1
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Berthiaume AA, Reda SM, Kleist KN, Setti SE, Wu W, Johnston JL, Taylor RW, Stein LR, Moebius HJ, Church KJ. ATH-1105, a small-molecule positive modulator of the neurotrophic HGF system, is neuroprotective, preserves neuromotor function, and extends survival in preclinical models of ALS. Front Neurosci 2024; 18:1348157. [PMID: 38389786 PMCID: PMC10881713 DOI: 10.3389/fnins.2024.1348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wu
- Athira Pharma, Inc., Bothell, WA, United States
| | | | | | | | | | | |
Collapse
|
3
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Hai L, Hou HY, Zhou C, Li HJ. The Effect of Exergame Training on Physical Functioning of Healthy Older Adults: A Meta-Analysis. Games Health J 2022; 11:207-224. [PMID: 35653720 DOI: 10.1089/g4h.2021.0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Exergames have attracted increasing attention from both the public and researchers. Although previous systematic reviews provided evidence that exergame training is beneficial for improving balance or mobility in older adults, multidimensional physical function measurements, including balance, upper body strength, lower body strength, aerobic endurance, and gait, might help us achieve more robust and reliable results. This meta-analysis aims to quantify the effects of exergame training on overall and specific physical function in healthy older adults. We systematically searched exergame training studies published between January 1985 and June 2021. Forty-eight studies were included in the present meta-analysis, with a total of 1099 participants included in the training group and 1098 participants in the control group. Random-effects meta-analyses found that older adults obtained a small benefit in overall physical function performance (g = 0.43, 95% confidence interval [CI] = 0.33 to 0.53), moderate benefits in balance (g = 0.59, 95% CI = 0.46 to 0.71), upper body strength (g = 0.65, 95% CI = 0.20 to 1.10), lower body strength (g = 0.51, 95% CI = 0.37 to 0.65), and aerobic endurance (g = 0.65, 95% CI = 0.44 to 0.86), a small benefit in gait (g = 0.33, 95% CI = 0.08 to 0.59), and negligible effects on upper body flexibility (g = 0.13, 95% CI = -0.06 to 0.32) and lower body flexibility (g = 0.10, 95% CI = -0.45 to 0.67) from exergame training. The mini-mental state examination score was positively associated with the overall training efficacy (β = 0.08, P = 0.01), while body mass index and the sample size in the training group were negatively associated with the overall training efficacy (β = -0.01, P < 0.01; β = -0.004, P < 0.01). The current meta-analytic findings revealed that exergame training produced general benefits for overall physical function and different effects on specific physical function domains in older adults.
Collapse
Affiliation(s)
- Lagan Hai
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Hou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Jie Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P, Millesi F, Radtke C. How miRNAs Regulate Schwann Cells during Peripheral Nerve Regeneration-A Systemic Review. Int J Mol Sci 2022; 23:3440. [PMID: 35408800 PMCID: PMC8999002 DOI: 10.3390/ijms23073440] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons. This review highlights (a) the specific expression profiles of miRNAs upon a nerve lesion and (b) how miRNAs regulate nerve regeneration by acting on distinct pathways and linked proteins. Shedding light on the role of miRNAs associated with peripheral nerve regeneration will help researchers to better understand the molecular mechanisms and deliver targets for precision medicine.
Collapse
Affiliation(s)
- Anton Borger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| |
Collapse
|
6
|
Cheng XQ, Xu WJ, Ding X, Han GH, Wei S, Liu P, Meng HY, Shang AJ, Wang Y, Wang AY. Bioinformatic analysis of cytokine expression in the proximal and distal nerve stumps after peripheral nerve injury. Neural Regen Res 2021; 16:878-884. [PMID: 33229723 PMCID: PMC8178785 DOI: 10.4103/1673-5374.295348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In our previous study, we investigated the dynamic expression of cytokines in the distal nerve stumps after peripheral nerve injury using microarray analysis, which can characterize the dynamic expression of proteins. In the present study, we used a rat model of right sciatic nerve transection to examine changes in the expression of cytokines at 1, 7, 14 and 28 days after injury using protein microarray analysis. Interleukins were increased in the distal nerve stumps at 1-14 days post nerve transection. However, growth factors and growth factor-related proteins were mainly upregulated in the proximal nerve stumps. The P-values of the inflammatory response, apoptotic response and cell-cell adhesion in the distal stumps were higher than those in the proximal nerve stumps, but the opposite was observed for angiogenesis. The number of cytokines related to axons in the distal stumps was greater than that in the proximal stumps, while the percentage of cytokines related to axons in the distal stumps was lower than that in the proximal nerve stumps. Visualization of the results revealed the specific expression patterns and differences in cytokines in and between the proximal and distal nerve stumps. Our findings offer potential therapeutic targets and should help advance the development of clinical treatments for peripheral nerve injury. Approval for animal use in this study was obtained from the Animal Ethics Committee of the Chinese PLA General Hospital on September 7, 2016 (approval No. 2016-x9-07).
