yeast eEF1A, we have changed the post-translationally modified lysines (residue 30, 79, 316 and 390) to arginines using the above methodology. Yeast with eEF1A mutants that substitute arginine in all four sites do not show any phenotypic change. There is also an apparent equivalency of wild-type and mutant yeast eEF1A in in vitro assays. It is concluded that the post-translational modifications of eEF1A are not of major importance for eEF1A's role in translation.
Collapse
Affiliation(s)
- J Cavallius
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | | | |
Collapse
|
19
|
Möhrle VG, Tieleman LN, Kraal B. Elongation factor Tu1 of the antibiotic GE2270A producer Planobispora rosea has an unexpected resistance profile against EF-Tu targeted antibiotics. Biochem Biophys Res Commun 1997; 230:320-6. [PMID: 9016775 DOI: 10.1006/bbrc.1996.5947] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sensitivity of EF-Tu1 of the GE2270A producer Planobispora rosea towards GE2270A, pulvomycin and kirromycin was determined by band-shift assays for EF-Tu1-antibiotic complex formation and by in vitro translation experiments. EF-Tu1 of P. rosea appeared to be not only totally resistant to GE2270A, but also ten times more resistant to kirromycin than EF-Tu1 of Streptomyces coelicolor. In contrast, P. rosea EF-Tu1 was found to be not resistant to pulvomycin, an antibiotic that just like GE2270A blocks EF-Tu x GTP x aminoacyl-tRNA complex formation. Previous in vivo and in vitro experiments with mixed populations of antibiotic resistant and sensitive EF-Tu species had shown that sensitivity to kirromycin and pulvomycin is dominant over resistance. In the case of GE2270A we observed, however, that sensitivity is recessive to resistance, which again points to a different action mechanism than in the case of pulvomycin. Besides the tuf1 gene encoding the regular elongation factor EF-Tu1 a gene similar to S. coelicolor tuf3 for a specialized EF-Tu was located in the P. rosea genome. The tuf1 gene was isolated and sequenced. The amino acid sequence of EF-Tul of P. rosea not only exhibits an unusual Tyr160 substitution (comparable to those described for kirromycin-resistant EF-Tus), but also shows significant changes of conserved amino acids in domain 2 that may be responsible for GE2270A resistance (the latter do not resemble those leading to pulvomycin resistance). P. rosea EF-Tu1 thus is a first example of a bacterial EF-Tu with resistance against two divergently acting antibiotics.
Collapse
Affiliation(s)
- V G Möhrle
- Department of Biochemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
21
|
Helms MK, Marriott G, Sawyer WH, Jameson DM. Dynamics and morphology of the in vitro polymeric form of elongation factor Tu from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:122-30. [PMID: 8898872 DOI: 10.1016/0304-4165(96)00054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elongation factor Tu from Escherichia coli is known to polymerize at slightly acidic pH and low ionic strength. The structure and dynamics of these aggregates have been examined using imaging and spectroscopic methodologies. Electron microscopy provides evidence for two-dimensional sheets and bundled filaments of EF-Tu, whereas fluorescence microscopy of EF-Tu covalently labeled with tetramethylrhodamine isothiocyanate showed highly branched polymers of EF-Tu several microns in diameter. These polymers were studied using quasi-elastic light scattering to determine the evolution of the translational diffusion coefficient during the polymerization process. The rotational dynamics of the aggregate were investigated using phosphorescence anisotropy of EF-Tu covalently labeled with erythrosin isothiocyanate. A high infinite-time anisotropy was observed, suggesting a lack of motion or entanglement of EF-Tu polymers. A sub-microsecond motion which was slowed in the presence of glycerol may be due to local flexibility of the polymers. The possible relevance of polymeric EF-Tu to its function in vivo is discussed.
Collapse
Affiliation(s)
- M K Helms
- Department of Biochemistry and Biophysics, University of Hawaii, Honolulu 96822, USA
| | | | | | | |
Collapse
|
22
|
Bosch L, Vijgenboom E, Zeef LA. A revised bacterial polypeptide chain elongation cycle with a stepwise increase in restriction of unwanted ternary complexes by the ribosome. Biochemistry 1996; 35:12647-51. [PMID: 8841107 DOI: 10.1021/bi952925a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Bosch
- Department of Biochemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
23
|
Abstract
Five single amino acid substitution variants of EF-Tu from Salmonella typhimurium were tested for their ability to promote poly(U)-translation in vitro. The substitutions are Leu120 Gln, Gln124 Arg and Tyr160 (Asp or Asn or Cys). They were selected by their kirromycin resistant phenotypes and all substitutions are in domain I at the interface between domains I and III of the EF-Tu.GTP configuration. The different EF-Tu variants exhibit a spectrum of phenotypes. First, k cat/K(M) for the interaction between ternary complex and the programmed ribosome is apparently reduced by the substitutions Leu120 Gln, Gln124 Arg and Tyr160 Cys. Second, this reduction is caused by a defect in the interaction between these EF-Tu variants and aminoacyl-tRNA during translation. Third, in four cases out of five the affinity of the complex between EF-Tu.GTP and aminoacyl-tRNA is significantly decreased. The most drastic reduction is observed for the Gln124 Arg change, where the association constant is 30-fold lower than in the wild-type case. Fourth, missense errors are increased as well as decreased by the different amino acid substitutions. Finally, the dissociation rate constant (kd) for the release of GDP from EF-Tu is increased 6-fold by the Tyr160 Cys substitution, but remains unchanged in the four other cases. These results show that the formation of ternary complex is sensitive to many different alterations in the domain I-III interface of EF-Tu.