Collapse
Affiliation(s)
- Xiao-Qing Cheng
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Wen-Jing Xu
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Shuai Wei
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Hao-Ye Meng
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| | - Ai-Jia Shang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu Wang
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ai-Yuan Wang
- Institute of Orthopedics; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Onodera K, Shimojo D, Ishihara Y, Yano M, Miya F, Banno H, Kuzumaki N, Ito T, Okada R, de Araújo Herculano B, Ohyama M, Yoshida M, Tsunoda T, Katsuno M, Doyu M, Sobue G, Okano H, Okada Y. Unveiling synapse pathology in spinal bulbar muscular atrophy by genome-wide transcriptome analysis of purified motor neurons derived from disease specific iPSCs. Mol Brain 2020; 13:18. [PMID: 32070397 PMCID: PMC7029484 DOI: 10.1186/s13041-020-0561-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/29/2020] [Indexed: 02/09/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is an adult-onset, slowly progressive motor neuron disease caused by abnormal CAG repeat expansion in the androgen receptor (AR) gene. Although ligand (testosterone)-dependent mutant AR aggregation has been shown to play important roles in motor neuronal degeneration by the analyses of transgenic mice models and in vitro cell culture models, the underlying disease mechanisms remain to be fully elucidated because of the discrepancy between model mice and SBMA patients. Thus, novel human disease models that recapitulate SBMA patients’ pathology more accurately are required for more precise pathophysiological analysis and the development of novel therapeutics. Here, we established disease specific iPSCs from four SBMA patients, and differentiated them into spinal motor neurons. To investigate motor neuron specific pathology, we purified iPSC-derived motor neurons using flow cytometry and cell sorting based on the motor neuron specific reporter, HB9e438::Venus, and proceeded to the genome-wide transcriptome analysis by RNA sequences. The results revealed the involvement of the pathology associated with synapses, epigenetics, and endoplasmic reticulum (ER) in SBMA. Notably, we demonstrated the involvement of the neuromuscular synapse via significant upregulation of Synaptotagmin, R-Spondin2 (RSPO2), and WNT ligands in motor neurons derived from SBMA patients, which are known to be associated with neuromuscular junction (NMJ) formation and acetylcholine receptor (AChR) clustering. These aberrant gene expression in neuromuscular synapses might represent a novel therapeutic target for SBMA.
Collapse
Affiliation(s)
- Kazunari Onodera
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daisuke Shimojo
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Haruhiko Banno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naoko Kuzumaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Takuji Ito
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rina Okada
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Bruno de Araújo Herculano
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
8
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Gillon A, Nielsen K, Steel C, Cornwall J, Sheard P. Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. GeroScience 2018; 40:177-192. [PMID: 29736782 DOI: 10.1007/s11357-018-0020-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Life expectancy continues to extend, although frailty caused by loss of skeletal muscle mass continues unimpeded. Muscle atrophy caused by withdrawal of motor nerves is a feature of old age, as it is in amyotrophic lateral sclerosis (ALS) in which skeletal muscle denervation results from motoneuron death. In ALS, direct links have been established between motoneuron death and altered nucleocytoplasmic transport, so we ask whether similar defects accompany motoneuron death in normal ageing. We used immunohistochemistry on mouse tissues to explore potential links between neuromuscular junction (NMJ) degeneration, motoneuron death and nucleocytoplasmic transport regulatory proteins. Old age brought neuromuscular degeneration, motoneuron loss and reductions in immunodetectable levels of key nucleocytoplasmic transport proteins in lumbar motoneurons. We then asked whether exercise inhibited these changes and found that active elderly mice experienced less motoneuron death, improved neuromuscular junction morphology and retention of key nucleocytoplasmic transport proteins in lumbar motoneurons. Our results suggest that emergent defects in nucleocytoplasmic transport may contribute to motoneuron death and age-related loss of skeletal muscle mass, and that these defects may be reduced by exercise.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Kathrine Nielsen
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
10
|
Bucchia M, Merwin SJ, Re DB, Kariya S. Limitations and Challenges in Modeling Diseases Involving Spinal Motor Neuron Degeneration in Vitro. Front Cell Neurosci 2018; 12:61. [PMID: 29559895 PMCID: PMC5845677 DOI: 10.3389/fncel.2018.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic conditions involving degeneration of spinal motor neurons (MNs), such as amyotrophic lateral sclerosis, sarcopenia, and spinal cord injury, mostly occur in individuals whose spinal MNs are fully mature. There is currently no effective treatment to prevent death or promote axonal regeneration of the spinal MNs affected in these patients. To increase our understanding and find a cure for such conditions, easily controllable and monitorable cell culture models allow for a better dissection of certain molecular and cellular events that cannot be teased apart in whole organism models. To date, various types of spinal MN cultures have been described. Yet these models are all based on the use of immature neurons or neurons uncharacterized for their degree of maturity after being isolated and cultured. Additionally, studying only MNs cannot give a comprehensive and complete view of the neurodegenerative processes usually involving other cell types. To date, there is no confirmed in vitro model faithfully emulating disease or injury of the mature spinal MNs. In this review, we summarize the different limitations of currently available culture models, and discuss the challenges that have to be overcome for developing more reliable and translational platforms for the in vitro study of spinal MN degeneration.
Collapse
Affiliation(s)
- Monica Bucchia
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Samantha J Merwin
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Shingo Kariya
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Henriques A, Huebecker M, Blasco H, Keime C, Andres CR, Corcia P, Priestman DA, Platt FM, Spedding M, Loeffler JP. Inhibition of β-Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis. Sci Rep 2017; 7:5235. [PMID: 28701774 PMCID: PMC5507914 DOI: 10.1038/s41598-017-05313-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
- Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Hélène Blasco
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Céline Keime
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 67404, Illkirch, France
| | - Christian R Andres
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Centre SLA, Tours, France
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.
| |
Collapse
|
12
|
Hvid LG, Nielsen MKF, Simonsen C, Andersen M, Caserotti P. Brain-derived neurotrophic factor (BDNF) serum basal levels is not affected by power training in mobility-limited older adults - A randomized controlled trial. Exp Gerontol 2017; 93:29-35. [PMID: 28392271 DOI: 10.1016/j.exger.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/28/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults.
Collapse
Affiliation(s)
- L G Hvid
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Odense, Denmark.
| | - M K F Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Odense, Denmark
| | - C Simonsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Odense, Denmark
| | - M Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - P Caserotti
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark (SDU), Odense, Denmark; National Institutes of Health, National Institute on Aging, Laboratory of Epidemiology and Population Sciences (LPES), Bethesda, MD, United States
| |
Collapse
|
13
|
Yu J, Gu X, Yi S. Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration. Front Cell Neurosci 2016; 10:274. [PMID: 27999531 PMCID: PMC5138191 DOI: 10.3389/fncel.2016.00274] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Nerve injury is a common and difficult clinical problem worldwide with a high disability rate. Different from the central nervous system, the peripheral nervous system is able to regenerate after injury. Wallerian degeneration in the distal nerve stump contributes to the construction of a permissible microenvironment for peripheral nerve regeneration. To gain new molecular insights into Wallerian degeneration, this study aimed to identify differentially expressed genes and elucidate significantly involved pathways and cellular functions in the distal nerve stump following nerve injury. Microarray analysis showed that a few genes were differentially expressed at 0.5 and 1 h post nerve injury and later on a relatively larger number of genes were up-regulated or down-regulated. Ingenuity pathway analysis indicated that inflammation and immune response, cytokine signaling, cellular growth and movement, as well as tissue development and function were significantly activated following sciatic nerve injury. Notably, a cellular function highly related to nerve regeneration, which is called Nervous System Development and Function, was continuously activated from 4 days until 4 weeks post injury. Our results may provide further understanding of Wallerian degeneration from a genetic perspective, thus aiding the development of potential therapies for peripheral nerve injury.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University Nantong, China
| |
Collapse
|
14
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
15
|
Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, Gu X, Li S. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep 2016; 6:29121. [PMID: 27381812 PMCID: PMC4933896 DOI: 10.1038/srep29121] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3'-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather than target site 1 or 2 of BDNF 3'-UTR. Following rat sciatic nerve injury, a rough inverse correlation was observed between temporal expression profiles of miR-1 and BDNF in the injured nerve. The overexpression or silencing of miR-1 in cultured Schwann cells (SCs) inhibited or enhanced BDNF secretion from the cells, respectively, and also suppressed or promoted SC proliferation and migration, respectively. Interestingly, BDNF knockdown could attenuate the enhancing effect of miR-1 inhibitor on SC proliferation and migration. These findings will contribute to the development of a novel therapeutic strategy for peripheral nerve injury, which overcomes the limitations of direct administration of exogenous BDNF by using miR-1 to regulate endogenous BDNF expression.
Collapse
Affiliation(s)
- Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Ying Yuan
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jie Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci 2016; 16:472-81. [PMID: 26748820 DOI: 10.1002/mabi.201500367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Indexed: 11/10/2022]
Abstract
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
Collapse
Affiliation(s)
- Kayla Belanger
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Tony M Dinis
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Sami Taourirt
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Guillaume Vidal
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Christopher Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.,Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 55 Kneeland Street, Boston, MA, 02111, USA
| |
Collapse
|
17
|
Jiménez-Maldonado A, Cerna-Cortés J, Castro-Rodríguez EM, Montero SA, Muñiz J, Rodríguez-Hernández A, Lemus M, De Álvarez-Buylla ER. Effects of moderate- and high-intensity chronic exercise on brain-derived neurotrophic factor expression in fast and slow muscles. Muscle Nerve 2015; 53:446-51. [PMID: 26148339 DOI: 10.1002/mus.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) protein expression is sensitive to cellular activity. In the sedentary state, BDNF expression is affected by the muscle phenotype. METHODS Eighteen Wistar rats were divided into the following 3 groups: sedentary (S); moderate-intensity training (MIT); and high-intensity training (HIT). The training protocol lasted 8 weeks. Forty-eight hours after training, total RNA and protein levels in the soleus and plantaris muscles were obtained. RESULTS In the plantaris, the BDNF protein level was lower in the HIT than in the S group (P < 0.05). A similar effect was found in the soleus (without significant difference). In the soleus, higher Bdnf mRNA levels were found in the HIT group (P < 0.001 vs. S and MIT groups). In the plantaris muscle, similar Bdnf mRNA levels were found in all groups. CONCLUSIONS These results indicate that high-intensity chronic exercise reduces BDNF protein level in fast muscles and increases Bdnf mRNA levels in slow muscles.
Collapse
Affiliation(s)
- Alberto Jiménez-Maldonado
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Elena M Castro-Rodríguez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Jesús Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | - Elena Roces De Álvarez-Buylla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| |
Collapse
|
18
|
Combes M, Poindron P, Callizot N. Glutamate protects neuromuscular junctions from deleterious effects of β-amyloid peptide and conversely: an in vitro study in a nerve-muscle coculture. J Neurosci Res 2014; 93:633-43. [PMID: 25491262 DOI: 10.1002/jnr.23524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
Abstract
Murine models of Alzheimer's disease with elevated levels of amyloid-β (Aβ) peptide present motor axon defects and neuronal death. Aβ1-42 accumulation is observed in motor neurons and spinal cords of sporadic and familial cases of amyotrophic lateral sclerosis (ALS). Motor neurons are highly susceptible to glutamate, which has a role in ALS neuronal degeneration. The current study investigates the link between Aβ and glutamate in this neurodegenerative process. Primary rat nerve and human muscle cocultures were intoxicated with glutamate or Aβ. Neuromuscular junction (NMJ) mean size and neurite length were evaluated. The role of N-methyl-D-aspartate receptor (NMDAR) was investigated by using MK801. Glutamate and Aβ production were evaluated in culture supernatant. The current study shows that NMJs are highly sensitive to Aβ peptide, that the toxic pathway involves glutamate and NMDAR, and that glutamate and Aβ act in an interlinked manner. Some motor diseases (e.g., ALS), therefore, could be considered from a new point of view related to these balance disturbances.
Collapse
Affiliation(s)
- Maud Combes
- Department of Research and Development, Neuro-Sys SAS, Gardanne, France
| | | | | |
Collapse
|
19
|
Harandi VM, Lindquist S, Kolan SS, Brännström T, Liu JX. Analysis of neurotrophic factors in limb and extraocular muscles of mouse model of amyotrophic lateral sclerosis. PLoS One 2014; 9:e109833. [PMID: 25334047 PMCID: PMC4198138 DOI: 10.1371/journal.pone.0109833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3–5 years after diagnosis. Neurotrophic factors (NTFs) are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR) technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) in limb muscles and extraocular muscles (EOMs) from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients.