Collapse
Affiliation(s)
- F Abdulkarim
- Department of Molecular Biology, The Biomedical Center, Uppsala University, Sweden
| | | | | |
Collapse
|
24
|
Abel K, Jurnak F. A complex profile of protein elongation: translating chemical energy into molecular movement. Structure 1996; 4:229-38. [PMID: 8805530 DOI: 10.1016/s0969-2126(96)00027-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The recently solved structures of the protein elongation factor complexes, EF-Tu-GDPNP-phenylalanyl-tRNA and EF-T-Ts, complete the atomic profile of four EF-Tu conformational states. As a set, the three-dimensional structures suggest an atomic model for movement during protein elongation and, by molecular mimicry with EF-G, translocation as well.
Collapse
Affiliation(s)
- K Abel
- Department of Biochemistry, University of California, Riverside, CA 92507, USA
| | | |
Collapse
|
25
|
Blank J, Nock S, Kreutzer R, Sprinzl M. Elongation factor Ts from Thermus thermophilus-- overproduction in Escherichia coli, quaternary structure and interaction with elongation factor Tu. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:222-7. [PMID: 8617268 DOI: 10.1111/j.1432-1033.1996.00222.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene encoding the elongation factor Ts from Thermus thermophilus was sequenced, cloned and the protein overproduced in Escherichia coli. In comparison to the EF-Ts from E. coli with 282 amino acid residues, EF-Ts from T. thermophilus is considerably shorter, differing by 86 amino acids. EF-Ts from the thermophile is stable at high temperatures, which facilitates its separation from E. coli proteins. Purified T. thermophilus EF-Ts forms a homodimer with a disulfide bridge between the two cysteine residues at position 190. The modification of Cys19O by iodoacetamide affects neither the dimerization nor the ability of EF-Ts to facilitate the nucleotide exchange of elongation factor Tu. The disulfide bridge was detected only in purified EF-TS, but not in protein extracts immediately after cell disruption. The physiological role of this disulfide bridge remains, therefore, unclear. Besides the quaternary (EF-TU . EF-Ts)2 complex, a ternary EF-TU . EF-Ts2 complex was detected by gel permeation chromatography and polyacrylamide gel electrophoresis. Trypsin cleavage after Lys48 or modification of Cys78 yield inactive EF-Ts, that does not bind to EF-Tu but is still capable of forming homodimers.
Collapse
Affiliation(s)
- J Blank
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
26
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
27
|
Nissen P, Kjeldgaard M, Thirup S, Clark BF, Nyborg J. The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold. Biochimie 1996; 78:921-33. [PMID: 9150869 DOI: 10.1016/s0300-9084(97)86714-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The refined crystal structure of the ternary complex of yeast Phe-tRNAPhe, Thermus aquaticus elongation factor EF-Tu and the non-hydrolyzable GTP analog, GDPNP, reveals many details of the EF-Tu recognition of aminoacylated tRNA (aa-tRNA). EF-Tu-GTP recognizes the aminoacyl bond and one side of the backbone fold of the acceptor helix and has a high affinity for all ordinary elongator aa-tRNAs by binding to this aa-tRNA motif. Yet, the binding of deacylated tRNA, initiator tRNA, and selenocysteine-specific tRNA (tRNASec) is effectively discriminated against. Subtle rearrangements of the binding pocket may occur to optimize the fit to any side chain of the aminoacyl group and interactions with EF-Tu stabilize the 3'-aminoacyl isomer of aa-tRNA. A general complementarity is observed in the location of the binding sites in tRNA for synthetases and for EF-Tu. The complex formation is highly specific for the GTP-bound conformation of EF-Tu, which can explain the effects of various mutants.
Collapse
Affiliation(s)
- P Nissen
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
28
|
Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 1995; 270:1464-72. [PMID: 7491491 DOI: 10.1126/science.270.5241.1464] [Citation(s) in RCA: 665] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of the ternary complex consisting of yeast phenylalanyl-transfer RNA (Phe-tRNAPhe), Thermus aquaticus elongation factor Tu (EF-Tu), and the guanosine triphosphate (GTP) analog GDPNP was determined by x-ray crystallography at 2.7 angstrom resolution. The ternary complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome. The EF-Tu-GDPNP component binds to one side of the acceptor helix of Phe-tRNAPhe involving all three domains of EF-Tu. Binding sites for the phenylalanylated CCA end and the phosphorylated 5' end are located at domain interfaces, whereas the T stem interacts with the surface of the beta-barrel domain 3. The binding involves many conserved residues in EF-Tu. The overall shape of the ternary complex is similar to that of the translocation factor, EF-G-GDP, and this suggests a novel mechanism involving "molecular mimicry" in the translational apparatus.