Collapse
Affiliation(s)
- Vahid M. Harandi
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Susanne Lindquist
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | | | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
20
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
21
|
Lin YC, Marra KG. Injectable systems and implantable conduits for peripheral nerve repair. Biomed Mater 2012; 7:024102. [DOI: 10.1088/1748-6041/7/2/024102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X. Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 2011; 6:e24612. [PMID: 21931774 PMCID: PMC3172250 DOI: 10.1371/journal.pone.0024612] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/14/2011] [Indexed: 12/16/2022] Open
Abstract
Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing. We harvested dorsal root ganglia tissues and the proximal stumps of the nerve, and identified 201 and 225 known miRNAs with significant expression variance at five time points in these tissues after sciatic nerve transaction, respectively. Subsequently, hierarchical clustering, miRNA expression pattern and co-expression network were performed. We screened out specific miRNAs and further obtained the intersection genes through target analysis software (Targetscan and miRanda). Moreover, GO and KEGG enrichment analyses of these intersection genes were performed. The bioinformatics analysis indicated that the potential targets for these miRNAs were involved in nerve regeneration, including neurogenesis, neuron differentiation, vesicle-mediated transport, homophilic cell adhesion and negative regulation of programmed cell death that were known to play important roles in regulating nerve repair. Finally, we combined differentially expressed mRNA with the predicted targets for selecting inverse miRNA-target pairs. Our results show that the abnormal expression of miRNA may contribute to illustrate the molecular mechanisms of nerve regeneration and that miRNAs are potential targets for therapeutic interventions and may enhance intrinsic regenerative ability.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Guohui Ding
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
23
|
Barmpitsioti A, Konofaos P, Ignatiadis I, Papalois A, Zoubos AB, Soucacos PN. Nerve growth factor combined with an epineural conduit for bridging a short nerve gap (10 mm). A study in rabbits. Microsurgery 2011; 31:545-50. [DOI: 10.1002/micr.20925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/25/2011] [Accepted: 04/29/2011] [Indexed: 12/11/2022]
|
24
|
Riley DA, Burns AS, Carrion-Jones M, Dillingham TR. Electrophysiological Dysfunction in the Peripheral Nervous System Following Spinal Cord Injury. PM R 2011; 3:419-25; quiz 425. [DOI: 10.1016/j.pmrj.2010.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/20/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
25
|
Marteyn A, Maury Y, Gauthier MM, Lecuyer C, Vernet R, Denis JA, Pietu G, Peschanski M, Martinat C. Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy. Cell Stem Cell 2011; 8:434-44. [PMID: 21458401 DOI: 10.1016/j.stem.2011.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 11/28/2010] [Accepted: 02/10/2011] [Indexed: 01/01/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting a variety of organs, including the central nervous system. By using neuronal progeny derived from human embryonic stem cells carrying the causal DM1 mutation, we have identified an early developmental defect in genes involved in neurite formation and the establishment of neuromuscular connections. Differential gene expression profiling and quantitative RT-PCR revealed decreased expression of two members of the SLITRK family in DM1 neural cells and in DM1 brain biopsies. In addition, DM1 motoneuron/muscle cell cocultures showed alterations that are consistent with the known role of SLITRK genes in neurite outgrowth, neuritogenesis, and synaptogenesis. Rescue and knockdown experiments suggested that the functional defects can be directly attributed to SLITRK misexpression. These neuropathological mechanisms may be clinically significant for the functional changes in neuromuscular connections associated with DM1.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM/UEVE UMR 861, I-STEM AFM, 5 rue H. Desbruères, Evry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu H, Wang L, Li H, Liu Z, Wang H, Li Z. Formation of neuromuscular junction-like structure between primary sensory terminals and skeletal muscle cells in vitro. Anat Rec (Hoboken) 2011; 294:472-8. [PMID: 21337712 DOI: 10.1002/ar.21310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/16/2009] [Indexed: 11/09/2022]
Abstract
Sensory nerve cross-anastomosis provides a modified trophic environment by modulating neurotrophic factor synthesis in muscle. Target tissues contribute to the phenotype and function of sensory neurons. Whether formation of neuromuscular junction (NMJ)-like structure between sensory neurons and skeletal muscle (SKM) cells in vitro remains unknown. In this study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The relationship between DRG neurons and SKM cells was observed by light microscopy and scanning electron microscopy (SEM). The results showed that: (1) DRG neuronal axons frequently terminated on or adhered to the SKM cells; (2) the crossing axons adhered to each other, hence displacement of the terminal axons on the contracting SKM cells would also oscillate the proximally crossing axonal network; (3) the configurations of the axon terminal observed by SEM were variable in different culture conditions; (4) the enlarged nerve endings terminated on the surface of SKM cells which formed NMJ-like structure. These results offered new clues for a better understanding of the relationship between sensory neurons and SKM cells.
Collapse
Affiliation(s)
- Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, China
| | | | | | | | | | | |
Collapse
|
27
|
Le Hericium erinaceus: des propriétés essentiellement dépendantes du neuronal growth factor. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10298-010-0601-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
29
|
Wang L, Li H, Liu Z, Xu X, Wang H, Li Z. Co-administration of monosialoganglioside and skeletal muscle cells on dorsal root ganglion neuronal phenotypes in vitro. Cell Mol Neurobiol 2010; 30:43-9. [PMID: 19582569 PMCID: PMC11498411 DOI: 10.1007/s10571-009-9429-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, 250012 Jinan, Shandong Province China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, 250012 Jinan, China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, 250012 Jinan, Shandong Province China
| | - Xiaobo Xu
- Key Lab of Medical Neurobiology in Universities of Shandong Province, Shandong University School of Medicine, 250012 Jinan, China
| | - Huaijing Wang
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, 250012 Jinan, Shandong Province China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, 250012 Jinan, Shandong Province China
| |
Collapse
|
30
|
Wang L, Liu Z, Liu H, Wan Y, Wang H, Li Z. Neuronal phenotype and tyrosine kinase receptor expression in cocultures of dorsal root ganglion and skeletal muscle cells. Anat Rec (Hoboken) 2009; 292:107-12. [PMID: 19051269 DOI: 10.1002/ar.20777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Tyrosine kinase receptor (Trk)A, TrkB, and TrkC are three members of the Trk family which may be relevant to neuronal phenotypes. Whether target skeletal muscle cells generate their expression remains unclear. Neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), neurofilament 200 (NF-200), TrkA, TrkB, and TrkC were quantified using immunohistochemistry in rat DRG neuronal cultures and cocultures of DRG neurons and skeletal muscle cells. The percentage of NF-200 and TrkC-expressing neurons in cocultures of DRG neurons and skeletal muscle cells was significantly higher, 26.86% +/- 3.17% (NF-200) and 27.74% +/- 3.63% (TrkC) compared with 20.92% +/- 1.98% (NF-200) and 16.70% +/- 3.68% (TrkC) in DRG cultures; whereas the percentage of SP, CGRP, TrkA, and TrkB-expressing neurons was not changed significantly by the addition of target skeletal muscle cells. Thus, target skeletal muscle cells may influence neurofilament-phenotype and TrkC receptor but not neuropeptide-phenotype and TrkA and TrkB receptors. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
31
|
Johnson EO, Charchanti A, Soucacos PN. Nerve repair: experimental and clinical evaluation of neurotrophic factors in peripheral nerve regeneration. Injury 2008; 39 Suppl 3:S37-42. [PMID: 18723170 DOI: 10.1016/j.injury.2008.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotrophic factors are a family of polypeptides required for survival of discrete neuronal populations. In the normal state such factors are mostly synthesised by target tissues and are used for the viability of the nerve-cell bodies. After nerve injury, neurotrophic factors (NFs) are synthesised by non-neuronal (Schwann cells and fibroblasts) in the nerve trunk, and act to support the outgrowth of axons. NFs can be classified into three major groups: (1) neurotrophins; (2) neurokines; and (3) the transforming growth factor beta (TGF)-beta superfamily.
Collapse
Affiliation(s)
- Elizabeth O Johnson
- Department of Anatomy, Histology & Embryology, University of Ioannina, School of Medicine, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
32
|
Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F. In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 2007; 56:354-64. [DOI: 10.1002/glia.20617] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Lee KS, Baek JR, Lee GH, Choi GW. Comparative Study of Scar Formation at the Site of Sciatic Nerve Repair in Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.4055/jkoa.2007.42.2.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kwang Suk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Jong Ryoon Baek
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon Medical College, Incheon, Korea
| | - Gyou Hyuk Lee
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| | - Gi Won Choi
- Department of Orthopaedic Surgery, Medical College, Korea University, Seoul, Korea
| |
Collapse
|
34
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Woolley AG, Sheard PW, Duxson MJ. Neurotrophin-3 null mutant mice display a postnatal motor neuropathy. Eur J Neurosci 2005; 21:2100-10. [PMID: 15869506 DOI: 10.1111/j.1460-9568.2005.04052.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper examines early postnatal development of the neuromuscular system in mice with a null mutation in the gene for neurotrophin-3. We report that alpha-motoneurons at first develop substantially normally, despite a known 15% deficit in their somal size [Woolley et al. (1999)Neurosci. Lett., 272, 107-110.] and the absence of proprioceptive input [Ernfors et al. (1994)Cell, 77, 503-512]. At birth, motor axons have extended into the muscle, forming normal-looking neuromuscular junctions with focal accumulations of acetylcholine receptors. Detailed ultrastructural analysis does however, reveal subtle abnormalities at this time, particularly a decrease in the extent of occupancy of the postsynaptic site by nerve terminals, and a small but significant deficit in myofibre number. After the relative normality of this early neuromuscular development, there then occurs a catastrophic postnatal loss of motor nerve terminals, resulting in complete denervation of hindlimb muscles by P7. In systematic semi-serial samples through the entire muscle endplate zones, no neuromuscular junctions can be found. Intramuscular axons are fragmented, as shown by both electron microscopic observations and neurofilament immunohistochemistry, and alpha-bungarotoxin detection of acetylcholine receptors indicates dispersal of the junctional accumulation. At earlier times (postnatal days three and four) the terminal Schwann cells show ultrastructural abnormalities, and preliminary observations suggest marked disturbance of myelination. Based on comparison with other literature, the peripheral nerve degeneration seems unlikely to have arisen as a secondary effect of de-afferentation. We discuss whether the neural degeneration is secondary to the disturbance of Schwann cell function, or due directly to a loss of neurotrophin-3 based support of the motoneuron.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Bungarotoxins/metabolism
- Embryo, Mammalian
- Immunohistochemistry/methods
- Mice
- Mice, Mutant Strains
- Microscopy, Electron, Transmission/methods
- Muscle Development/genetics
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Neurofilament Proteins/metabolism
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/pathology
- Neuromuscular Junction/ultrastructure
- Neurotrophin 3/genetics
- Synaptophysin/metabolism
Collapse
Affiliation(s)
- Adele G Woolley
- Department of Anatomy & Structural Biology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Robinson PP, Yates JM, Smith KG. An electrophysiological study into the effect of neurotrophin-3 on functional recovery after lingual nerve repair. Arch Oral Biol 2004; 49:763-75. [PMID: 15308420 DOI: 10.1016/j.archoralbio.2004.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Neurotrophin-3 (NT-3) is known to ameliorate central changes that result from peripheral nerve injury and may promote regeneration of myelinated axons. We have assessed its role in the functional recovery of sensory afferents and autonomic efferents after repair of the chorda tympani and lingual nerves in the cat. DESIGN Six months after entubulation repair, with or without the incorporation of NT-3 at the repair site, the recovery of secretomotor and vasomotor efferents was determined by recording salivary flow from the submandibular gland and temperature changes on the tongue surface, each evoked by stimulation of the repaired nerve. Electrophysiological recordings from the lingual and chorda tympani nerves proximal to the repair allowed characterisation of mechanosensitive, thermosensitive and gustatory afferents. RESULTS When compared with data from uninjured control animals, both repair groups showed persistent reductions in conduction velocity, receptor sensitivity, spontaneous discharge, proportion of gustatory and thermosensitive units, and rate of salivary secretion. Comparisons between the two repair groups revealed that in the NT-3 group, salivary secretion rate was lower and the activity evoked in the chorda tympani by gustatory or thermal stimuli was lower, but the spontaneous discharge rate was higher. Mechanosensitive units in the lingual nerve had slower conduction velocities but the mechanoreceptive field size, adaptation time and discharge frequency had increased. CONCLUSIONS Despite its known trophic role in the lingual somatosensory system, NT-3 did not enhance functional recovery from injury and had a negative effect on the long-term outcome for sensory and autonomic fibres.