Collapse
Affiliation(s)
- P Nissen
- Department of Biostructural Chemistry, Institute of Chemistry, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Ganoza MC, Cunningham C, Green RM. A new factor from Escherichia coli affects translocation of mRNA. J Biol Chem 1995; 270:26377-81. [PMID: 7592851 DOI: 10.1074/jbc.270.44.26377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reconstitution of protein synthesis from purified translation factors on ribosomes from Escherichia coli has revealed the requirement for a protein, W, that affects chain elongation and is essential to reconstitute the process (Ganoza, M. C., Cunningham, C., and Green, R. M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1648-1652). We report that W has no effect on initiation complex formation by 30 or 70 S ribosomes or on the association of ribosomal subunits, peptide bond synthesis, or binding Ala-tRNA, which is the second amino acid of the coat protein of the MS2 RNA virion. W has a pronounced effect on tripeptide synthesis, and is obligatory for the synthesis of the coat protein or of the hexapeptide encoded by f2am3 RNA. Extracts from a temperature-sensitive mutant of the translocase, EF-G, were purified free of the W protein and were used to score for translocation defects. W is required for binding Ser-tRNA, the third N-terminal amino acid of the MS2 or f2 RNA coat protein to ribosomes bearing fMet-Ala-tRNA, as well as for the ejection of deacyl-tRNA from ribosomes, which occurred concomitant with the binding of the Ser-tRNA. We propose that W functions by ejecting tRNAs from ribosomes in a step that precedes the movement of mRNA during translocation.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Ehrenberg M, Bilgin N, Dincbas V, Karimi R, Hughes D, Abdulkarim F. tRNA-ribosome interactions. Biochem Cell Biol 1995; 73:1049-54. [PMID: 8722020 DOI: 10.1139/o95-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Direct measurements of the rates of dissociation of dipeptidyl-tRNA from the ribosome show that hyperaccurate SmP and SmD ribosomes have unstable A-site binding of peptidyl-tRNA, while P-site binding is extremely stable in relation to the wild type. Error-prone Ram ribosomes, on the other hand, have stable A-site and unstable P-site binding of peptidyl-tRNA. At least for these mutant ribosomes, we conclude that stabilization of peptidyl-tRNA in one site destabilizes binding in the other. Elongation factor Tu (EF-Tu) undergoes a dramatic structural transition from its GDP-bound form to its active GTP-bound form, in which it binds aa-tRNA (aminoacyl-tRNA) in ternary complex. The effects of substitution mutations at three sites in domain I of EF-Tu, Gln124, Leu120, and Tyr160, all of which point into the domain I-domain III interface in both the GTP and GDP conformations of EF-Tu, were examined. Mutations at each position cause large reductions in aa-tRNA binding. An attractive possibility is that the mutations alter the domain I-domain III interface such that the switching of EF-Tu between different conformations is altered, decreasing the probability of aa-tRNA binding. We have previously found that two GTPs are hydrolyzed per peptide bond on EF-Tu, the implication being that two molecules of EF-Tu may interact on the ribosome to catalyze the binding of a single aa-tRNA to the A-site. More recently we found that ribosomes programmed with mRNA constructs other than poly(U), including the sequence AUGUUUACG, invariably use two GTPs per peptide bond in EF-Tu function. Other experiments measuring the protection of aa-tRNA from deacylation or from RNAse A attack show that protection requires two molecules of EF-Tu, suggesting an extended ternary complex. To remove remaining ambiguities in the interpretion of these experiments, we are making direct molecular weight determinations with neutron scattering and sedimentation-diffusion techniques.
Collapse
Affiliation(s)
- M Ehrenberg
- Department of Molecular Biology, BMC, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Kraal B, Zeef LA, Mesters JR, Boon K, Vorstenbosch EL, Bosch L, Anborgh PH, Parmeggiani A, Hilgenfeld R. Antibiotic resistance mechanisms of mutant EF-Tu species in Escherichia coli. Biochem Cell Biol 1995; 73:1167-77. [PMID: 8722034 DOI: 10.1139/o95-126] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Analysis of antibiotic-resistant EF-Tu mutants has revealed a connection between resistance and structural elements that participate in the GTPase switching mechanism. Both random and site-directed mutagenesis methods have yielded sets of purified mutant EF-Tu resistant to kirromycin (kirT) or pulvomycin (pulT). All kirT mutations cluster in the interface of domain 1 and 3 of EF-Tu in its GTP-bound conformation, not in that of EF-Tu.GDP. Other evidence also suggests that kirromycin binds to the interface of wild-type EF-Tu, thereby jamming the GTPase switch. Various functional studies reveal two subsequent resistance mechanisms. The first hinders kirromycin binding to EF-Tu.GTP and the second occurs after GTP hydrolysis by rejection of bound kirromycin. All pulT mutations cluster in the three-domain junction interface of EF-Tu. GTP (which is an open hole in EF-Tu.GDP) and destabilize a salt-bridge network. Pulvomycin may bind nearby and overlap with tRNA binding. Mutations show that a D99-R230 salt bridge is not essential for the transduction of the GTPase switch signal from domain 1. In vivo and in vitro studies reveal that pulvomycin sensitivity is dominant over resistance. This demands a revision of the current view of the mechanism of pulvomycin inhibition of protein synthesis and may support a translation model with two EF-Tus on the ribosome. Several mutant EF-Tu species display altered behaviour towards aminoacyl-tRNA with interesting effects on translational accuracy. KirT EF-Tu(A375T) is able to reverse the streptomycin-dependent phenotype of a ribosomal protein S12 mutant strain to streptomycin sensitivity.