Collapse
Affiliation(s)
- Peter P Robinson
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TA, UK.
| | | | | |
Collapse
|
37
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
38
|
Wagner S, Dorchies OM, Stoeckel H, Warter JM, Poindron P, Takeda K. Functional maturation of nicotinic acetylcholine receptors as an indicator of murine muscular differentiation in a new nerve-muscle co-culture system. Pflugers Arch 2003; 447:14-22. [PMID: 14976589 DOI: 10.1007/s00424-003-1135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 06/17/2003] [Indexed: 10/26/2022]
Abstract
Under normal conditions in situ, muscle fibers and motoneurons, the main partners of motor units, are strongly dependent on each other. This interdependence hinders ex vivo studies of neuromuscular disorders where nervous or muscular components are considered separately. To allow in vitro access to complex nerve-muscle relationships, we developed a novel nerve-muscle co-culture system where mouse muscle innervation is assured by rat spinal cord explants. The degree of muscular maturation during co-culture was evaluated using the distribution of nicotinic acetylcholine receptors (AChRs) and their electrophysiological characteristics before and after innervation. In myotubes from non-innervated cultures, AChRs were diffusely distributed over the entire myotube surface. Their single-channel conductance (33.5+/-0.6 pS) and mean open time (8.1+/-0.7 ms) are characteristic of AChRs described in embryonic or denervated skeletal muscles. In innervated muscle fibers from co-cultures, AChRs appear as discrete aggregates and co-localize with synaptotagmin. In addition to the embryonic type currents, in innervated fibers AChR currents having high conductance (53.3+/-5.9 pS) and short mean open time (2.6+/-0.1 ms), characteristic of AChRs at mature neuromuscular junctions, were observed. Our data support the use of this new nerve-muscle co-culture system as a reliable model for the study of murine muscular differentiation and function.
Collapse
Affiliation(s)
- Stéphanie Wagner
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires, EA2308, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 24, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
39
|
Yin Q, Kemp GJ, Yu LG, Wagstaff SC, Frostick SP. Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament protein during regeneration of sciatic nerve treated with neurotrophin-4. Neuroscience 2001; 105:779-83. [PMID: 11516841 DOI: 10.1016/s0306-4522(01)00216-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurotrophin-4 acts as a potent survival factor for subpopulations of motoneurons. To investigate its effect on Schwann cell sheath and axonal proteins during peripheral nerve regeneration, sciatic nerves in adult rats were transected and repaired, and fibrin glue containing neurotrophin-4 injected around the repair site. At 5, 15, 30 and 60 days after repair, 5-mm nerve segments distal to the repair were collected, and western blotting was used to measure myelin-associated glycoprotein, myelin basic protein and low-molecular-weight neurofilament protein. In control groups these dramatically declined at 5 and 15 days then increased from 30 and 60 days. However, in the neurotrophin-4 group there was a significant increase (to several times basal values) in myelin-associated glycoprotein and myelin basic protein at 5-15 days. The relatively small increases (<7%) in Schwann cell numbers suggest that this is mainly due to increased synthesis per cell. The neurotrophin-4 group also showed a small but significant increase at 15 days in low-molecular-weight neurofilament protein, which however remained much lower than basal. We conclude that neurotrophin-4 regulates the expression of myelin-associated glycoprotein, myelin basic protein, and to a lesser extent low-molecular-weight neurofilament protein, during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Q Yin
- Department of Musculoskeletal Science, University of Liverpool, UK.
| | | | | | | | | |
Collapse
|
40
|
Dorchies OM, Laporte J, Wagner S, Hindelang C, Warter JM, Mandel JL, Poindron P. Normal innervation and differentiation of X-linked myotubular myopathy muscle cells in a nerve-muscle coculture system. Neuromuscul Disord 2001; 11:736-46. [PMID: 11595516 DOI: 10.1016/s0960-8966(01)00221-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To study the pathogenesis of X-linked recessive myotubular myopathy (XLMTM), we used a nerve-muscle coculture system which allows the reconstitution of functional motor units in vitro after coupling of human skeletal muscle cells with embryonic rat spinal cord explants. We used three skeletal muscle cell lines derived from subjects with known mutations in the MTM1 gene (two from embryonic tissues, associated with mutations predicted to give a severe phenotype, and one from a neonate still alive at 3 years 6 months and exhibiting a mild phenotype). We compared these three XLMTM muscle cell cultures with control cultures giving special attention to behaviour of living cocultures (formation of the myofibres, contractile activity, survival), expression of muscular markers (desmin, dystrophin, alpha-actinin, troponin-T, myosin heavy chain isoforms), and nerve-muscle interactions (expression and aggregation of the nicotinic acetylcholine receptors). We were unable to reproduce any 'myotubular' phenotype since XLMTM muscle cells behaved like normal cells with regard to all the investigated parameters. Our results suggest that XLMTM muscle might be intrinsically normal and emphasize the possible involvement of the myotubularin-deficient motor neurons in the development of the disease.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Cell Differentiation/physiology
- Cell Survival
- Cells, Cultured
- Coculture Techniques
- Humans
- Male
- Muscle Contraction
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Nerve Tissue/cytology
- Nerve Tissue/embryology
- Nerve Tissue/metabolism
- Phenotype
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases, Non-Receptor
- Rats
- Receptors, Nicotinic/metabolism
- Spinal Cord/cytology
- Spinal Cord/embryology
- X Chromosome/genetics
Collapse
Affiliation(s)
- O M Dorchies
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires (UPRES 2308), UFR des Sciences Pharmaceutiques, BP 24, 74 route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Gómez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci 2001; 13:1078-84. [PMID: 11285004 DOI: 10.1046/j.0953-816x.2001.01484.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated the impact of neuromuscular activity on the expression of neurotrophins in the lumbar spinal cord region and innervating skeletal muscle of adult rats. Rats were exercised on a treadmill for 1 day or 5 consecutive days and euthanized at 0, 2 or 6 h after the last bout of exercise. By Day 1, there was no clear evidence of an increase in brain-derived neurotrophic factor (BDNF) mRNA in the spinal cord or the soleus muscle. By Day 5, there was a significant increase in BDNF mRNA in the spinal cord at 2 h post-training, and the soleus muscle showed a robust increase between 0 and 6 h post-training. Immunoassays showed significant increases in BDNF protein in the soleus muscle by training Day 5. Immunohistochemical analyses showed elevated BDNF levels in motoneuron cell bodies and axons in the ventral horn. Neurotrophin-3 (NT-3) mRNA was measured to determine whether selected neurotrophins respond with a selective pattern of induction to neuromuscular activity. In the spinal cord, there was a progressive post-training decrease in NT-3 mRNA following a single bout of training, while there was a significant increase in NT-3 mRNA at 2 h post-training by Day 5. The soleus muscle showed a progressive increase in NT-3 mRNA by Days 1 and 5 following training. These results show that neuromuscular activity has specific effects on the BDNF and NT-3 systems, and that repetitive exercise affects the magnitude and stability of these responses.