Collapse
Affiliation(s)
- B Kraal
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rodnina MV, Pape T, Fricke R, Wintermeyer W. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem Cell Biol 1995; 73:1221-7. [PMID: 8722040 DOI: 10.1139/o95-132] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mechanism of elongation factor Tu (EF-Tu) catalyzed aminoacyl-tRNA (aa-tRNA) binding to the A site of the ribosome was studied. Two types of complexes of EF-Tu with GTP and aa-tRNA, EF-Tu.GTP-aa-tRNA (ternary) and (EF-Tu.GTP)2.aa-tRNA (quinternary), can be formed in vitro depending on the conditions. On interaction with the ribosomal A site, generally only one molecule of GTP is hydrolysed per aa-tRNA bound and peptide bond formed. The second GTP molecule from the quinternary complex is hydrolyzed only during translation of an oligo(U) tract in the presence of EF-G. The first step in the interaction between the ribosome and the ternary complex is the codon-independent formation of an initial complex. In the absence of codon recognition, the aa-tRNA-EF-Tu complex does not enter further steps of A site binding and remains in the initial binding state. Despite the rapid formation of the initial complex, the rate constant of GTP hydrolysis in the noncognate complex is four orders of magnitude lower compared with the cognate complex. This, together with the results of time-resolved fluorescence measurements, suggests that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements that result in a conformational change of EF-Tu, presumably involving the effector region, which, in turn, triggers GTP hydrolysis and the subsequent steps of A site binding.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University Witten/Herdecke, Germany
| | | | | | | |
Collapse
|
33
|
Triana-Alonso FJ, Chakraburtty K, Nierhaus KH. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem 1995; 270:20473-8. [PMID: 7657623 DOI: 10.1074/jbc.270.35.20473] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two elongation factors drive the ribosomal elongation cycle; elongation factor 1 alpha (EF-1 alpha) mediates the binding of an aminoacyl-tRNA to the ribosomal A site, whereas elongation factor 2 (EF-2) catalyzes the translocation reaction. Ribosomes from yeast and other higher fungi require a third elongation factor (EF-3) which is essential for the elongation process, but the step affected by EF-3 has not yet been identified. Here we demonstrate that the first and the third tRNA binding site (A and E sites, respectively) of yeast ribosomes are reciprocally linked; if the A site is occupied the E site has lost its binding capability, and vice versa, if the E site is occupied the A site has a low affinity for tRNAs. EF-3 is essential for EF-1 alpha-dependent A site binding of amino-acyl-tRNA only when the E site is occupied with a deacylated tRNA. The ATP-dependent activity of EF-3 is required for the release of deacylated tRNA from the E site during A site occupation.
Collapse
Affiliation(s)
- F J Triana-Alonso
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | | | |
Collapse
|
34
|
Alexander C, Bilgin N, Lindschau C, Mesters JR, Kraal B, Hilgenfeld R, Erdmann VA, Lippmann C. Phosphorylation of elongation factor Tu prevents ternary complex formation. J Biol Chem 1995; 270:14541-7. [PMID: 7782317 DOI: 10.1074/jbc.270.24.14541] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The elongation factor Tu (EF-Tu) is a member of the GTP/GDP-binding proteins and interacts with various partners during the elongation cycle of protein biosynthesis thereby mediating the correct binding of amino-acylated transfer RNA (aa-tRNA) to the acceptor site (A-site) of the ribosome. After GTP hydrolysis EF-Tu is released in its GDP-bound state. In vivo, EF-Tu is post-translationally modified by phosphorylation. Here we report that the phosphorylation of EF-Tu by a ribosome associated kinase activity is drastically enhanced by EF-Ts. The antibiotic kirromycin, known to block EF-Tu function, inhibits the modification. This effect is specific, since kirromycin-resistant mutants do become phosphorylated in the presence of the antibiotic. On the other hand, phosphorylated wild-type EF-Tu does not bind kirromycin. Most interestingly, the phosphorylation of EF-Tu abolishes its ability to bind aa-tRNA. In the GTP conformation the site of modification is located at the interface between domains 1 and 3 and is involved in a strong interdomain hydrogen bond. Introduction of a charged phosphate group at this position will change the interaction between the domains, leading to an opening of the molecule reminiscent of the GDP conformation. A model for the function of EF-Tu phosphorylation in protein biosynthesis is presented.
Collapse
Affiliation(s)
- C Alexander
- Institut für Biochemie, Freie Universität Berlin, Dahlem, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rodnina MV, Wintermeyer W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci U S A 1995; 92:1945-9. [PMID: 7892205 PMCID: PMC42399 DOI: 10.1073/pnas.92.6.1945] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The stoichiometry of elongation factor Tu (EF-Tu) and GTP in the complex with aminoacyl-tRNA and the consumption of GTP during peptide bond formation on the ribosome were studied in the Escherichia coli system. The ribosomes were programmed either with two different heteropolymeric mRNAs coding for Met-Phe-Thr-Ile ... (mMFTI) or Met-Phe-Phe-Gly ... (mMFFG) or with poly(U). The composition of the complex of EF-Tu, GTP, and Phe-tRNA(Phe) was studied by gel chromatography. With equimolar amounts of factor and Phe-tRNA(Phe), a pentameric complex, (EF-Tu.GTP)2.Phe-tRNA(Phe), was observed, whereas the classical ternary complex, EF-Tu.GTP.Phe-tRNA(Phe), was found only when Phe-tRNA(Phe) was in excess. Upon binding of the purified pentameric complex to ribosomes carrying fMet-tRNA(fMet) in the peptidyl site and exposing a Phe codon in the aminoacyl site, only one out of two GTPs of the pentameric complex was hydrolyzed per Phe-tRNA bound and peptide bond formed, regardless of the mRNA used. In the presence of EF-G, the stoichiometry of one GTP hydrolyzed per peptide bond formed was found on mMFTI when one or two elongation cycles were completed. In contrast, on mMFFG, which contains two contiguous Phe codons, UUU-UUC, two GTP molecules of the pentameric complex were hydrolyzed per Phe incorporated into dipeptide, whereas the incorporation of the second Phe to form tripeptide consumed only one GTP. Thus, generally one GTP is hydrolyzed by EF-Tu per aminoacyl-tRNA bound and peptide bond formed, and more than one GTP is hydrolyzed only when a particular mRNA sequence, such as a homopolymeric stretch, is translated. The role of the additional GTP hydrolysis is not known; it may be related to frameshifting of peptidyl-tRNA during translocation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Carbon Radioisotopes
- Escherichia coli/metabolism
- Guanosine Triphosphate/isolation & purification
- Guanosine Triphosphate/metabolism
- Kinetics
- Molecular Sequence Data
- Peptide Elongation Factor Tu/isolation & purification
- Peptide Elongation Factor Tu/metabolism
- Protein Biosynthesis
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/isolation & purification
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Thr/metabolism
- Reading Frames
- Ribosomes/metabolism
- Tritium
Collapse
Affiliation(s)
- M V Rodnina
- Institut für Molekularbiologie, Universität Witten/Herdecke, Germany
| | | |
Collapse
|
36
|
Abstract
The stoichiometry of the complex formed between the Escherichia coli polypeptide elongation factor EF-Tu, GTP and valyl-tRNA(val) has been determined by non-enzymatic deacylation studies on mixtures of the components at well-defined concentrations. A titration end-point was found corresponding to a 1:1 complex of EF-Tu.GTP with the aminoacylated-tRNA i.e. formation of a ternary complex. The result conforms to the classical model of the elongation step and not to the revolutionary proposition of the formation of a 2:2:1 complex; quinternary complex (EF-Tu.GTP)2.aa-RNA.
Collapse
Affiliation(s)
- R Leberman
- European Molecular Biology Laboratory, Grenoble Outstation, France
| |
Collapse
|
37
|
Dinçbaş V, Bilgin N, Scoble J, Ehrenberg M. Two GTPs are consumed on EF-Tu per peptide bond in poly(Phe) synthesis, in spite of switching stoichiometry of the EF-Tu.aminoacyl-tRNA complex with temperature. FEBS Lett 1995; 357:19-22. [PMID: 8001671 DOI: 10.1016/0014-5793(94)01318-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent observations indicate that the stoichiometry for the complex between EF-Tu.GTP and aminoacyl-tRNA (aa-tRNA) changes with temperature. At 37 degrees C two EF-Tu.GTPs bind one aa-tRNA in an extended ternary complex, but at 0 degrees C the complex has 1:1 stoichiometry. However, the present experiments show that there are two GTPs hydrolyzed on EF-Tu per peptide bond in poly(Phe) synthesis at 37 degrees C as well as at 0 degrees C. This indicates two different pathways for the enzymatic binding of aa-tRNA to the A-site on the ribosome.