Collapse
Affiliation(s)
- F Gómez-Pinilla
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1527, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Neurotrophin-4 (NT-4) is a recently identified neurotrophic factor with potential trophic effects on subpopulations of neurons. Little is known about its role in peripheral nerve regeneration following nerve injury. To investigate this, 48 Sprague-Dawley rats underwent left sciatic nerve transection and immediate repair. Fibrin glue mixed with either NT-4 or vehicle (control) was injected around the nerve repair site. Nerve regeneration was assessed both functionally and histomorphometrically. The results showed that the NT-4-treated group had a significant increase compared with the control in the regeneration distance at 5 days. The sciatic function index was significantly greater in the NT-4 group from 40 to 60 days after nerve repair. Morphometric analysis revealed that nerves treated with NT-4 had significant improvement in the number of regenerated axons, axonal diameter, and myelin thickness. These results suggest that NT-4 is a potent factor improving rat sciatic nerve regeneration.
Collapse
Affiliation(s)
- Q Yin
- Department of Musculoskeletal Science, University of Liverpool, Royal Liverpool University Hospital, Liverpool L69 3GA, UK.
| | | | | | | | | |
Collapse
|
43
|
Guettier-Sigrist S, Coupin G, Warter JM, Poindron P. Cell types required to efficiently innervate human muscle cells in vitro. Exp Cell Res 2000; 259:204-12. [PMID: 10942592 DOI: 10.1006/excr.2000.4968] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies carried out in our laboratory have shown that myofibers formed by fusion of muscle satellite cells from donors with spinal muscular atrophy (SMA) type I or II undergo a characteristic degeneration 1.5-3 weeks after innervation with rat embryonic spinal cord explants. The only cells responsible for degeneration of innervated cocultures are SMA muscle satellite cells. In order to study the kinetics of nerve and muscle cell degeneration in nerve-muscle cocultures implicating SMA muscle cells, we attempted to simplify the nervous component of the coculture and identify the nerve cell types necessary for a successful innervation. We demonstrate here that motoneurons alone were unable to innervate myotubes. However, when three cell types (motoneurons, sensory neurons, and Schwann cells) were added onto a reconstituted muscular component consisting of cloned muscle satellite cells and cloned muscular fibroblasts, myotubes contracted, indicating that functional neuromuscular junctions were formed. We concluded that the three cell types were required for a successful innervation. Moreover, we studied the effects of culture medium conditioned by different combinations of nerve cells on innervation; we observed that physical contacts among sensory neurons, motoneurons, and myotubes are required for a successful innervation; in contrast Schwann cells can be replaced by a Schwann-cell-conditioned medium, indicating that these cells produce a putative soluble "innervation-promoting factor." Obviously such a reconstituted system does not reflect the in vivo situation but it allows the formation of functional motor synapses and could therefore allow us to elucidate neuromuscular disease pathogenesis, especially that of spinal muscular atrophy.
Collapse
Affiliation(s)
- S Guettier-Sigrist
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires (UPRES 2308), Clinique Neurologique 2, UFR des Sciences Médicales, Université Louis Pasteur, 74 route du Rhin, Illkirch Cedex, 67401, France
| | | | | | | |
Collapse
|
44
|
Abstract
The peripheral nervous system retains a considerable capacity for regeneration. However, functional recovery rarely returns to the preinjury level no matter how accurate the nerve repair is, and the more proximal the injury the worse the recovery. Among a variety of approaches being used to enhance peripheral nerve regeneration are the manipulation of Schwann cells and the use of neurotrophic factors. Such factors include, first, nerve growth factor (NGF) and the other recently identified members of the neurotrophin family, namely, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5); second, the neurokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF); and third, the transforming growth factors (TGFs)-beta and their distant relative, glial cell line-derived neurotrophic factor (GDNF). In this review article we focus on the roles in peripheral nerve regeneration of Schwann cells and of the neurotrophin family, CNTF and GDNF, and the relationship between these. Finally, we discuss what remains to be understood about the possible clinical use of neurotrophic factors.