Collapse
Affiliation(s)
- V Dinçbaş
- Department of Molecular Biology, BMC, Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Ribosome-catalyzed Pep tide-bond Formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995. [DOI: 10.1016/s0079-6603(08)60809-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:263-338. [PMID: 7538683 DOI: 10.1016/s0079-6603(08)60817-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden
| |
Collapse
|
40
|
Special peptidyl-tRNA molecules can promote translational frameshifting without slippage. Mol Cell Biol 1994. [PMID: 7969148 DOI: 10.1128/mcb.14.12.8107] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently we described an unusual programmed +1 frameshift event in yeast retrotransposon Ty3. Frameshifting depends on the presence of peptidyl-tRNA(AlaCGC) on the GCG codon in the ribosomal P site and on a translational pause stimulated by the slowly decoded AGU codon. Frameshifting occurs on the sequence GCG-AGU-U by out-of-frame binding of a valyl-tRNA to GUU without slippage of peptidyl-tRNA(AlaCGC). This mechanism challenges the conventional understanding that frameshift efficiency must correlate with the ability of mRNA-bound tRNA to slip between cognate or near-cognate codons. Though frameshifting does not require slippery tRNAs, it does require special peptidyl-tRNAs. We show that overproducing a second isoacceptor whose anticodon had been changed to CGC eliminated frameshifting; peptidyl-tRNA(AlaCGC) must have a special capacity to induce +1 frameshifting in the adjacent ribosomal A site. In order to identify other special peptidyl-tRNAs, we tested the ability of each of the other 63 codons to replace GCG in the P site. We found no correlation between the ability to stimulate +1 frameshifting and the ability of the cognate tRNA to slip on the mRNA--several codons predicted to slip efficiently do not stimulate frameshifting, while several predicted not to slip do stimulate frameshifting. By inducing a severe translational pause, we identified eight tRNAs capable of inducing measurable +1 frameshifting, only four of which are predicted to slip on the mRNA. We conclude that in Saccharomyces cerevisiae, special peptidyl-tRNAs can induce frameshifting dependent on some characteristic(s) other than the ability to slip on the mRNA.
Collapse
|
41
|
Nissen P, Reshetnikova L, Siboska G, Polekhina G, Thirup S, Kjeldgaard M, Clark BF, Nyborg J. Purification and crystallization of the ternary complex of elongation factor Tu:GTP and Phe-tRNA(Phe). FEBS Lett 1994; 356:165-8. [PMID: 7805830 DOI: 10.1016/0014-5793(94)01254-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Elongation factor Tu (EF-Tu) is the most abundant protein in prokaryotic cells. Its general function in protein biosynthesis is well established. It is a member of the large family of G-proteins, all of which bind guanosine phosphates (GDP or GTP) as cofactors. In its active GTP bound state EF-Tu binds aminoacylated tRNA (aa-tRNA) forming the ternary complex EF-Tu:GTP:aa-tRNA. The ternary complex interacts with the ribosome where the anticodon on tRNA recognises a codon on mRNA, GTPase activity is induced and inactive EF-Tu:GDP is released. Here we report the successful crystallization of a ternary complex of Thermus aquaticus EF-Tu:GDPNP and yeast Phe-tRNA(Phe) after its purification by HPLC.
Collapse
MESH Headings
- Chromatography, Gel
- Chromatography, High Pressure Liquid
- Crystallization
- Crystallography, X-Ray
- Electrophoresis, Polyacrylamide Gel
- Guanosine Triphosphate/chemistry
- Guanosine Triphosphate/isolation & purification
- Guanosine Triphosphate/metabolism
- Guanylyl Imidodiphosphate/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/isolation & purification
- Peptide Elongation Factor Tu/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/isolation & purification
- RNA, Transfer, Phe/metabolism
- Saccharomyces cerevisiae/metabolism
- Thermus/metabolism
Collapse
Affiliation(s)
- P Nissen
- Department of Biostructural Chemistry, University of Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vimaladithan A, Farabaugh PJ. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage. Mol Cell Biol 1994; 14:8107-16. [PMID: 7969148 PMCID: PMC359349 DOI: 10.1128/mcb.14.12.8107-8116.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recently we described an unusual programmed +1 frameshift event in yeast retrotransposon Ty3. Frameshifting depends on the presence of peptidyl-tRNA(AlaCGC) on the GCG codon in the ribosomal P site and on a translational pause stimulated by the slowly decoded AGU codon. Frameshifting occurs on the sequence GCG-AGU-U by out-of-frame binding of a valyl-tRNA to GUU without slippage of peptidyl-tRNA(AlaCGC). This mechanism challenges the conventional understanding that frameshift efficiency must correlate with the ability of mRNA-bound tRNA to slip between cognate or near-cognate codons. Though frameshifting does not require slippery tRNAs, it does require special peptidyl-tRNAs. We show that overproducing a second isoacceptor whose anticodon had been changed to CGC eliminated frameshifting; peptidyl-tRNA(AlaCGC) must have a special capacity to induce +1 frameshifting in the adjacent ribosomal A site. In order to identify other special peptidyl-tRNAs, we tested the ability of each of the other 63 codons to replace GCG in the P site. We found no correlation between the ability to stimulate +1 frameshifting and the ability of the cognate tRNA to slip on the mRNA--several codons predicted to slip efficiently do not stimulate frameshifting, while several predicted not to slip do stimulate frameshifting. By inducing a severe translational pause, we identified eight tRNAs capable of inducing measurable +1 frameshifting, only four of which are predicted to slip on the mRNA. We conclude that in Saccharomyces cerevisiae, special peptidyl-tRNAs can induce frameshifting dependent on some characteristic(s) other than the ability to slip on the mRNA.
Collapse
Affiliation(s)
- A Vimaladithan
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| | | |
Collapse
|
43
|
Janssen GM, van Damme HT, Kriek J, Amons R, Möller W. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31709-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
44
|
Jakubowski H. Energy cost of translational proofreading in vivo. The aminoacylation of transfer RNA in Escherichia coli. Ann N Y Acad Sci 1994; 745:4-20. [PMID: 7530434 DOI: 10.1111/j.1749-6632.1994.tb44360.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In many cases, the intrinsic binding energies of amino acids to aminoacyl-tRNA synthetases are inadequate to give the required accuracy of translation. This has necessitated the evolution of a second determinant of specificity, proofreading, or editing mechanisms that involve the expenditure of energy to remove errors. Studies of an error-editing function of bacterial methionyl-tRNA synthetase have led to the discovery of a distinct chemical mechanism of editing and to molecular dissection of the dual synthetic-editing function of the active site of the synthetase. Studies have also established the importance of proofreading in living cells and allowed direct measurements of energy costs associated with editing in vivo. An unexpected outcome of these studies was a discovery of functional and structural similarities between methionyl-tRNA synthetase and S-adenosylmethionine synthetase, suggesting an evolutionary relationship between the two proteins. The mechanism of editing involves a nucleophilic attack of a sulfur atom on the side chain of homocysteine in homocysteinyl adenylate on its carbonyl carbon, yielding homocysteine thiolactone. The model of the active site of methionyl-tRNA synthetase derived from structure-function studies explains how the active site partitions amino acids between synthetic and editing pathways. Hydrophobic and hydrogen bonding interactions of active site residues Trp305 and Tyr15 with the side chain of methionine prevent the cognate amino acid from entering the editing pathway. These interactions are missing in the case of the smaller side chain of the noncognate homocysteine, which therefore enters the editing pathway. Homocysteine thiolactone is formed as a result of editing of homocysteine by methionyl-tRNA synthetase in bacteria, yeast, and some cultured mammalian cells. In mammalian cells, enhanced synthesis of homocysteine thiolactone, is, thus far, associated with oncogenic transformation. In E. coli, most of the energy cost of proofreading by methionyl-tRNA synthetase is due to editing of the incorrect product, homocysteinyl adenylate.
Collapse
Affiliation(s)
- H Jakubowski
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103
| |
Collapse
|
45
|
Abstract
Several elongation factors involved in protein synthesis are GTPases that share structural and mechanistic homology with the large family of proteins including Ras and heterotrimeric receptor-coupled G proteins. The structure of elongation factor Tu (EF-Tu) from thermophilic bacteria, in its 'active' GTP-bound form, has recently been solved by X-ray crystallography. Comparison of this structure with the structure of Escherichia coli EF-Tu bound to GDP reveals a dramatic conformational change that is dependent on GTPase activity. The mechanism of this conformational change and of GTPase activation are discussed, and a model for the EF-Tu-GTP complex with aminoacyl-tRNA is presented.
Collapse
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| |
Collapse
|
46
|
Weijland A, Parmeggiani A. Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? Trends Biochem Sci 1994; 19:188-93. [PMID: 8048158 DOI: 10.1016/0968-0004(94)90018-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the elongation cycle of bacterial protein biosynthesis, the binding of aminoacyl-tRNA (aa-tRNA) to the A-site of mRNA-programmed ribosomes is mediated by elongation factor Tu (EF-Tu) and associated with the hydrolysis of GTP. Recently, in the case of cognate aa-tRNA, the participation of two GTP molecules has been implicated in this reaction. These are likely to be involved in preventing the indiscriminate binding of aa-tRNA to the ribosomal A-site. This article integrates this unexpected finding with our current knowledge of the structure-function relationships of the macro-molecules involved in the elongation cycle.