Collapse
Affiliation(s)
- S P Frostick
- Department of Orthopaedic and Accident Surgery, University of Liverpool, United Kingdom
| | | | | |
Collapse
|
45
|
Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 2000; 25:391-414. [PMID: 10811744 DOI: 10.1053/jhsu.2000.4165] [Citation(s) in RCA: 438] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In spite of an enormous amount of new experimental laboratory data based on evolving neuroscientific concepts during the last 25 years peripheral nerve injuries still belong to the most challenging and difficult surgical reconstructive problems. Our understanding of biological mechanisms regulating posttraumatic nerve regeneration has increased substantially with respect to the role of neurotrophic and neurite-outgrowth promoting substances, but new molecular biological knowledge has so far gained very limited clinical applications. Techniques for clinical approximation of severed nerve ends have reached an optimal technical refinement and new concepts are needed to further increase the results from nerve repair. For bridging gaps in nerve continuity little has changed during the last 25 years. However, evolving principles for immunosuppression may open new perspectives regarding the use of nerve allografts, and various types of tissue engineering combined by bioartificial conduits may also be important. Posttraumatic functional reorganizations occurring in brain cortex are key phenomena explaining much of the inferior functional outcome following nerve repair, and increased knowledge regarding factors involved in brain plasticity may help to further improve the results. Implantation of microchips in the nervous system may provide a new interface between biology and technology and developing gene technology may introduce new possibilities in the manipulation of nerve degeneration and regeneration.
Collapse
Affiliation(s)
- G Lundborg
- Department of Hand Surgery, Malmö University Hospital, Sweden
| |
Collapse
|
46
|
Steljes TPV, Kinoshita Y, Wheeler EF, Oppenheim RW, von Bartheld CS. Neurotrophic factor regulation of developing avian oculomotor neurons: Differential effects of BDNF and GDNF. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19991105)41:2<295::aid-neu11>3.0.co;2-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Woolley A, Sheard P, Dodds K, Duxson M. Alpha motoneurons are present in normal numbers but with reduced soma size in neurotrophin-3 knockout mice. Neurosci Lett 1999; 272:107-10. [PMID: 10507553 DOI: 10.1016/s0304-3940(99)00587-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurotrophin-3 (NT-3) is essential for survival of proprioceptive and mechanoreceptor neurons, but its role in motoneuron development in vivo has seemed slight. Recent evidence however has suggested that NT-3 may be involved in motoneuron maturation. Here, we quantitatively assess the number and state of development of motoneurons within the lumbar lateral motor column (LLMC) of newborn NT-3 (-/-), (+/-) and (+/+) mutant mice. We find that the number of alpha motoneurons in the LLMC is the same in all genotypes, but soma size is significantly reduced in (-/-) mutants. This suggests that NT-3 is not required for normal production and survival of alpha motoneurons, but is essential for their full maturation and/or maintenance. We also confirm a previous report that gamma motoneurons are absent in NT-3 (-/-) mice.
Collapse
Affiliation(s)
- A Woolley
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
48
|
Abstract
The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies.
Collapse
Affiliation(s)
- G Terenghi
- Blond McIndoe Centre, Queen Victoria Hospital, East Grinstead, Sussex, UK.
| |
Collapse
|
49
|
Haase G, Pettmann B, Vigne E, Castelnau-Ptakhine L, Schmalbruch H, Kahn A. Adenovirus-mediated transfer of the neurotrophin-3 gene into skeletal muscle of pmn mice: therapeutic effects and mechanisms of action. J Neurol Sci 1998; 160 Suppl 1:S97-105. [PMID: 9851658 DOI: 10.1016/s0022-510x(98)00207-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several neurotrophic factors (CNTF, BDNF, IGF-1) have been suggested for the treatment of motor neuron diseases. In ALS patients, however, the repeated subcutaneous injection of these factors as recombinant proteins is complicated by their toxicity or poor bioavailability. We have constructed an adenovirus vector coding for neurotrophin-3 (AdNT-3) allowing for stable and/or targeted delivery of NT-3 to motoneurons. The intramuscular administration of this vector was tested in the mouse mutant pmn (progressive motor neuronopathy). AdNT-3-treated pmn mice showed prolonged lifespan, improved neuromuscular function, reduced motor axonal degeneration and efficient reinnervation of muscle fibres. NT-3 protein and also adenovirus vectors, when injected into muscle, can be transported by motoneurons via retrograde axonal transport to their cell bodies in the spinal cord. Using ELISA and RT-PCR analyses in muscle, spinal cord and serum of AdNT-3-treated pmn mice, we have investigated the contribution of these processes to the observed therapeutic effects. Our results suggest that most if not all therapeutic benefit was due to the continuous systemic liberation of adenoviral NT-3. Therefore, viral gene therapy vectors auch as adenoviruses, AAVs, lentiviruses and new types of gene transfer not based on viral vectors that allow for efficient in vivo liberation of neurotrophic factors have potential for the future treatment of human motor neuron diseases.
Collapse
Affiliation(s)
- G Haase
- INSERM U.129, ICGM, 24, Paris, France.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
A nerve-muscle coculture model (human muscle cells innervated by embryonic rat spinal cord) was used to explore the pathogenesis of spinal muscular atrophy (SMA). Previous studies showed that myofibers from donors with SMA type I or SMA type II (but not SMA type III) undergo a characteristic degeneration 1-3 weeks after innervation (Braun et al. [1995] Lancet 345:694-695). To determine which cells are involved in degeneration, we cloned satellite cells and fibroblasts derived from muscle biopsies of normal (healthy) donors and donors with SMA. We show that fibroblasts are required for successful innervation, that fibroblasts from normal and SMA donors contribute equally well to the establishment of cocultures, and that only SMA satellite cells are responsible for the degeneration of innervated cocultures. We succeeded in preventing the degeneration of cloned satellite cells from SMA donors by adding 50% cloned satellite cells from normal donors to the culture to make heteromyotubes. In mixed cocultures, after innervation, we did not observe degeneration. This result suggests that survival of the cocultures depends on a message derived from the muscle cells. Consequently, we propose that therapeutic approaches for SMA that could repair (or compensate for) the genetic defect in muscle cells (which are otherwise much more accessible for gene therapy than neurons) might prevent motoneuron degeneration. The role of muscle cells in the establishment and the degeneration of neuromuscular junctions deserves further attention and investigation.
Collapse
Affiliation(s)
- S Guettier-Sigrist
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires (UPRES 2308), UFRR des Sciences Pharmaceutiques, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|