Collapse
Affiliation(s)
- A Weijland
- S.D.I. 61840 du CNRS, Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
47
|
Powers T, Noller HF. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J Mol Biol 1994; 235:156-72. [PMID: 8289238 DOI: 10.1016/s0022-2836(05)80023-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that a concise set of universally conserved bases in 16 S rRNA are strongly protected from attack by chemical probes when tRNA is bound specifically to the ribosomal A site. Two of these bases, A1492 and A1493, are located in the cleft of the 30 S subunit, the site of codon-anticodon interaction. A third residue, G530, is located within the highly conserved 530 stem-loop, a region that is involved in interactions with proteins S4 and S12, mutations in which perturb the translational error frequency. The 530 loop is also thought to be located at or near the site of interaction of elongation factor Tu on the 30 S subunit, a location that is distinct from the decoding site. This study monitors the response of these two A-site-related regions of 16 S rRNA to a variety of translational miscoding agents. Several of these agents, including streptomycin, neomycin and ethanol, selectively potentiate tRNA-dependent protection of residue G530 from kethoxal modification; in contrast, little change in reactivity of residues A1492 and A1493 is observed. These results are consistent with the previously demonstrated importance of G530 for A-site function and, moreover, suggest a common mechanism of action for these miscoding agents, even though they appear to have distinctly different modes of interaction with 16 S rRNA. In contrast to the miscoding agents, we find that a streptomycin-dependence (SmD) mutation in protein S12, which causes ribosomes to be hyperaccurate, antagonizes tRNA-dependent protection of G530. The possibility that 5' or 3' flanking regions of mRNA could be involved in tRNA-dependent protection of G530 was tested by using different lengths of oligo(U) to promote binding of tRNA(Phe) to the A site. The relative levels of protection of G530, A1492 and A1493 were unchanged as the size of the mRNA fragment was decreased from 16 to 6 bases in length. We conclude, therefore, that for protection of G530 to be the result of direct contact with message, it must necessarily be located directly at the decoding site; otherwise, its protection is best explained by allosteric interactions, either with mRNA, or with the codon-anticodon complex. These results are discussed in terms of a model wherein the conformation of the 530 loop is correlated with the affinity of the ribosome for elongation factor Tu.
Collapse
Affiliation(s)
- T Powers
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
48
|
Scoble J, Bilgin N, Ehrenberg M. Two GTPs are hydrolysed on two molecules of EF-Tu for each elongation cycle during code translation. Biochimie 1994; 76:59-62. [PMID: 8031905 DOI: 10.1016/0300-9084(94)90063-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new experimental design has been used to determine the number of GTPs hydrolysed per peptide bond in EF-Tu function in a poly(U)-translation system. We find that two GTPs are consumed for every amino acid incorporated into the nascent poly(Phe)-chains, in accordance with previous findings with other techniques. These results necessitate a revision of current views concerning E coli translation; also new schemes for ribosome function are discussed.
Collapse
Affiliation(s)
- J Scoble
- Department of Molecular Biology, University of Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Kjeldgaard M, Nissen P, Thirup S, Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1993; 1:35-50. [PMID: 8069622 DOI: 10.1016/0969-2126(93)90007-4] [Citation(s) in RCA: 316] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Elongation factor Tu (EF-Tu) is a GTP-binding protein that is crucial for protein biosynthesis. In the GTP form of the molecule, EF-Tu binds tightly to aminoacyl-tRNA, forming a ternary complex that interacts with the ribosomal acceptor site. During this interaction, GTP is hydrolyzed, and EF-Tu.GDP is ejected. RESULTS The crystal structure of EF-Tu from Thermus aquaticus, complexed to the GTP analogue GDPNP, has been determined at 2.5 A resolution and compared to the structure of Escherichia coli EF-Tu.GDP. During the transition from the GDP (inactive) to the GTP (active) form, domain 1, containing the GTP-binding site, undergoes internal conformational changes similar to those observed in ras-p21. In addition, a dramatic rearrangement of domains is observed, corresponding to a rotation of 90.8 degrees of domain 1 relative to domains 2 and 3. Residues that are affected in the binding of aminoacyl-tRNA are found in or near the cleft formed by the domain interface. CONCLUSION GTP binding by EF-Tu leads to dramatic conformational changes which expose the tRNA binding site. It appears that tRNA binding to EF-Tu induces a further conformational change, which may affect the GTPase activity.
Collapse
Affiliation(s)
- M Kjeldgaard
- Department of Chemistry, Aarhus University, Denmark
| | | | | | | |
Collapse
|
50
|
Nierhaus KH. Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol Microbiol 1993; 9:661-9. [PMID: 7694034 DOI: 10.1111/j.1365-2958.1993.tb01726.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three tRNA binding sites, the A, P and E sites, have been demonstrated on ribosomes of bacterial, archaebacterial and eukaryotic origin. In all these cases the first and the third site, the A and the E site, are allosterically coupled in the sense of a negative co-operativity. Therefore, the allosteric three-site model seems to be a generally valid description of the ribosomal elongation phase, where in a cycle of reactions the nascent peptide chain is prolonged by one amino acid. The molecular concept of the allosteric three-site model explains the astonishing ability of the ribosome to select the correct substrate out of a large number of very similar substrates, and it provides a framework within which the mechanisms of the elongation factors could be understood.
Collapse
MESH Headings
- Allosteric Regulation
- Anticodon
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Codon
- Guanosine Triphosphate/metabolism
- Models, Biological
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/physiology
- Substrate Specificity
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| |
Collapse
|